• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

    2017-10-10 01:02:00HUShuangnianLIYanyan
    關(guān)鍵詞:有理理工學(xué)院工程學(xué)院

    HU Shuangnian, LI Yanyan

    (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

    The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

    HU Shuangnian1,2, LI Yanyan3

    (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

    finite field; rational point; Markoff-Hurwitz-type equations

    0 Introduction and the main result

    Markoff-Hurwitz-type equations are the following type of the Diophantine equation:

    wheren,care positive integers andn≥3. This type of equations were firstly studied by MARKOFF[1]for the casen=3,c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ[2].

    Recently, BAOULINA[5-7]studied the generalized Markoff-Hurwitz-type equation:

    (1)

    In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form

    (2)

    Nq=qt-1+(-1)n-1(q-1)t-n.

    Clearly,Nqis independent of the coefficientsai,cand the exponentskn+1,…,kt. Lettingt=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.

    This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.

    1 Preliminary lemmas

    In this section, we present some useful lemmas which are needed in section 2. Letmbe a positive integer andh(x1,x2,…,xr) be a polynomial with integer coefficients. We useN[h≡0(modm)] to denote the number of the solutions of the congruenceh(x1,x2,…,xr)≡(modm). We first recall two well known results in the elementary number theory.

    Lemma1[13]Leta,bbe positive integers. Then

    gcd(a,b)lcm[a,b]=ab.

    Nq[a(x1x2…xr)d=α].

    Since lemma 2 tells us that

    Then the desired result follows immediately. This ends the proof of lemma 2.

    The following result comes from PAN et al[8].

    Nq[a1x1m1+a2x2m2+…+anxnmn=cx1k1x2k2…xnkn]=

    qn-1+(-1)n-1.

    2 Proof of theorem 1

    In this section, we give the proof of theorem 1.

    ProofFirstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition

    is equivalent to the following two conditions:

    are pairwise coprime. Since

    thus we can deduce that the condition

    (3)

    qt-n-(q-1)t-n.

    (4)

    Using the assumptiond1,d2,…,dnare pairwise coprime, it follows from (4) and lemma 4 that

    (qt-n-(q-1)t-n)×

    qn-1(qt-n-(q-1)t-n)=

    qt-1-qn-1(q-1)t-n.

    (5)

    d(q-1)t-n-1×

    (6)

    Then, it follows from lemma 6 that

    (7)

    Using (6) and (7), one can derive that

    (8)The desired result can follow immediately from (3),(5) and (8). This ends the proof of theorem 1.

    In concluding this section, we present some trivial corollaries.

    Corollary1For the further generalized Markoff-Hurwitz-type equations of the form

    Nq=qt-1+(-1)n-1(q-1)t-n.

    Corollary2For the further generalized Markoff-Hurwitz-type equations of the form

    (a1x1m1+a2x2m2+…+anxnmn)k=cx1m1x2m2…xtmt

    Nq=qt-1+(-1)n-1(q-1)t-n.

    Corollary3For the further generalized Markoff-Hurwitz-type equations of the form

    Nq=qt-1+(-1)n-1(q-1)t-n.

    Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over

    (8)

    [1]MARKOFFAA.Surlesformesquadratiquesbinairesindéfinies[J].MathematischeAnnalen,1880,17(3):379-399.

    [2] HURWITZ A. über eine aufgabe der unbestimmten analysis[J].ArchivderMathematikundPhysik,1907(3):185-196.

    [3] CARLITZ L. Certain special equations in a finite field[J].MonatshefteFürMathematik,1954,58(1):5-12.

    [4] CARLITZ L. The number of solutions of some equations in a finite field[J].PortugaliaeMathematica,1954,13(1):25-31.

    [6] BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields [J].JournalofNumberTheory,2006,118(1):31-52.

    [8] PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J].ArchivderMathematik,2014,102(4):337-343.

    [9] CAO W. On generalized Markoff-Hurwitz-type equations over finite fields [J].ActaApplicandaeMathematicae,2010,112(3):275-281.

    [10] SONG J, CHEN F Y. The number of some equations over finite fields[J].JournalofUniversityofChineseAcademyofSciences,2015,32(5):582-587.

    [11] CAO W, SUN Q. On a class of equations with special degrees over finite fields [J].ActaArithmetica,2007,130(2):195-202.

    [12] ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields [J].JournalofMathematicalResearchandExposition,2010,30(6):957-966.

    [13] KENG H L.IntroductiontoNumberTheory[M]. Heidelberg: Springer-Verlag,1982.

    [14] BAOULINA I. Solutions of equations over finite fields: Enumeration via bijections [J].JournalofAlgebraandItsApplications,2016,15(7):1650136.

    [15] LIDL R, NIEDERREITER H.FiniteFields-EncyclopediaofMathematicsandItsApplications[M]. 2nd ed. Cambridge: Cambridge University Press,1997.

    胡雙年1,2, 李艷艷3

    (1. 南陽(yáng)理工學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 南陽(yáng) 473004; 2. 鄭州大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 河南 鄭州 450001; 3. 南陽(yáng)理工學(xué)院 電子與電氣工程學(xué)院, 河南 南陽(yáng) 473004)

    有限域;有理點(diǎn);Markoff-Hurwitz-type方程

    O 156.1

    :A

    :1008-9497(2017)05-516-04

    date:Nov.7, 2016.

    Supported by the Key Program of Universities of Henan Province of China (17A110010), China Postdoctoral Science Foundation Funded Project (2016M602251) and by the National Science Foundation of China Grant (11501387).

    Abouttheauthor:HU Shuangnian (1982-),ORCID:http://orcid.org/0000-0002-5174-8460,male, Ph.D, lecturer, the field of interest is number theory, E-mail:hushuangnian@163.com.

    10.3785/j.issn.1008-9497.2017.05.003

    有限域上廣義Markoff-Hurwitz-type方程的有理點(diǎn)個(gè)數(shù).浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):516-519,537

    猜你喜歡
    有理理工學(xué)院工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    有理 有趣 有深意
    江蘇理工學(xué)院
    《有理數(shù)》鞏固練習(xí)
    常熟理工學(xué)院
    福建工程學(xué)院
    理工學(xué)院簡(jiǎn)介
    福建工程學(xué)院
    圓周上的有理點(diǎn)
    湄潭县| 山阳县| 斗六市| 平昌县| 扶余县| 阿坝| 无棣县| 安徽省| 册亨县| 竹山县| 汝南县| 玛纳斯县| 扎鲁特旗| 黔南| 怀安县| 枣庄市| 汕头市| 鄂托克前旗| 吉木乃县| 和田市| 舒城县| 玉田县| 高台县| 睢宁县| 富川| 小金县| 罗定市| 桓台县| 宁河县| 天水市| 万宁市| 儋州市| 昌吉市| 罗定市| 云浮市| 宁海县| 尤溪县| 胶州市| 宁波市| 长治市| 民县|