• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      生物炭對(duì)北京郊區(qū)砂土持水力和氮淋溶特性影響的土柱模擬研究

      2017-09-29 11:18:40王慶海劉文菊謝祖彬鄭瑞倫
      關(guān)鍵詞:淋失淋溶土柱

      王 燕,龐 卓,賈 月,王慶海,劉文菊,謝祖彬,鄭瑞倫*

      生物炭對(duì)北京郊區(qū)砂土持水力和氮淋溶特性影響的土柱模擬研究

      王 燕1,2,龐 卓1,賈 月1,王慶海1,劉文菊2,謝祖彬3,鄭瑞倫1*

      (1.北京市農(nóng)林科學(xué)院北京草業(yè)與環(huán)境研究發(fā)展中心,北京100097;2.河北農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,河北 保定071001;3.中國(guó)科學(xué)院南京土壤研究所,南京210008)

      為探討生物炭對(duì)北京郊區(qū)砂土持水力和氮素淋溶特性的影響,通過分層采集不同深度(0~90 cm)北京郊區(qū)沙化地土壤(砂土),模擬田間容重和含水量填裝土柱,將生物炭分別按照炭土質(zhì)量比0%、0.5%、1%、2%和4%施入0~20 cm土層,依據(jù)常規(guī)施氮肥量(0.56 tN·hm-2)和年平均降雨量(616.6 mm)施肥和滴灌,開展土柱淋溶試驗(yàn)。結(jié)果表明:在9次淋溶后,水和總氮的累積淋失量均隨著生物炭添加量的增加而減小,與不加炭處理相比最高分別減小41.3%和22.7%。添加生物炭增加了0~20 cm土層總氮含量,最高顯著增加158%(P<0.05)。淋溶結(jié)束后加炭處理土柱土壤中的無機(jī)氮總量比不加炭處理高19.5%~91.9%。添加生物炭有利于減小可溶性有機(jī)碳的淋失,比不加炭處理最高減小22.8%。淋溶液pH值和電導(dǎo)率隨生物炭添加量增加而增大。在9次淋溶過程中,生物炭添加量越大,0~20 cm土層土壤持水量越高。相關(guān)性分析表明,總氮淋失量與淋溶液淋失體積顯著正相關(guān)(r=0.978,P<0.01),而與淋溶液中的總氮濃度無正相關(guān)關(guān)系。生物炭主要通過提高京郊砂土的持水能力,減緩水和氮素向下淋溶的速度,從而減小水和氮素的淋溶損失,提高水肥利用率,降低污染地下水的風(fēng)險(xiǎn)。

      生物炭;沙化;砂土;氮淋溶;持水量

      中國(guó)是世界上最大的氮肥生產(chǎn)和消費(fèi)國(guó)[1],農(nóng)戶們?yōu)樵黾幼魑锂a(chǎn)量,常施用過量氮肥[2],由于較低的氮肥利用率,中國(guó)土壤的氮損失十分嚴(yán)重[1],已引起了如溫室氣體排放[3-4]、土壤酸化[5]、水體富營(yíng)養(yǎng)化[6]和地下水硝酸鹽超標(biāo)[7-8]等環(huán)境問題。已經(jīng)有報(bào)道表明,農(nóng)田地下水硝態(tài)氮濃度普遍大于草地和林地[9]。過量施用氮肥條件下的氮素地表淋溶對(duì)地下水硝態(tài)氮污染貢獻(xiàn)很大[10-11]。而對(duì)于砂土,因其持水保肥能力差,氮肥更容易隨水流失,降低作物對(duì)氮肥的利用率,影響周邊水體或地下水水質(zhì)[12]。

      近年來,由于生物炭在減小溫室氣體排放[13]、修復(fù)重金屬污染土壤[14-15]、提高土壤質(zhì)量[16]、增加作物產(chǎn)量[16-17]等方面表現(xiàn)出很大潛力而備受關(guān)注。特別是生物炭可以增加土壤的持水保肥能力從而減小肥料養(yǎng)分尤其是氮肥隨水流失污染水體的風(fēng)險(xiǎn)[18-21],此作用主要取決于土壤類型、生物炭添加量、生物炭材料種類和氮素形態(tài)[19,22-29]。生物炭可以提高質(zhì)地較粗的風(fēng)砂土的持水保肥能力,但會(huì)增加硝態(tài)氮在質(zhì)地較粘的塿土中的淋失[22]。分別向紫色土、赤紅壤和黃棕壤中加入10%玉米秸稈炭后,黃棕壤中硝態(tài)氮淋失總量減小最多,而赤紅壤中減小最少,分別減小22%和14%[23]。不同生物炭添加量對(duì)氮淋溶損失的減小作用差異較大。隨加炭量(1%~4%)增加,褐潮土中無機(jī)氮的淋失量不斷減小[24]。李卓瑞等[25]的研究也表明,菜地土中總氮淋失量隨加炭量(2%~8%)增加不斷減小,最高減小38%。但也有研究表明,桉樹生物炭施用量為1%時(shí)能減少氮淋溶,過量施用會(huì)增加氮淋溶[19]。此外,不同材料在不同裂解溫度下制得的生物炭由于其孔性和表面官能團(tuán)不同而對(duì)氮的吸附作用和對(duì)土壤中氮素的持留作用也會(huì)表現(xiàn)出很大差異[26-27]。桉木炭對(duì)土壤氮持留能力的增加作用顯著大于雞糞炭[26]。用小麥稈、玉米稈和花生殼在不同裂解溫度下(400~700℃)制備得到的生物炭對(duì)氮的吸附研究表明,玉米稈炭對(duì)銨態(tài)氮的吸附能力最大,且吸附量隨裂解溫度的上升而減小[27],但是,生物炭對(duì)硝態(tài)氮幾乎沒有吸附作用,只有當(dāng)裂解溫度達(dá)到600℃時(shí),生物炭才有可能吸附硝態(tài)氮[27-29]。

      本研究通過采集不同深度京郊沙化地土壤,模擬實(shí)際容重和含水量填裝土柱,進(jìn)行土柱淋溶試驗(yàn),實(shí)時(shí)測(cè)定耕層土壤含水率,檢測(cè)淋溶結(jié)束后氮素在各個(gè)土層中的含量,分析總氮淋失量與淋溶液體積、淋溶液總氮濃度、土壤含水率等的關(guān)系,旨在闡明生物炭對(duì)京郊沙化地上氮淋溶損失的影響,并綜合分析其作用機(jī)理,為生物炭在京郊沙化地的應(yīng)用提供理論依據(jù)。

      1 材料與方法

      1.1 試驗(yàn)材料

      生物炭原材料為玉米秸稈。將切段(5~10 cm)的玉米秸稈按照逐步升溫法在400℃裂解溫度下厭氧燒制4 h[30],室溫冷卻,碾壓后過2 mm篩,得到生物炭顆粒和少量粉末,本研究用生物炭均為顆粒狀。生物炭理化性質(zhì)如表1所示[30]。試驗(yàn)用土壤采自地處永定河畔的北京大興區(qū)榆垡鎮(zhèn)嚴(yán)重沙化且已經(jīng)荒廢的玉米地,由于歷史上永定河多次決口,該地區(qū)耕層以下幾乎全部是河沙。0~20 cm土層土壤砂粒(2~0.02 mm)、粉粒(0.02~0.002 mm)和粘粒(<0.002 mm)的占比分別為86.85%、7.0%和6.15%,為壤砂土。通過挖土壤剖面采集不同土層土壤樣品,經(jīng)風(fēng)干、過2 mm篩后備用。用環(huán)刀采集不同土層的土壤樣品,測(cè)定各土層土壤的容重、孔隙度和質(zhì)量含水量。各層土壤的理化性質(zhì)見表2。

      1.2 試驗(yàn)處理與方法

      1.2.1 裝填土柱

      試驗(yàn)土柱用透明有機(jī)玻璃管制作而成,內(nèi)徑10 cm,高100 cm。底部設(shè)一個(gè)出水孔,用來收集淋溶液。試驗(yàn)用石英砂粒徑小于1 mm,用5%鹽酸浸泡過夜、去離子水洗凈后烘干、備用。土柱底部鋪設(shè)一張濾紙和一張100目尼龍網(wǎng),然后覆蓋2 cm厚的石英砂,再鋪一張100目尼龍網(wǎng),在有機(jī)玻璃管外側(cè)標(biāo)好刻度,開始裝土。按照實(shí)際測(cè)得的土壤容重和含水量(表2)填裝土柱,每裝10 cm澆入相應(yīng)水量,待水分分布均勻再裝下一層土壤,依次裝到20~40 cm土層。0~20 cm土層為處理層,生物炭添加量設(shè)5個(gè)梯度,分別為20 cm表層土壤質(zhì)量的0%、0.5%、1%、2%和4%,具體添加量為0、12、24、48、96 g,每個(gè)處理3個(gè)重復(fù)。添加生物炭后0~20 cm土層會(huì)變厚,為表述統(tǒng)一,本文中所述0~20 cm土層皆為處理層,不考慮其土層厚度。將生物炭、處理層土和氮肥(尿素)充分混合均勻后,裝入土柱,同時(shí)將土壤水分測(cè)定探頭埋設(shè)在處理土層5~10 cm處,實(shí)時(shí)測(cè)定土壤體積含水量。氮施用水平(0.56 t·hm-2)參考冬小麥-夏玉米輪作一年兩季的施氮量[31],每個(gè)土柱施氮442.9 mg。表層土裝好后,再鋪一張100目的尼龍網(wǎng),覆蓋2 cm厚洗凈的石英砂,按照表層土壤田間持水量(21.7%)滴灌澆水。將土柱用鋁箔紙包好避光。

      表1 生物炭理化性質(zhì)Table 1 Selected physical and chemical properties of the biochar

      表2 不同土層土壤的理化性質(zhì)Table 2 Selected physical and chemical properties of various soil layers

      1.2.2 土柱淋溶

      裝填好的土柱陳化一周后開始滴灌淋溶,滴灌速度為每秒1滴,保證灌水沒有沿管壁側(cè)流。滴灌過程中土柱上端加蓋,以避免蒸發(fā)導(dǎo)致的水分散失而造成實(shí)際滴灌水量偏少。灌水量模擬北京2008—2012年5年的平均降水量(616.6 mm),分9次滴灌,每次灌水量為535 mL。待每次滴灌后出現(xiàn)某一處理的土壤體積含水量減小到小于12%開始下一次淋溶。出水口有淋溶液流出時(shí)開始收集淋溶液,測(cè)定淋溶液體積、pH值、電導(dǎo)率(EC)、總氮濃度和可溶性有機(jī)碳(DOC)濃度。9次淋溶結(jié)束后陳化兩周,取每層土壤樣品(20 cm為一層),測(cè)定各層土壤樣品中總氮、無機(jī)氮含量和pH值。

      1.2.3 測(cè)定方法

      淋溶液體積用量筒測(cè)定,土壤pH值用pH計(jì)測(cè)定(水土比為2.5∶1),電導(dǎo)率用電導(dǎo)率儀測(cè)定,土壤電導(dǎo)率測(cè)定前將土樣按水土比5∶1浸提,DOC濃度用TOC儀測(cè)定,土壤無機(jī)氮采用0.01 mol·L-1CaCl2浸提(液土比為10∶1),連續(xù)流動(dòng)分析儀測(cè)定,土壤總氮采用開氏消煮法測(cè)定,土壤有機(jī)碳采用重鉻酸鉀外加熱法測(cè)定,淋溶液中總氮含量采用過硫酸鉀氧化-紫外分光光度法測(cè)定[32]。將生物炭按水土比10∶1浸提后測(cè)定pH值、電導(dǎo)率、DOC、水溶性氮濃度,生物炭的總碳、總氮含量用元素分析儀(Perkin Elmer 2400)測(cè)定,比表面積用比表面積分析儀(ASAP2000)測(cè)定。

      1.3 數(shù)據(jù)處理

      樣品均值的比較采用LSD檢驗(yàn)(P<0.05)。所有統(tǒng)計(jì)分析均在SPSS 16.0軟件(SPSS IncUSA)下進(jìn)行。

      2 結(jié)果與分析

      2.1 添加生物炭對(duì)淋溶液體積的影響

      在前3次淋溶中,0~4%的生物炭處理均沒有淋溶液滴出,在第4次淋溶中,除4%加炭處理外,其他處理開始有淋溶液滴出,并隨著加炭量的增加淋溶液體積減小(圖1a)。水的累積淋失量隨著生物炭添加量的增加顯著減?。≒<0.05),隨淋溶次數(shù)增加呈明顯增加趨勢(shì)(圖1b)。在淋溶結(jié)束時(shí),加炭量為0.5%~4%的處理中水的淋失量比不加炭處理減小3.3%~41.3%。可見,添加生物炭增加了土壤的持水能力,減小了水的向下遷移淋失。

      2.2 添加生物炭對(duì)總氮淋溶的影響

      不同生物炭添加量處理中,淋溶液中的總氮濃度隨淋溶次數(shù)的增加呈不斷減小的趨勢(shì)。雖然添加生物炭對(duì)淋溶液中的總氮濃度有增加作用(圖2a),但是總氮累積淋失量隨生物炭添加量的增加而顯著減小,淋溶結(jié)束后4%加炭處理總氮累積淋失量比不加炭減小22.7%(圖2b)。經(jīng)計(jì)算,土柱土壤中所含總氮的本底總量為1571 mg,0~4%生物炭處理中隨尿素和生物炭進(jìn)入土柱的氮量分別為442.9、603.7、764.5、1 086.1、1 729.3 mg。按照加肥加炭所帶入土柱的總氮和土柱本底總氮為初始總氮量計(jì)算,0%~4%生物炭處理中總氮淋失率分別為20.3%、17.7%、15.8%、13.4%和9.6%,添加生物炭后總氮淋失率最高減小52.9%。不種植物條件下,在北京沙化地施用尿素后,由于降雨將有約占施用量92.1%的氮被淋失到90 cm以下,添加生物炭可以使淋失量減小22.7%。

      對(duì)土柱各個(gè)土層土壤中總氮含量的分析表明,0~20 cm土層總氮含量最高,隨著土柱土層深度的增加,土壤總氮含量逐漸減小(圖3a)。0~20 cm土層的總氮含量隨生物炭添加量的增加而增大,添加生物炭使得土壤中總氮含量顯著增加31%~158%(P<0.05);其他各土層的總氮含量受生物炭處理的影響不明顯。對(duì)于無機(jī)氮,每個(gè)處理土柱土壤的無機(jī)氮含量均隨著土層深度的增加呈增大趨勢(shì),且每個(gè)土層中的無機(jī)氮含量均隨著生物炭添加量的增加而增大。自上而下各土層中,4%加炭處理土壤的無機(jī)氮含量分別比不加炭處理顯著增加51%(0~20 cm)、64%(20~40 cm)、55%(40~60 cm)、119%(60~80 cm) 和183%(80~90 cm)(P<0.05)(圖3b)。淋溶結(jié)束后,加炭處理土柱土壤中的無機(jī)氮總量比不加炭處理多19.5%~91.9%。

      2.3 生物炭處理對(duì)淋溶液DOC濃度、pH和電導(dǎo)率的影響

      不同淋溶次數(shù)淋溶液中DOC的濃度變化較大(圖4a),隨著生物炭添加量的增加,6次淋溶液中DOC濃度的平均值不斷增大(35.0~46.6 mg·L-1)。隨著淋溶次數(shù)的增加,DOC累積淋失量增加(圖4b),0~2%生物炭添加量處理之間DOC累積淋失量沒有顯著差異,4%加炭處理中DOC的累積淋失量顯著小于其他4個(gè)處理,比不加炭處理顯著減小22.8%(P<0.05)。

      圖1 不同生物炭添加量對(duì)土柱淋溶液每次淋失體積(a)和累積淋失量(b)的影響Figure 1 Effects of different biochar addition rates on leachate volume of each time(a)and cumulative volume of leachate(b)from soil column

      圖2 不同生物炭添加量對(duì)土柱淋溶液總氮濃度(a)和總氮累積淋失量(b)的影響Figure 2 Effects of different biochar addition rates on total nitrogen concentration of leachate(a)and mass of cumulative total nitrogen in leachate(b)from soil column

      圖3 不同生物炭添加量對(duì)淋溶結(jié)束后土柱各土層中總氮含量(a)和無機(jī)氮含量(b)的影響Figure 3 Effects of different biochar addition rates on total nitrogen concentration(a)and inorganic nitrogen concentration(b)of each soil layer in soil column after the leaching

      淋溶液pH值隨著淋溶次數(shù)的增加先增大后減小,且生物炭添加量越大淋溶液pH值越高(圖5a)。淋溶液電導(dǎo)率隨著淋溶次數(shù)的增加呈減小趨勢(shì),在第6~9次淋溶中,4%加炭處理淋溶液電導(dǎo)率顯著高于其他處理,隨著淋溶次數(shù)的增加各處理之間的淋溶液電導(dǎo)率差異變小(圖5b)。在淋溶結(jié)束后,不同處理土柱同層土壤的pH值沒有顯著性差異(圖6)。

      2.4 生物炭處理對(duì)表層土壤含水量的影響

      在9次淋溶過程中,隨著生物炭添加量的增加,表層土壤含水量增大(圖7)。第5次淋溶前,添加生物炭處理中表層土壤含水量比不加炭增加17.9%~45.2%;第9次淋溶前,添加生物炭后表層土壤含水量比不加炭增加22.9%~52.4%。添加生物炭有效提高了土壤的持水能力,增加了表層土壤的含水量。

      圖4 不同生物炭添加量對(duì)土柱淋溶液DOC濃度(a)和DOC累積淋失量(b)的影響Figure 4 Effects of different biochar addition rates on DOC concentration of leachate(a)and mass of cumulative DOC in leachate(b)from soil column

      由表3可知,淋溶液體積與淋溶液電導(dǎo)率、pH值、總氮濃度顯著負(fù)相關(guān),與總氮淋失量顯著正相關(guān),這是由于淋溶液體積隨生物炭添加量的增加而減小,淋溶液體積越小說明水在土柱中的下移速度越小,水與生物炭及土壤的作用時(shí)間越長(zhǎng),水中溶解的鹽離子也會(huì)越多,且生物炭呈堿性,因此淋溶液電導(dǎo)率和pH值與淋溶液體積呈顯著負(fù)相關(guān)??偟苁Я颗c淋溶液體積顯著正相關(guān)而與淋溶液總氮濃度呈負(fù)相關(guān)關(guān)系,說明減小淋溶液體積是生物炭減小總氮淋失量的主要途徑,這也解釋了淋溶液電導(dǎo)率和pH值與總氮淋失量的負(fù)相關(guān)關(guān)系。電導(dǎo)率與pH顯著正相關(guān),說明淋溶液中導(dǎo)致溶液顯堿性的離子濃度較高。

      3 討論

      3.1 供試土壤與生物炭性質(zhì)

      砂土通氣狀況良好,自養(yǎng)硝化微生物能很快地將氮轉(zhuǎn)化為硝酸鹽,不容易被土壤膠體吸附的硝態(tài)氮很容易隨水向下遷移污染地下水,因此增加持水能力對(duì)減小氮素在砂土中的淋失十分重要。另外,土壤有機(jī)質(zhì)帶有大量負(fù)電荷及可以吸附陰離子的官能團(tuán),能夠吸附銨根離子及硝酸根離子[33],提高土壤保肥蓄水能力,但砂土中的有機(jī)質(zhì)分解快、含量小,很難發(fā)揮有機(jī)質(zhì)對(duì)氮的吸附作用。砂性土壤的氮素淋失量普遍大于粘性土壤[34-35]。通過對(duì)法國(guó)不同類型土壤9年的硝態(tài)氮淋失監(jiān)測(cè)表明,從輕質(zhì)沙土到重質(zhì)壤土,硝態(tài)氮淋失逐漸減小,相差達(dá)2.0倍[34]。砂土的性質(zhì)導(dǎo)致氮素更容易被淋溶損失。

      圖5 不同生物炭添加量對(duì)土柱淋溶液pH值(a)和淋溶液電導(dǎo)率(b)的影響Figure 5 Effects of different biochar addition rates on pH value(a)and electrical conductivity(b)of leachate from soil column

      圖6 不同生物炭添加量對(duì)土柱各土層土壤pH值的影響Figure 6 Effects of different biochar addition rates on pH value of each soil layer in soil column

      表3 淋溶液中總氮的淋失與水化學(xué)參數(shù)的相關(guān)矩陣Table 3 Correlation of nitrogen leaching with hydrochemical parameters of leachate

      本研究中玉米秸稈炭呈堿性,并含有較高的有機(jī)碳和總氮,水溶性有機(jī)碳和氮占比很低,與其他研究結(jié)果相近[13-14,30]。由于生物炭理化性質(zhì)受原材料、裂解溫度等條件的影響較大[26-29,36],生物炭電導(dǎo)率值(0.1~8.1 mS·cm-1)和比表面積(4~273 m2·g-1)均有較大變異[14,20-21,24,37]。Sun等[36]的研究表明:生物炭的化學(xué)成分和物理結(jié)構(gòu)取決于裂解溫度、升溫速度、持續(xù)時(shí)間和原材料粒徑的共同作用。由于比表面積大和孔性結(jié)構(gòu)發(fā)達(dá),生物炭能夠吸附和保持水分[38]。本研究在生物炭處理下,表層土壤含水量的增加證實(shí)了生物炭對(duì)砂土持水能力的提高作用。另外,在實(shí)際中4%的生物炭施用量過大,可以少量多次施用生物炭。如何減小生物炭生產(chǎn)成本和原材料運(yùn)輸成本是推動(dòng)生物炭被廣泛使用的關(guān)鍵。

      圖7 不同生物炭添加量對(duì)土柱0~20cm土層土壤含水量的影響Figure 7 Effects of different biochar addition rates onwater content of top soil(0~20 cm)in soil column

      3.2 添加生物炭對(duì)淋溶液和總氮淋失的影響

      與其他研究中土柱長(zhǎng)度較短不同[19-26],本研究模擬實(shí)際容重和含水量填裝土柱,再現(xiàn)90 cm土壤剖面,并按照自然降雨量進(jìn)行滴灌,更加接近實(shí)際。在90 cm土柱條件下,添加生物炭增加了淋溶液中的總氮濃度,但淋溶液和總氮淋失量均顯著減小,與其他研究結(jié)果相近[21,24,39]。添加稻糠或蘆竹炭可使土柱淋溶液體積顯著減小,且添加量越大淋溶液體積越小,氮淋溶損失越小[24,39]。但也有研究表明,生物炭不僅減小了總氮淋失量,還減小了淋溶液中的總氮濃度,與本研究結(jié)果不一致[25]。這可能與試驗(yàn)所用土壤性質(zhì)、土柱長(zhǎng)度、淋洗方法等不同有關(guān)。土柱越長(zhǎng),水在土柱中的存留時(shí)間越長(zhǎng),與土壤和生物炭的作用時(shí)間也越長(zhǎng),從而促進(jìn)氮素轉(zhuǎn)化溶解進(jìn)入淋溶液,生物炭處理導(dǎo)致的水向下淋溶速度減慢使得這種作用更加突出;另外,本研究模擬自然干濕交替,土壤含水量降到12%以下才開始滴灌,可能促進(jìn)土壤和生物炭中氮素的礦化和溶解性[40]。由于孔性結(jié)構(gòu)發(fā)達(dá),生物炭可通過改變土壤容重和孔隙度等來改變水在土壤中的停留時(shí)間、流動(dòng)方式,從而增加土壤持水能力[18,39,41-43],減小淋溶液和總氮淋失量。有研究表明,生物炭處理使得氮素在土柱中的停留時(shí)間延長(zhǎng)了至少15 d[21]。硝態(tài)氮垂直運(yùn)移的穿透曲線隨生物炭添加量的增加拖尾現(xiàn)象更加嚴(yán)重,生物炭推遲了硝態(tài)氮的流出時(shí)間,延長(zhǎng)了淋溶時(shí)間,減小了其累積淋失量[42]。本研究中,淋溶液體積與總氮淋失量顯著正相關(guān)進(jìn)一步說明增加土壤持水力、減小淋溶液體積是生物炭減小京郊砂土總氮淋失的主要途徑。添加生物炭可通過增加土壤持水力將水和氮素更長(zhǎng)時(shí)間地保持在耕層土壤,從而減少灌溉次數(shù)和灌水量,節(jié)約水肥,進(jìn)一步減小氮素隨水向下遷移的風(fēng)險(xiǎn)。

      本研究所用砂土土壤通氣性好,硝態(tài)氮為主要存在形態(tài),使得生物炭對(duì)銨態(tài)氮的吸附作用在減小氮素向下淋溶中的貢獻(xiàn)變小,而生物炭對(duì)硝態(tài)氮幾乎沒有吸附作用[27-29],從另一方面支持了生物炭通過增加土壤持水力減小氮素淋失。雖然生物炭可以減小銨態(tài)氮和硝態(tài)氮淋失,但有報(bào)道表示生物炭不影響可溶性有機(jī)氮的淋失量[20]。此外,生物炭還可通過抑制微生物對(duì)氮的礦化和硝化作用,減緩銨態(tài)氮向硝態(tài)氮的轉(zhuǎn)化,減小氮淋失[43-44]。

      3.3 添加生物炭對(duì)淋溶液pH、電導(dǎo)率和DOC淋失的影響

      隨生物炭添加量的增加,淋溶液pH值和電導(dǎo)率逐漸增加[19,45],這是由于生物炭本身pH和EC值較高,且含有較高濃度的鹽分[18,31,46],生物炭中含有的這些堿性物質(zhì)或鹽基離子會(huì)隨水向下遷移從而增加淋溶液pH值和電導(dǎo)率。淋溶液中DOC的平均濃度隨生物炭添加量的增加而增加,這是由于生物炭除了本身含有一定濃度的DOC外,還可以促進(jìn)土壤釋放DOC,增加土壤毛管水中DOC的濃度[14,47]。在本研究中,盡管生物炭處理增加了淋溶液中DOC的濃度,但減小了DOC的累積淋失量,這主要是由于生物炭處理減小了淋溶液淋失體積。Sorrenti等[48]得到了同樣的研究結(jié)果。

      3.4 添加生物炭對(duì)土柱土壤pH值和氮含量的影響

      淋溶結(jié)束后添加生物炭的土柱各土層土壤pH值與對(duì)照相比沒有顯著增加,與其他研究不同[23]。這一方面與去離子水的多次淋洗有關(guān),生物炭中的有機(jī)陰離子和碳酸鹽等堿性物質(zhì)在多次淋洗后隨水流失,使得生物炭堿性減弱[46]。另一方面可能由于其他研究中生物炭添加量較大(土壤質(zhì)量的10%)[23]。除測(cè)定淋溶液體積和總氮淋失量外,本研究還對(duì)表層土壤含水量進(jìn)行了實(shí)時(shí)測(cè)定并檢測(cè)了土柱各層的總氮和無機(jī)氮含量,證實(shí)生物炭增加了砂土的持水能力,延長(zhǎng)了淋溶液在土柱中的停留時(shí)間,使得更多的氮持留在土柱中。淋溶結(jié)束后,生物炭添加量越大,表層土壤總氮含量越高,這是由于除了對(duì)氮的吸附持留作用外,生物炭本身總氮含量較高,且大部分是穩(wěn)定態(tài)氮,水溶性氮含量很低[18,31],很難從生物炭中淋溶損失。對(duì)于無機(jī)氮,土柱各層土壤中的無機(jī)氮含量均隨著生物炭添加量的增加而增大,這是由于生物炭處理增加了土壤持水力,減緩了水向下流失的速率,從而使更多的水和無機(jī)氮保留在土柱中。

      4 結(jié)論

      (1)添加生物炭增加了北京郊區(qū)砂土的持水能力,水的累積淋失量隨生物炭添加量的增加顯著減小,與不加炭處理相比最高減小41.3%。

      (2)隨生物炭添加量的增加,總氮累積淋失量顯著減小,與不加炭相比最高減小22.7%。添加生物炭后土柱中所持留的無機(jī)氮總量比不加炭處理最高增加91.9%。生物炭減緩了氮隨水向下遷移的速度,有利于更多的氮在被淋溶到下層土壤前被作物吸收利用,從而增加氮素利用率,降低污染地下水的風(fēng)險(xiǎn)。

      (3)添加生物炭有利于減小DOC淋失量,比不加炭處理最高顯著減小22.8%。生物炭添加量越大淋溶液pH值和電導(dǎo)率越高。

      (4)添加生物炭增加了表層砂土的含水量,提高了砂土的持水能力。生物炭主要是通過增加土壤持水能力、減小水淋失量來減小京郊沙化地氮淋溶損失,這對(duì)在沙化地上發(fā)展節(jié)水減肥的恢復(fù)植被或作物生產(chǎn)技術(shù)、提高氮肥利用率、減小氮肥損失和環(huán)境污染有重要意義。

      [1]Wang X,Cai D,Hoogmoedc W B,et al.Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China[J].Journal of the Science of Food and Agriculture,2011,91(11):2013-2023.

      [2]Cui Z,Chen X,Zhang F.Current nitrogen management status and measures to improve the intensive wheat-maize system in China[J].Ambio,2010,39(5/6):376-384.

      [3]李 晶,王明星,王躍思,等.農(nóng)田生態(tài)系統(tǒng)溫室氣體排放研究進(jìn)展[J].大氣科學(xué),2003,27(4):740-749.

      LI Jing,WANG Ming-xing,WANG Yue-si,et al.Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem[J].Chinese Journal of Atmospheric Sciences,2003,27(4):740-749.

      [4]Zhang X X,Yin S,Li Y S,et al.Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island Eastern China[J].Science of the Total Environment,2014,472:381-388.

      [5]Guo J,Liu X,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010.

      [6]Jin X,Xu Q,Huang C.Current status and future tendency of lake eutrophication in China[J].Science in China Series C-Life Sciences,2005,48(2):948-954.

      [7]杜連鳳,趙同科,張成軍,等.京郊地區(qū)3種典型農(nóng)田系統(tǒng)硝酸鹽污染現(xiàn)狀調(diào)查[J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2837-2843.

      DU Lian-feng,ZHAO Tong-ke,ZHANG Cheng-jun,et al.Investigation on nitrate pollution in soils,ground water and vegetables of three typical farmlands in Beijing region[J].Scientia Agricultura Sinica,2009,42(8):2837-2843.

      [8]Spiertz J H J.Nitrogen sustainable agriculture and food security:A review[J].Agronomy for Sustainable Development,2010,30(1):43-55.

      [9]徐志偉,張心昱,孫曉敏,等.2004—2009年我國(guó)典型陸地生態(tài)系統(tǒng)地下水硝態(tài)氮評(píng)價(jià)[J].環(huán)境科學(xué),2011,32(10):2827-2833.

      XU Zhi-wei,ZHANG Xin-yu,SUN Xiao-min,et al.Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese ecosystem research network(CERN)during 2004—2009[J].Environmental Science,2011,32(10):2827-2833.

      [10]肖 勇,邵景力,顧曉敏,等.北京昌平平原區(qū)地下水污染特征[J].南水北調(diào)與水利科技,2015,13(2):252-256.

      XIAO Yong,SHAO Jing-li,GU Xiao-min,et al.Characteristics of groundwater pollution in Changping Plain of Beijing[J].South-to-North Water Transfers and Water Science&Technology,2015,13(2):252-256.

      [11]劉宏斌,李志宏,張?jiān)瀑F,等.北京平原農(nóng)區(qū)地下水硝態(tài)氮污染狀況及其影響因素研究[J].土壤學(xué)報(bào),2006,43(3):405-413.

      LI Hong-bin,LI Zhi-hong,ZHANG Yun-gui,et al.Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing plain[J].Acta Pedologica Sinica,2006,43(3):405-413.

      [12]李輝信,胡 鋒,蔡貴信,等.紅壤的供氮能力及化肥氮的去向[J].土壤學(xué)報(bào),2002,39(3):390-396.

      LI Hui-xin,HU Feng,CAI Gui-xin,et al.Soil nitrogen supply capacity and fate of applied fertilizer nitrogen in red soils[J].Acta Pedologica Sinica,2002,39(3):390-396.

      [13]Sui Y H,Gao J P,Liu C H,et al.Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China[J].Science of the Total Environment,2016,544:203-210.

      [14]Zheng R L,Cai C,Liang J H,et al.The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd,Zn,Pb,As in rice(Oryza sativa L.)seedlings[J].Chemosphere,2012,89(7):856-862.

      [15]Zheng R L,Chen Z,Cai C,et al.Effect of biochars from rice husk,bran and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil[J].Bioresources,2013,8(4):5965-5982.

      [16]Olmo M,Lozano A M,Barron V,et al.Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield[J].Science of the Total Environment,2016,562:690-700.

      [17]Khan S,Chao C,Waqas M,et al.Sewage sludge biochar influence upon rice(Oryza sativa L.)yield,metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J].Environmental Science&Technology,2013,47(15):8624-8632.

      [18]鄭瑞倫,王寧寧,孫國(guó)新,等.生物炭對(duì)京郊沙化地土壤性質(zhì)和苜蓿生長(zhǎng)、養(yǎng)分吸收的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(5):904-912.

      ZHENG Rui-lun,WANG Ning-ning,SUN Guo-xin,et al.Effects of biochar on soil properties and alfalfa growth and nutrient uptake in desertified land in Beijing suburb[J].Journal of Agro-Environment Science,2015,34(5):904-912.

      [19]邢 英,李心清,王 兵,等.生物炭對(duì)黃壤中氮淋溶影響:室內(nèi)土柱模擬[J].生態(tài)學(xué)雜志,2011,30(11):2483-2488.

      XING Ying,LI Xin-qing,WANG Bing,et al.Effects of biochar on soil nitrogen leaching:A laboratory simulation test with yellow soil column[J].Chinese Journal of Ecology,2011,30(11):2483-2488.

      [20]Dempster D N,Jones D L,Murphy D V,et al.Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J].Soil Research,2012,50(3):216-261.

      [21]楊 放,李心清,邢 英,等.生物炭對(duì)鹽堿土氮淋溶的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(5):972-977.

      YANG Fang,LI Xin-qing,XING Ying,et al.Effect of biochar amendment on nitrogen leaching in saline soil[J].Journal of Agro-Environment Science,2014,33(5):972-977.

      [22]李文娟,顏永毫,鄭紀(jì)勇,等.生物炭對(duì)黃土高原不同質(zhì)地土壤中NO-3-N運(yùn)移特征的影響[J].水土保持研究,2013,20(5):60-68.

      LI Wen-juan,YAN Yong-hao,ZHENG Ji-yong,et al.Effect of biochar on the transfer of nitrate in three different soils on the loess plateau[J].Research of Soil and Water Conservation,2013,20(5):60-68.

      [23]李江舟,張慶忠,婁翼來,等.施用生物炭對(duì)云南煙區(qū)典型土壤養(yǎng)分淋失的影響[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2015,32(1):48-53.

      LI Jiang-zhou,ZHANG Qing-zhong,LOU Yi-lai,et al.Effects of biochar addition on nutrient leaching loss of typical tobacco-planting soils in Yunnan Province,China[J].Journal of Agricultural Resources and Environment,2015,32(1):48-53.

      [24]蓋霞普,劉宏斌,翟麗梅,等.玉米秸稈生物炭對(duì)土壤無機(jī)氮素淋失風(fēng)險(xiǎn)的影響研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(2):310-318.

      GAI Xia-pu,LIU Hong-bin,ZHAI Li-mei,et al.Effects of corn-stalk biochar on inorganic nitrogen leaching from soil[J].Journal of Agro-Environment Science,2015,34(2):310-318.

      [25]李卓瑞,韋高玲.不同生物炭添加量對(duì)土壤中氮磷淋溶損失的影響[J].生態(tài)環(huán)境學(xué)報(bào),2016,25(2):333-338.

      LI Zhuo-rui,WEI Gao-ling.Effects of biochar with different additive amounts on the leaching loss of nitrogen and phosphorus in soils[J].E-cology and Environmental Sciences,2016,25(2):333-338.

      [26]Singh B P,Hatton B J,Singh B,et al.Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J].Journal of Environmental Quality,2010,39(4):1224-1235.

      [27]Gai X,Wang H,Liu J,et al.Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate[J].PloS one,2014,9(12):e113888.

      [28]Hollister C C,Bisogni J J,Lehmann J.Ammonium,nitrate,and phosphate sorption to and solute leaching from biochars prepared from corn stover(Zea mays L.)and oak wood(Quercus spp.)[J].Journal of Environmental Quality,2013,42(1):137-144.

      [29]Yao Y,Gao B,Zhang M,et al.Effect of biochar amendment on sorption and leaching of nitrate,ammonium and phosphate in a sandy soil[J].Chemosphere,2012,89(11):1467-1471.

      [30]Xie Z,Xu Y,Liu G,et al.Impact of biochar application on nitrogen nutrition of rice,greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China[J].Plant and Soil,2013,370(1):527-540.

      [31]巨曉棠,劉學(xué)軍,張福鎖.冬小麥/夏玉米輪作體系中土壤氮素礦化及預(yù)測(cè)[J].應(yīng)用生態(tài)學(xué)報(bào),2003,14(12):2241-2245.

      JU Xiao-tang,LIU Xue-jun,ZHANG Fu-suo.Soil nitrogen mineralization and its prediction in winter wheat-summer maize rotation system[J].Chinese Journal of Applied Ecology,2003,14(12):2241-2245.

      [32]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,2000.

      LU Ru-kun.Soil agricultural chemical analysis method[M].Beijing:China Agriculture Science and Technique Press,2000.

      [33]Endo A,Mishima S,Kohyama K.Modeling nitrate leaching on a cropped Andosol[J].Nutrient Cycling in Agroecosystems,2009,85(1):41-61.

      [34]Beaudoin N,Saad J K,Van Laethem C,et al.Nitrate leaching in intensive agriculture in Northern France:Effect of farming practices,soils and crop rotations[J].Agriculture,Ecosystems and Environment,2005,111(1/2/3/4):292-310.

      [35]Corrêa R S,White R E,Weatherley A J.Effect of compost treatment of sewage sludge on nitrogen behavior in two soils[J].Waste Management,2006,26(6):614-619.

      [36]Sun H,Hockaday W C,Masiello C A,et al.Multiple controls on the chemical and physical structure of biochars[J].Industrial&Engineering Chemistry Research,2012,51(9):3587-3597.

      [37]Buss W,Graham M C,Shepherd J G,et al.Suitability of marginal biomass-derived biochars for soil amendment[J].Science of the Total Environment,2016,547:314-322.

      [38]Masiello C A,Dugan B,Brewer C E,et al.Biochar effects on soil hydrology[M]//Lehmann J,Joseph S.Biochar for Environmental Management Science,Technology and Implementation.2nd ed.New York:Routledge,2015:541-560.

      [39]Zheng H,Wang Z,Deng X,et al.Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J].Geoderma,2013,206(9):32-39.

      [40]張 威,張旭東,何紅波,等.干濕交替條件下土壤氮素轉(zhuǎn)化及其影響研究進(jìn)展[J].生態(tài)學(xué)雜志,2010,29(4):783-789.

      ZHANG Wei,ZHANG Xu-dong,HE Hong-bo,et al.Research advances in soil nitrogen transformation as related to drying/wetting cycles[J].Chinese Journal of Ecology,2010,29(4):783-789.

      [41]Ulyett J,Sakrabani R,Kibblewhite M,et al.Impact of biochar addition on water retention,nitrification and carbon dioxide evolution from two sandy loam soils[J].European Journal of Soil Science,2014,65(1):96-104.

      [42]靖 彥,陳效民,李秋霞,等.施用生物質(zhì)炭對(duì)紅壤中硝態(tài)氮垂直運(yùn)移的影響及其模擬[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(11):3161-3167.

      JING Yan,CHEN Xiao-min,LI Qiu-xia,et al.Effects of biochar application on the vertical transport of NO-3-N in the red soil and its simulation[J].Chinese Journal of Applied Ecology,2014,25(11):3161-3167.

      [43]Wang Z,Zong H,Zheng H,et al.Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar[J].Chemosphere,2015,138:576-583.

      [44]Dempster D N,Gleeson D B,Solaiman Z M,et al.Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J].Plant and Soil,2012,354(1):311-324.

      [45]吳萍萍,王家嘉,李錄久,等.模擬酸雨條件下生物炭對(duì)污染林地土壤重金屬淋失和有效性的影響[J].水土保持學(xué)報(bào),2016,30(3):115-119.

      WU Ping-ping,WANG Jia-jia,LI Lu-jiu,et al.Effects of biochar on heavy metal leaching and availability in contaminated forest soil under simulated acid rain condition[J].Journal of Soil and Water Conservation,2016,30(3):115-119.

      [46]Yuan J H,Xu R K,Qian W,et al.Comparison of the ameliorating effects on an acidicultisol between four crop straws and their biochars[J].Journal of Soils and Sediments,2011,11(5):741-750.

      [47]Smebye A,Ailing V,Vogt R D,et al.Biochar amendment to soil changes dissolved organic matter content and composition[J].Chemosphere,2016,142:100-105.

      [48]Sorrenti G,Toselli M.Soil leaching as affected by the amendment with biochar and compost[J].Agriculture Ecosystems&Environment,2016,226:56-64.

      Effects of biochar on water holding capacity and nitrogen leaching of sandy soil column from a Beijing suburb

      WANG Yan1,2,PANG Zhuo1,JIA Yue1,WANG Qing-h(huán)ai1,LIU Wen-ju2,XIE Zu-bin3,ZHENG Rui-lun1*
      (1.Beijing Research&Development Center for Grasses and Environment,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;2.College of Resources and Environment Science,Hebei Agricultural University,Baoding 071001,China;3.Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)

      A soil column experiment was conducted to examine the effects of biochar application on leachate volume and leaching of N.Sandy soil(0~90 cm in depth)was collected in a Beijing suburb via stratified sampling.And then,the sandy soil was filled in Plexiglas pipes based on the in situ soil bulk density and moisture content of each soil layer.Biochar was homogenized into the topsoil(0~20 cm)at rates(W/W)of 0%,0.5%,1%,2%,and 4%.A conventional dose of N fertilizer(0.56 t N·hm-2)was also added into the topsoil of each soil column.Deionized water was dropped into the soil columns,and the irrigation amount was based on the average annual rainfall of Beijing(616.6 mm).The results showed that,with increasing biochar concentration,the cumulative leachate volume and leaching of total N decreased by up to 41.3%and 22.7%,respectively,compared with the nil biochar addition treatment,after nine leaching events.The total Nconcentration of the topsoil increased significantly(P<0.05),by up to 158%,after biochar addition.The amount of inorganic N retained in the soil column after the total leaching was 19.5%~91.9%more for the biochar addition treatment than for the control.In addition,biochar addition decreased cumulative leaching of dissolved organic carbon,by up to 22.8%.The pH value and electrical conductivity of the leachates increased with increasing biochar concentration,and the topsoil retained higher moisture content following addition of greater biochar amount during the 9 times leaching.Correlation analysis indicated that cumulative leaching of total N positively correlated to leachate volume(r=0.978,P<0.01),but not to total N concentration of the leachate.Biochar addition could improve the water holding capacity of the sandy soil Beijing suburb and retard the down migration of water and nitrogen,thereby reducing leaching loss of water and nitrogen,improving their use efficiency,and mitigating the risk of nitrogen contamination of groundwater.

      biochar;land desertification;sandy soil;nitrogen leaching;water holding capacity

      X53

      A

      1672-2043(2017)09-1820-09

      10.11654/jaes.2017-0124

      王 燕,龐 卓,賈 月,等.生物炭對(duì)北京郊區(qū)砂土持水力和氮淋溶特性影響的土柱模擬研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(9):1820-1828.

      WANG Yan,PANG Zhuo,JIA Yue,et al.Effects of biochar on water holding capacity and nitrogen leaching of sandy soil column from a Beijing suburb[J].Journal of Agro-Environment Science,2017,36(9):1820-1828.

      2017-01-24

      王 燕(1994—),女,重慶榮昌人,本科生,主要從事生態(tài)修復(fù)研究。E-mail:wangy_anne@163.com

      *通信作者:鄭瑞倫E-mail:zhengruilun@grass-env.com

      國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(41501336);北京市優(yōu)秀人才培養(yǎng)資助項(xiàng)目(2015000020060G141);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503106);北京市科技計(jì)劃課題(D151100005915002)

      Project supported:The Young Scientists Fund of the National Natural Science Foundation of China(41501336);Beijing Outstanding Talent Training Project(2015000020060G141);The Special Scientific Research Fund of Agricultural Public Welfare Profession of China(201503106);Beijing Science and Technology Planning Project(D151100005915002)

      猜你喜歡
      淋失淋溶土柱
      降雨條件下植物修復(fù)分層尾礦土壤重金屬遷移的模擬分析
      長(zhǎng)期施肥對(duì)砂姜黑土可溶性碳淋溶的影響
      分層土壤的持水性能研究
      不同淋溶方式對(duì)二甲戊靈藥效的影響
      不同化學(xué)浸取劑對(duì)土壤鎘淋溶過程影響
      化工管理(2017年1期)2017-03-05 23:32:20
      不同灌水量對(duì)2種鹽堿土的洗鹽效果比較
      福建菜田氮、磷積累狀況及其淋失潛力研究
      不同水氮用量對(duì)日光溫室黃瓜季硝態(tài)氮淋失的影響
      武漢市城郊區(qū)集約化露天菜地生產(chǎn)系統(tǒng)硝態(tài)氮淋溶遷移規(guī)律研究
      模擬酸雨對(duì)赤紅壤磷素及Ca2+、Al3+、Fe2+淋失特征的影響
      乐昌市| 宕昌县| 濮阳县| 仲巴县| 长阳| 沐川县| 阳泉市| 高尔夫| 梨树县| 三明市| 滨海县| 新巴尔虎左旗| 自贡市| 云阳县| 盐源县| 福海县| 淳化县| 闵行区| 获嘉县| 永川市| 色达县| 濉溪县| 洪洞县| 宁晋县| 香河县| 荥阳市| 县级市| 贵德县| 西安市| 吴堡县| 桂阳县| 喀喇沁旗| 兴隆县| 久治县| 宁海县| 科技| 河池市| 陇南市| 永清县| 康平县| 含山县|