剡轉(zhuǎn)轉(zhuǎn),任 艷,吳 凡,駱 凱,張代玉,閆 啟,張宇飛,趙玉鳳,張吉宇
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
植物生產(chǎn)層
白花草木樨EST-SSR標(biāo)記的開(kāi)發(fā)與篩選
剡轉(zhuǎn)轉(zhuǎn),任 艷,吳 凡,駱 凱,張代玉,閆 啟,張宇飛,趙玉鳳,張吉宇
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
草木樨(Melilotus)是重要的豆科牧草之一,然而草木樨分子標(biāo)記匱乏,限制了草木樨種質(zhì)資源的開(kāi)發(fā)與利用。本研究以白花草木樨(M.albus)轉(zhuǎn)錄組數(shù)據(jù)為基礎(chǔ),設(shè)計(jì)了18 182對(duì)草木樨EST-SSR引物,并對(duì)所開(kāi)發(fā)的EST-SSR引物進(jìn)行篩選。通過(guò)PCR擴(kuò)增從550對(duì)EST-SSR引物中篩選得到206對(duì)白花草木樨多態(tài)性引物,共檢測(cè)出679個(gè)等位基因,平均每對(duì)引物檢測(cè)出2.888個(gè)基因位點(diǎn)。多態(tài)信息含量PIC的分布范圍為0.239~0.855,平均值為0.468。206對(duì)多態(tài)性引物Nei’s基因多樣性指數(shù)(H)和Shannon信息指數(shù)(I)的平均值分別為0.169和0.239。本研究開(kāi)發(fā)的EST-SSR豐富了草木樨屬的分子標(biāo)記,為研究種質(zhì)資源的遺傳多樣性和分子輔助育種奠定了基礎(chǔ)。
草木樨;EST-SSR;標(biāo)記開(kāi)發(fā);多態(tài)信息含量;期望雜合度;遺傳距離;遺傳多樣性
草木樨(Melilotusspp.)為豆科一年生或二年生自花授粉或異花授粉二倍體植物[1-2],全世界約有19種,主要分布于歐洲地中海區(qū)域、東歐和亞洲,在我國(guó)主要分布于東北、華南、西南。白花草木樨(M.albus)為該屬生產(chǎn)利用常見(jiàn)種之一,自交親和率約為49%[2],具有適應(yīng)性廣、抗逆性強(qiáng)[3]、繁殖速度快、種子產(chǎn)量高以及固氮能力強(qiáng)等優(yōu)良特性[4],是僅次于苜蓿(Medicagosativa)的優(yōu)良豆科牧草。作為豆科牧草,草木樨的固氮能力高,有利于草田輪作,因此,發(fā)展草木樨是提高農(nóng)作物產(chǎn)量的一項(xiàng)有效措施[5]。近年來(lái),我國(guó)越來(lái)越重視草牧業(yè)的發(fā)展,提出將糧食作物、經(jīng)濟(jì)作物的二元結(jié)構(gòu)調(diào)整為糧食作物、經(jīng)濟(jì)作物、飼料作物的三元結(jié)構(gòu),通過(guò)種植優(yōu)質(zhì)高產(chǎn)飼草,推進(jìn)糧食作物種植向飼草料作物種植方向轉(zhuǎn)變[6],草木樨是糧改飼的主要草種之一。
簡(jiǎn)單序列重復(fù)(simple sequence repeats, SSR)標(biāo)記是一類由幾個(gè)核苷酸(一般為1~6個(gè))為重復(fù)單位組成的長(zhǎng)達(dá)幾十個(gè)核苷酸的串聯(lián)重復(fù)序列。因具有多態(tài)性高、位點(diǎn)特異性、突變率高、共顯性、操作簡(jiǎn)單等優(yōu)點(diǎn)[7-10],近年來(lái)已經(jīng)快速發(fā)展成為國(guó)內(nèi)外廣泛應(yīng)用的方法[11],利用分子標(biāo)記技術(shù)來(lái)研究作物種質(zhì)資源間的遺傳變異也越來(lái)越受到人們重視,SSR標(biāo)記還可以用來(lái)鑒別品種間的親緣關(guān)系[12]。EST-SSR(express sequence taget-simple sequence repeat)是基于表達(dá)序列標(biāo)簽開(kāi)發(fā)的微衛(wèi)星分子標(biāo)記,又稱表達(dá)序列標(biāo)簽-簡(jiǎn)單序列重復(fù)。由于EST-SSR來(lái)源于基因組中的轉(zhuǎn)錄區(qū)域,且在同源基因中含有保守序列,因此,與基因組SSR相比,EST-SSR具有在植物物種之間可轉(zhuǎn)移性的優(yōu)點(diǎn)。目前,EST-SSR分子標(biāo)記已在多個(gè)物種中得到了應(yīng)用。Zhou等[13]利用EST-SSR對(duì)老芒麥(Elymussibiricus)的遺傳多樣性進(jìn)行了研究,推動(dòng)了披堿草屬植物分子遺傳多樣性的研究。EST-SSR分子標(biāo)記已經(jīng)在油菜(Brassicacampestris)[14]、茶(Camelliasinensis)樹(shù)[15]等作物和紫花苜蓿[16]、高丹草(Sorghumbicolor×S.sudanenes)[17]等牧草中得到了應(yīng)用。
草木樨屬的研究大多集中在栽培技術(shù)[18]、化學(xué)成分[19]等方面。駱凱等[20]對(duì)從國(guó)內(nèi)外引進(jìn)的19份二年生草木樨種質(zhì)進(jìn)行了農(nóng)藝性狀和品質(zhì)的初步評(píng)價(jià);Di等[21]對(duì)整個(gè)草木樨屬的形態(tài)學(xué)以及分子系統(tǒng)進(jìn)化進(jìn)行了研究,證實(shí)草木樨屬是單系統(tǒng)遺傳,與苜蓿、三葉草(Trifoliumrepens)的親緣關(guān)系最近。然而目前關(guān)于草木樨分子標(biāo)記開(kāi)發(fā)的研究報(bào)道較少,可用于研究草木樨屬植物的遺傳工具和資源非常有限。2007年Winton等[22]開(kāi)發(fā)了9對(duì)草木樨基因組SSR標(biāo)記研究了草木樨在阿拉斯加洲入侵的起源。隨后Wu等[11]采用18對(duì)SSR引物研究了草木樨屬18個(gè)種的遺傳多樣性。本研究利用生物信息學(xué)工具,從白花草木樨轉(zhuǎn)錄組數(shù)據(jù)中開(kāi)發(fā)設(shè)計(jì)大規(guī)模的EST-SSR分子標(biāo)記,進(jìn)一步篩選多態(tài)性高標(biāo)記,以期為草木樨屬植物的遺傳資源開(kāi)發(fā)與利用奠定基礎(chǔ)。
1.1試驗(yàn)材料
白花草木樨的5份種質(zhì)來(lái)自我國(guó)國(guó)家牧草種質(zhì)資源庫(kù)(北京)(表1)。其中,ZXY06P-1732和 ZXY05P-983來(lái)自俄羅斯,HB2009-153來(lái)自中國(guó)信陽(yáng),中畜-1226和ZXY07P-3150來(lái)源地不詳。
1.2試驗(yàn)方法
1.2.1EST-SSR引物的開(kāi)發(fā)與設(shè)計(jì) 由諾和公司完成白花草木樨轉(zhuǎn)錄組測(cè)序數(shù)據(jù)已提交到NCBI(http://www.ncbi.nlm.nih.gov/Traces/sra),采用MISA(1.0版)對(duì)Unigene進(jìn)行SSR檢測(cè),識(shí)別標(biāo)準(zhǔn)為:包含1、2、3、4、5、6個(gè)堿基重復(fù)單元的EST-SSR分子標(biāo)記的最小重復(fù)數(shù)分別為10、6、5、5、5、5。通過(guò)兩個(gè)引物之間不發(fā)生互補(bǔ),特別是在引物3′端,即使無(wú)法避免,其3′端互補(bǔ)堿基也應(yīng)不大于兩個(gè)堿基的篩選原則,利用軟件Primer3[23-24](默認(rèn)參數(shù))設(shè)計(jì)EST-SSR引物。
表1 供試材料及來(lái)源信息Table 1 Origin information of the tested Melilotus germplasm
注:“—”表示信息不詳。
Note: “—”means the information is unknown.
1.2.2DNA的提取 每種材料取18個(gè)單株的新鮮葉片混合,用SDS法[25]提取葉片的總DNA,將提取出來(lái)的DNA用瓊脂糖凝膠電泳檢測(cè)其質(zhì)量,對(duì)合格樣品加ddH2O稀釋到50 ng·μL-1,置于-20 ℃冰箱中保存。
1.2.3引物篩選、PCR擴(kuò)增及電泳 轉(zhuǎn)錄組測(cè)序獲得的18 182對(duì)EST-SSR引物,根據(jù)引物的堿基重復(fù)類型(除一堿基之外)、片段長(zhǎng)度(150~200 bp)、退火溫度(55~60 ℃)等條件篩選得到550對(duì)EST-SSR引物用于本試驗(yàn)。PCR反應(yīng)體系總體積為10 μL,含1.0 μL模板DNA,4 μmol·L-1正反引物各1 μL,0.1 μLDNA聚合酶,4.9 μL 2 × Reaction Mix,2 μL ddH2O。初步篩選反應(yīng)程序:94 ℃預(yù)變性3 min;94 ℃變性30 s,引物最適退火溫度退火30 s,72 ℃延伸30 s,35個(gè)循環(huán);72 ℃延伸7 min;4 ℃保存。擴(kuò)增產(chǎn)物用6.0%的變性聚丙烯酰胺凝膠電泳分離,銀染。本試驗(yàn)使用DL500DNA Marker。
1.3數(shù)據(jù)分析
通過(guò)人工讀帶,根據(jù)擴(kuò)增條帶在相對(duì)遷移位置的有無(wú),記數(shù)為“1”或“0”,建立原始數(shù)據(jù)矩陣,統(tǒng)計(jì)每個(gè)EST-SSR位點(diǎn)的等位基因數(shù),計(jì)算引物的多態(tài)信息含量PIC[26]以及期望雜合度(He)。
式中:Pi指第i個(gè)等位基因出現(xiàn)的頻率。
用Popgen32軟件統(tǒng)計(jì)分析Nei’s多樣性指數(shù)和Shannon信息指數(shù)。
2.1EST-SSR引物的產(chǎn)生
通過(guò)SSR識(shí)別工具軟件MISA(1.0版)對(duì)得到的功能基因進(jìn)行位點(diǎn)識(shí)別后,從15 260個(gè)功能基因中共識(shí)別出了19 263個(gè)潛在的EST-SSR位點(diǎn)。EST-SSR引物的設(shè)計(jì)由Primer3軟件完成,設(shè)計(jì)得到18 182對(duì)EST-SSR引物。其中單堿基的有11 398對(duì),二堿基的有2 986對(duì),三堿基的有3 461對(duì),四堿基的有299對(duì),五堿基的有29對(duì),六堿基的有9對(duì)。進(jìn)一步根據(jù)堿基重復(fù)類型、預(yù)期片段大小和退火溫度等條件來(lái)挑選,共有符合要求的550對(duì)引物EST-SSR用于進(jìn)一步篩選,其中二堿基的有136對(duì),三堿基的有317對(duì),四堿基的有84對(duì),五堿基的有12對(duì),六堿基的有1對(duì)(表2)。
表2 EST-SSR引物的來(lái)源及堿基重復(fù)類型Table 2 The origin and variation type of the EST-SSR primers
2.2遺傳多樣性分析
利用白花草木樨材料對(duì)550對(duì)EST-SSR引物進(jìn)行篩選驗(yàn)證,結(jié)果表明,共有351對(duì)引物能夠擴(kuò)增出條帶,而剩余的199對(duì)引物在多個(gè)退火溫度下都沒(méi)有檢測(cè)出PCR擴(kuò)增產(chǎn)物。在能夠成功擴(kuò)增出條帶的草木樨EST-SSR引物中,共有290對(duì)引物獲得條帶清晰、大小合適的擴(kuò)增產(chǎn)物,而剩余的61對(duì)引物擴(kuò)增出的PCR產(chǎn)物條帶大小都大于或小于引物的預(yù)期片段大小。經(jīng)過(guò)計(jì)算各個(gè)引物的多態(tài)性指標(biāo),在能夠擴(kuò)增出引物預(yù)期片段大小的草木樨EST-SSR引物中,206對(duì)引物表現(xiàn)出多態(tài)性(圖1),而剩余的84對(duì)引物未表現(xiàn)出多態(tài)性(表3)。206對(duì)草木樨EST-SSR引物共檢測(cè)出679個(gè)等位基因,變幅為2~6個(gè),平均每對(duì)引物檢測(cè)出2.888個(gè)基因位點(diǎn),其中c9516_g1和c9897_g檢測(cè)到的等位變異數(shù)最多,為6個(gè)。期望雜合度的變化范圍為0.278~0.861,平均值為0.536。多態(tài)信息含量PIC的分布范圍為0.239~0.855,平均值為0.468(表3)。
用550對(duì)EST-SSR引物對(duì)5份白花草木樨種質(zhì)進(jìn)行擴(kuò)增,結(jié)果表明,多態(tài)性EST-SSR標(biāo)記位點(diǎn)的觀測(cè)等位基因數(shù)(Na)、期望等位基因數(shù)(Ne)、Nei’s基因多樣性指數(shù)(H)和Shannon信息指數(shù)(I)的平均值分別為1.810、1.541、0.316和0.466。
2.3種質(zhì)間遺傳距離分析
白花草木樨5份種質(zhì)的遺傳距離介于0.455~0.580,Pop1、Pop3和Pop1與Pop4的遺傳距離最大,均為0.580;Pop1與Pop2遺傳距離最小,為0.455;5份種質(zhì)的遺傳一致度介于0.550~0.634,Pop1與Pop2之間的遺傳一致度最大,為0.634(表4),表明這兩份種質(zhì)間的遺傳相似性最高。Pop1、Pop3和Pop1與Pop4的遺傳一致度最小,均為0.556,表明這兩份種質(zhì)間的遺傳相似性最低。
分子標(biāo)記是作物分子遺傳育種研究的重要工具之一。在眾多的分子標(biāo)記中,SSR已被廣泛應(yīng)用于種質(zhì)遺傳多樣性的鑒定、分析以及種質(zhì)遺傳圖譜的構(gòu)建等研究中[27]。SSR分子標(biāo)記已經(jīng)在藜麥(Chenopodiumquinoa)[28]、小麥(Triticumaestivum)[29]等主要農(nóng)作物的種質(zhì)資源研究中得到了廣泛應(yīng)用,但在草木樨等豆科作物上,由于開(kāi)發(fā)的分子標(biāo)記較少,檢測(cè)到的SSR分子水平的多態(tài)性較少,其應(yīng)用受到了限制。近年來(lái),通過(guò)生物信息學(xué)手段利用公共數(shù)據(jù)庫(kù)中豐富的基因組和轉(zhuǎn)錄組序列發(fā)展分子標(biāo)記成為開(kāi)發(fā)SSR及其它類型分子標(biāo)記的重要途徑[30-32]。本研究通過(guò)NCBI數(shù)據(jù)庫(kù)白花草木樨轉(zhuǎn)錄組測(cè)序設(shè)計(jì)出18 182對(duì)EST-SSR引物。并通過(guò)草木樨5份種質(zhì)對(duì)550對(duì)EST-SSR引物進(jìn)行篩選,共檢測(cè)出679個(gè)等位基因,變幅為2~6個(gè),平均每個(gè)位點(diǎn)2.888個(gè)。多態(tài)性信息含量PIC的分布范圍為0.239~0.855,平均值為0.468。Nei’ s基因多樣性指數(shù)、Shannon信息指數(shù)的平均值分別為0.169、0.239。陳立強(qiáng)和師尚禮[16]用15對(duì)SSR引物在42份紫花苜蓿材料中共檢測(cè)到231條擴(kuò)增帶,其中163條具有多態(tài)性,Nei’ s基因多樣性指數(shù)和Shannon信息指數(shù)(I)的平均值分別為0.210 0和0.326 2。Wu等[11]利用18對(duì)SSR引物在草木樨18個(gè)種共50份種質(zhì)中共檢測(cè)到287個(gè)等位基因,平均每個(gè)位點(diǎn)15.94個(gè),多態(tài)信息含量PIC 的分布范圍為0.71~0.93,平均值為0.87。Winton等[22]開(kāi)發(fā)出的9對(duì)草木樨基因組SSR在白花草木樨29個(gè)種質(zhì)中共檢測(cè)到36個(gè)等位基因,平均每個(gè)位點(diǎn)4個(gè)。本研究所表現(xiàn)出的引物多態(tài)信指數(shù)相對(duì)較低,原因可能有:一是EST編碼功能基因,序列保守性高,EST-SSR的多態(tài)性低于基因組SSR[33-34]。二是本研究所選的材料是草木樨屬種內(nèi)的材料,所選材料間的親緣關(guān)系較近,不易得到多態(tài)性高的引物。
本研究從轉(zhuǎn)錄組測(cè)序獲得18 182對(duì)EST-SSR引物,根據(jù)引物的堿基重復(fù)類型、片段長(zhǎng)度、退火溫度等條件篩選得到550對(duì)EST-SSR引物,再次篩選,共得到290對(duì)有擴(kuò)增產(chǎn)物的引物,其中206對(duì)引物具有多態(tài)性。結(jié)果表明,白花草木樨EST-SSR含有豐富的SSR位點(diǎn),本研究開(kāi)發(fā)的EST-SSR豐富了草木樨屬EST-SSR分子標(biāo)記,為研究種質(zhì)資源的遺傳多樣性和分子輔助育種奠定了基礎(chǔ)。
圖1 部分引物對(duì)5份白花草木樨種質(zhì)的擴(kuò)增結(jié)果Fig. 1 Amplification products from five Melilotus albus accessions using select primer pairs
表4 5份種質(zhì)的Nei’ s遺傳一致度和遺傳距離Table 4 Nei’ s genetic similarity coefficient and genetic distance between five accessions
注:對(duì)角線右上方為遺傳一致度,對(duì)角線下方為遺傳距離。
Note:The upper right of the diagonal is the genetic consistency, and below the diagonal is the genetic distance.
References:
[1] 汪永平,駱凱,胡小文,馬福成,田小飛,張寶林,塔拉騰,劉曉燕,張吉宇.PEG和NaCl脅迫對(duì)草木樨種子萌發(fā)和幼苗生長(zhǎng)的影響.草業(yè)科學(xué),2016,33(6):1174-1182. Wang Y P,Luo K,Hu X W,Ma F C,Tian X F,Zhang B L,Talateng,Liu X Y,Zhang J Y.Effects of PEG and NaCl stress on seed germination,seedling growth ofMelilotusaccession.Pratacultural Science,2016,33(6):1174-1182.(in Chinese)
[2] Brenner D M.Methods forMelilotusgermplasm regeneration.Plant Genetic Resources Newsletter,2005,141:51-55.
[3] Luo K,Jahufer M Z Z,Wu F,Di H Y,Zhang D Y,Meng X C,Zhang J Y,Wang Y R.Genotypic variation in a breeding population of yellow sweet clover (Melilotusofficinalis).Frontiers in Plant Science,2016,7:972.
[4] 叢建民,陳鳳清,孫春玲.草木樨綜合開(kāi)發(fā)研究.安徽農(nóng)業(yè)科學(xué),2012,40(5):2962-2963. Cong J M,Chen F Q,Sun C L.Study on comprehensive development ofMelilotussuaverolensL.Journal of Anhui Agricultural Science,2012,40(5):2962-2963.(in Chinese)
[5] 馬麗.淺談草木樨的綜合利用.新疆畜牧業(yè),2005(4):56-57.
[6] 陳志敏.“糧改飼”推進(jìn)草食畜牧業(yè)發(fā)展.中國(guó)畜牧業(yè),2016(18):71-72.
[7] 黃映萍.DNA分子標(biāo)記研究進(jìn)展.中山大學(xué)研究生學(xué)刊:自然科學(xué)·醫(yī)學(xué)版,2010,31(2):27-36. Huang Y P.Progress of studies on the molecular marker.Journal of the Graduates:Natural Sciences·Medicine,2010,31(2):27-36.(in Chinese)
[8] 段永紅,渠云芳.遺傳標(biāo)記在植物研究中的應(yīng)用.北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2010:210-221.
[9] Kaneko Y,Lian C,Watanabe S,Shimatani K,Sakio H,Noma N.Development of microsatellites inMachilusthunbergii(Lauraceae),a warm-temperate coastal tree species in Japan.American Journal of Botany,2012,99(7):265-267.
[10] Jun T H,Michel A P,Mian M A.Development of soybean aphid genomic SSR markers using next generation sequencing.Genome,2011,54(5):360-367.
[11] Wu F,Zhang D Y,Ma J X,Luo K,Di H Y,Liu Z P,Zhang J Y,Wang Y R.Analysis of genetic diversity and population structure in accessions of the genusMelilotus.Industrial Crops and Products,2016,85:84-92.
[12] 李為民,王宇超,黎斌,張燕,盧元,周元福,柏國(guó)清,叢曉峰,李思峰.陜西省野生大豆種質(zhì)資源的SSR 遺傳多樣性研究.中國(guó)農(nóng)學(xué)通報(bào),2015,31(24):99-105. Li W M,Wang Y C,Li B,Zhang Y,Lu Y,Zhou Y F,Bai G Q,Cong X F,Li S F.Analysis of genetic diversity ofGlycinesojagermplasm resources in Shaanxi Province.Chinese Agricultural Science Bulletin,2015,31(24):99-105.(in Chinese)
[13] Zhou Q,Luo D,Ma L C,Xie W G,Wang Y,Wang Y R,Liu Z P.Development and cross-species transferability of SSR markers in Siberian wildrye (ElymussibiricusL.) using Illumina sequencing.Scientific Reports,2016,6:20549.
[14] 李小白,張明龍,崔海瑞.油菜EST-SSR標(biāo)記的建立.分子細(xì)胞生物學(xué)報(bào),2007,40(2):137-144. Li X B,Zhang M L,Cui H R.Data mining for SSRs in ESTs and development of EST-SSR marker in oilseed rape.Journal of Molecular Cell Biology,2007,40(2):137-144.(in Chinese)
[15] 陳熙,李佼,張羽,張顏青,徐凱明.基于EST-SSR的陜西茶樹(shù)資源遺傳多樣性分析.四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,34(3):322-327. Chen X,Li J,Zhang Y,Zhang Y Q,Xu K M.Genetic diversity analysis of tea in Shaanxi Province based on EST-SSR.Journal of Sichuan Agricultural University,2016,34(3):322-327.(in Chinese)
[16] 陳立強(qiáng),師尚禮.42份紫花苜蓿種質(zhì)資源遺傳多樣性的SSR分析.草業(yè)科學(xué),2015,32(3):372-381. Chen L Q,Shi S L.Genetic diversity among 42 alfalfa accessions revealed by SSR makers.Pratacultural Science,2015,32(3):372-381.(in Chinese)
[17] 溫瑩,逯曉萍,任銳,米福貴,韓平安,薛春雷.高丹草EST-SSR標(biāo)記的開(kāi)發(fā)及其遺傳多樣性.遺傳,2013,35(2):225-232. Wen Y,Lu X P,Ren R,Mi F G,Han P A,Xue C L.Development of EST-SSR marker and genetic diversity analysis inSorghumbicolor×Sorghumsudanenes.Hereditas,2013,35(2):225-232.(in Chinese)
[18] Conn J S,Seefeldt S S.Invasive white sweetclover(Melilotusofficinalis) control with herbicides,cutting,and flaming.Invasive Plant Science and Management,2009(2):270-277.
[19] Quijano-celis C E,Pino J A.Chemical composition of the leaves essential oil ofMelilotusofficinalis(L.) Pallas from Colombia.Journal of Essential Oil Bearing Plants,2010,13(3):313-315.
[20] 駱凱,狄紅艷,張吉宇,王彥榮,李治錢.19份草木樨種質(zhì)農(nóng)藝學(xué)與品質(zhì)性狀初步評(píng)價(jià).草業(yè)科學(xué),2014,12(3):235-237. Luo K,Di H Y,Zhang J Y,Wang Y R,Li Z Q,Preliminary evaluation of agronomy and quality traits of nineteenMelilotusaccessions.Pratacultural Science,2014,12(3):235-237.(in Chinese)
[21] Di H Y,Duan Z,Luo K,Zhang D Y,Wu F,Zhang J Y,Liu W X,Wang Y R.Interspecific phylogenic relationships within genusMelilotusbased on nuclear and chloroplast DNA.PLoS One,2015,10(7):e0132596.
[22] Winton L M,Krohn A L,Conn J S.Microsatellite markers for the invasive plant species white sweetclover (Melilotusalba) and yellow sweetclover (Melilotusofficinalis).Molecular Ecology Notes,2007,7(6):1296-1298.
[23] Liu Z,Chen T,Ma L,Zhao Z,Zhao P X,Nan Z.Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa.PLoS One,2013,8(12):e83549.
[24] Zheng X,Pan C,Diao Y,You Y,Yang C,Hu Z.Development of microsatellite markers by transcriptome sequencing in two species ofAmorphophallus(Araceae).BMC Genomics,2013,14(1):490.
[25] 單志,吳宏亮,李成磊,陳惠,吳琦.改良SDS法提取多種植物基因組DNA研究.廣東農(nóng)業(yè)科學(xué),2011,38(8):113-115. Shan Z,Wu H L,Li C L,Chen H,Wu Q.Improved SDS method for general plant genomic DNA extraction.Guangdong Agricultural Sciences,2011,38(8):113-115.
[26] 楊凱敏,李貴全,郭數(shù)進(jìn),喬玲.大豆自然群體SSR標(biāo)記遺傳多樣性及其與農(nóng)藝性狀的關(guān)聯(lián)分析.核農(nóng)學(xué)報(bào),2014,28(9):1576-1584. Yang K M,Li G Q,Guo S J,Qiao L.Genetic diversity and association analysis of agronomic traits with SSR in a natural population of soybean cultivars.Journal of Nuclear Agricultural Sciences,2014,28(9):1576-1584.(in Chinese)
[27] 吳碩,傅建敏,烏云塔娜,梁玉琴,李芳東.柿EST-SSR引物的開(kāi)發(fā)及篩選.經(jīng)濟(jì)林研究,2012,30(3):27-31. Wu S,Fu J M,Wuyuntana,Liang Y Q,Li F D.Development and screening of EST-SSR makers inDiospyroskakiThunb.Nonwood Forest Research,2012,30(3):27-31.(in Chinese)
[28] 張?bào)w付,戚維聰,顧閩峰,張曉林,李坦,趙涵.藜麥EST-SSR的開(kāi)發(fā)及通用性分析.作物學(xué)報(bào),2016,42(4):492-500. Zhang T F,Qi W C,Gu M F,Zhang X L,Li T,Zhao H.Exploration and transferability evaluation of EST-SSRs in quinoa.Acta Agronomica Sinica,2016,42(4):492-500.(in Chinese)
[29] 朱振東,賈繼增.小麥SSR標(biāo)記的發(fā)展及應(yīng)用.遺傳,2003,25(3):355-360. Zhu Z D,Jia J Z.Microsatellite marker development and application in wheat genetics and breeding.Hereditas,2003,25(3):355-360.(in Chinese)
[30] 張?bào)w付,葛敏,韋玉才,趙涵.玉米功能性Insertion/Deletion(InDel)分子標(biāo)記的挖掘及其在雜交種純度鑒定中的應(yīng)用.玉米科學(xué),2012,20(2):64-68. Zhang T F,Ge M,Wei Y C,Zhao H.Discovery for maize function Insertion/Deletion (InDel) polymorphic marker and its implication in purity identification of maize hybrid seeds.Journal of Maize Sciences,2012,20(2):64-68.(in Chinese)
[31] 戚維聰,程計(jì)華,黃邦全,李坦,林峰.基于海甘藍(lán)RNA-Seq序列開(kāi)發(fā)EST-SSR分子標(biāo)記.江蘇農(nóng)業(yè)學(xué)報(bào),2014,30:997-1002. Qi W C,Cheng J H,Huang B Q,Li T,Lin F.Development and characterization of EST-SSR markers derived from RNA-Seq inCrambeabyssinica.Jiangsu Journal of Agricultural Sciences,2014,30:997-1002.(in Chinese)
[32] 束永俊,李勇,吳娜拉胡,柏錫,才華,紀(jì)巍,朱延明.大豆EST-SNP的挖掘、鑒定及其CAPS標(biāo)記的開(kāi)發(fā).作物學(xué)報(bào),2010,36:574-79. Shu Y J,Li Y,Wu N L H,Bai X,Cai H,Ji W,Zhu Y M.Mining and identification of SNP from EST sequences and conversion of CAPS markers in soybean.Acta Agronomica Sinica,2010,36:574-579.(in Chinese)
[33] Chabane K,Ablett G A,Cordeiro G M,Valkoun J,Henry R J.EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley.Genetic Resources and Crop Evolution,2005,52:903-909.
[34] Cho Y G,Ishii T,Temnykh S,Chen X,Lipovich L,McCouch S R,Park W D,Ayres N,Cartinhour S.Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (OryzasativaL.).Theoretical and Applied Genetics,2000,100:713-722.
(責(zé)任編輯 王芳)
ThedevelopmentandscreeningofEST-SSRmarkersinMelilotusalbus
Yan Zhuan-zhuan, Ren Yan, Wu Fan, Luo Kai, Zhang Dai-yu, Yan Qi, Zhang Yu-fei, Zhao Yu-feng, Zhang Ji-yu
(State Key Laborotary of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)
Melilotusis one of the most important legume forages, however, the lack of molecular markers has limited the development and utilization ofMelilotusgermplasm resources in breeding programs. In this study, 18 182 EST-SSR primers were developed and screened based on transcriptome data fromM.albus. A total of 206 primer pairs fromM.albuswere found to be polymorphic from a total of 550 pairs of EST-SSR primers screened. A total of 679 alleles were detected with an average of 2.888 alleles per locus. The polymorphism information content (PIC) values ranged from 0.239 to 0.855, with an average of 0.468. Nei’s gene diversity and Shannon’s information index for 206 pairs of polymorphic primers were 0.169, and 0.239, respectively. The EST-SSRs developed in this study enriches the EST-SSR molecular markers ofMelilotus, which will serve as the foundation for exploring the genetic diversity of germplasm resources for marker-assisted breeding.
Melilotus; EST-SSR; marker development; polymorphism information content; expected heterozygosity; genetic distance; genetic diversity
Zhang Ji-yu E-mail:zhangjy@lzu.edu.cn
S541+.903;Q943.2
:A
:1001-0629(2017)09-1802-13
10.11829/j.issn.1001-0629.2016-0643
剡轉(zhuǎn)轉(zhuǎn),任艷,吳凡,駱凱,張代玉,閆啟,張宇飛,趙玉鳳,張吉宇.白花草木樨EST-SSR標(biāo)記的開(kāi)發(fā)與篩選.草業(yè)科學(xué),2017,34(9):1802-1814.
Yan Z Z,Ren Y,Wu F,Luo K,Zhang D Y,Yan Q,Zhang Y F,Zhao Y F,Zhang J Y.The development and screening of EST-SSR markers inMelilotusalbus.Pratacultural Science,2017,34(9):1802-1814.
2016-12-28接受日期:2017-06-06
科技部“973”課題(2014CB138704);國(guó)家自然科學(xué)基金(31572453);教育部長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT_17R50);草業(yè)科學(xué)國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心(蘭州大學(xué));草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(SKLGAE201702)
剡轉(zhuǎn)轉(zhuǎn)(1994-),女,甘肅靜寧人,在讀碩士生,主要從事牧草種質(zhì)資源創(chuàng)新與利用。E-mail:yanzhzh16@lzu.edu.cn
張吉宇(1977-),男,甘肅民樂(lè)人,副教授,博導(dǎo),博士,主要從事牧草育種與分子生物學(xué)研究。E-mail:zhangjy@lzu.edu.cn