房 煦,羅 軍*,高 悅,Paul WILLIAMS,張 昊,William DAVISON
梯度擴散薄膜技術(shù)(DGT)的理論及其在環(huán)境中的應(yīng)用Ⅱ:土壤與沉積物原位高分辨分析中的方法與應(yīng)用
房 煦1,羅 軍1*,高 悅2,Paul WILLIAMS3,張 昊4,William DAVISON4
(1.污染控制與資源化研究國家重點實驗室,南京大學(xué)環(huán)境學(xué)院,南京210093;2.Department of Analytical,Environmental and Geochemistry(AMGC),VUB,Pleinlaan 2,1050 Brussels,Belgium;3.Institute for Global Food Security,Queen′s University Belfast,Belfast BT9 7BL,United Kingdom;4.Lancaster Environment Centre,Lancaster University,Lancaster LA1 4YQ,United Kingdom)
從吸附膜的設(shè)計、采樣裝置的設(shè)計和分析方法三個方面系統(tǒng)介紹了梯度擴散薄膜技術(shù)(DGT)在土壤和沉積物介質(zhì)中原位高分辨研究的方法學(xué),并回顧了DGT自誕生以來在根際土壤和沉積物中原位高分辨應(yīng)用所取得的重要研究成果,最后探討了DGT在原位高分辨研究中的發(fā)展前景。DGT技術(shù)在沉積物和土壤中對污染物微界面機制的原位高分辨率研究,能夠揭示控制重金屬污染的關(guān)鍵過程,為針對性地做出管理控制方案提供了重要理論支持,從而推動我國對土壤、沉積物污染的防治和糧食安全的控制。
梯度擴散薄膜技術(shù)(DGT);土壤;沉積物;高分辨率;原位研究;金屬
DGT(Diffusive Gradients in Thin-films)技術(shù)自從由Davison和張昊發(fā)明以來[1],作為一種金屬元素和有機污染物的原位監(jiān)測和形態(tài)分析技術(shù),已經(jīng)被廣泛用于研究實驗室和自然條件下待測污染物的環(huán)境行為。由于DGT技術(shù)基于目標(biāo)物擴散通量的測量原理,同時其內(nèi)含的納米級孔徑的擴散層具有對目標(biāo)物粒徑進(jìn)行選擇的能力,當(dāng)DGT技術(shù)應(yīng)用于土壤及沉積物環(huán)境中時,其測量結(jié)果不僅體現(xiàn)了間隙水中污染物的濃度以及固相向液相的補給能力[2],同時也排除了土壤和沉積物間隙水中難以被生物直接利用的膠體的貢獻(xiàn)[3],從而使得DGT技術(shù)作為一種土壤和沉積物中重金屬生物有效態(tài)濃度的分析工具備受關(guān)注。羅軍等[4]系統(tǒng)地介紹了DGT的基本原理特性以及在土壤環(huán)境中的應(yīng)用。近年來DGT技術(shù)在原位高分辨分析領(lǐng)域獲得長足發(fā)展,促進(jìn)了土壤和沉積物重金屬生物地球化學(xué)的原位研究,為重金屬污染控制原理的研究提供了技術(shù)支撐。作為DGT未來發(fā)展的重要方向之一,DGT技術(shù)在土壤和沉積物原位高分辨研究中的應(yīng)用值得我們進(jìn)行集中介紹和總結(jié)。
土壤和沉積物作為多種化學(xué)元素存儲和生物化學(xué)反應(yīng)的場所,在元素全球循環(huán)中扮演著核心角色,而對元素生物地球化學(xué)循環(huán)過程的詳細(xì)解讀往往需要了解其在微觀尺度下的反應(yīng)細(xì)節(jié)。由于土壤和沉積物不具有水和空氣的流動性,缺乏有效的混合機制使得空間異質(zhì)性成為其共有的顯著特征。對于土壤,這種異質(zhì)性主要源自母質(zhì)礦物、風(fēng)化程度、生物碎屑的空間分布差異[5]。尤其對于淹水環(huán)境下的水稻土,異質(zhì)性同樣受控于豎直方向因氧氣消耗和微生物厭氧呼吸帶來的氧化還原電位的差異。在沉積物中,氧化還原電位控制的相關(guān)元素的縱向分布梯度尤為顯著[6-7]。此外,植物根系分泌物、生物擾動和微生物活動會進(jìn)一步豐富上述環(huán)境中的異質(zhì)性,形成復(fù)雜而立體的固液相鑲嵌結(jié)構(gòu)。
在已有研究中,微電極[8-11]、逐層采樣[12-13]、平面式pH測定[14]以及放射自顯影技術(shù)[15]已經(jīng)被用于獲取這些環(huán)境中溶質(zhì)空間分布信息。但這些方法大多只能提供一維溶質(zhì)分布,而且空間分辨率一般也只在厘米至毫米級范圍。而DGT技術(shù)作為一種研究溶質(zhì)一維或二維空間分布的工具,其毫米級至亞毫米級的高分辨率特性無疑是理解土壤和沉積物中元素微觀地球化學(xué)過程的一大進(jìn)步。同時,作為與DGT技術(shù)互補的技術(shù),平板光極通過記錄待測物質(zhì)對發(fā)色基團所產(chǎn)生熒光的淬滅,在與DGT技術(shù)串聯(lián)使用時可以進(jìn)一步實時、空間同步地獲取氧氣、pH等關(guān)鍵但又難以由后者獲取的環(huán)境參數(shù)的二維分布信息[16-18]。為此,我們將聚焦于DGT技術(shù)在土壤和沉積物環(huán)境中原位高分辨分析的研究。首先從方法層面概述其對吸附膜和采樣裝置的要求以及后續(xù)分析方法的發(fā)展,然后介紹一些重要研究案例,最后對DGT技術(shù)在原位高分辨研究中的應(yīng)用進(jìn)行總結(jié)和展望。
1.1 吸附膜的設(shè)計
為了使用DGT得到土壤或沉積物中目標(biāo)元素的高分辨率分布信息,一個重要前提就是吸附膜中吸附材料的均勻分布以及其粒徑要小于目標(biāo)分辨率(圖1)。例如當(dāng)需要進(jìn)行基于激光剝蝕-電感耦合等離子體質(zhì)譜儀聯(lián)用技術(shù)(LA-ICP-MS)的亞毫米級分析時,吸附劑顆粒的大小一定要遠(yuǎn)小于毫米尺度。另外,因為空間異質(zhì)的溶質(zhì)向DGT吸附膜擴散過程中會產(chǎn)生程度與擴散層厚度正相關(guān)的彌散,進(jìn)而降低記錄到的分辨率[19],所以控制擴散層的厚度對獲取有意義的高分辨圖像至關(guān)重要。
圖1 DGT原位高分辨分析的思路Figure 1 High resolution analysis of DGT
1.1.1 均勻性
為了提高吸附膜中吸附劑分布的均勻性,有兩種思路可供選擇:一是在添加吸附劑時使用處理得更細(xì)的吸附劑顆粒;二是從原子或分子水平開始將吸附劑組裝到吸附膠上。對第一種思路,基于懸浮顆粒試劑亞氨基二乙酸的SPR-IDA吸附膜是典型代表,相比于顆粒大小為200 μm左右的Chelex 100材料,SPRIDA中0.2 μm左右的細(xì)小吸附劑使得由其制成的吸附膠能夠勝任微米級的分析[17-18]。
然而更多的用于高分辨分析的吸附膠是通過在膠中由原料直接組裝吸附劑而獲得的,更具體地說是由原位直接沉淀法制作的基于金屬氧化物的吸附膜,包括用于硫離子分析的沉淀型碘化銀膜[19-20]和用于含氧陰離子分析的沉淀型氧化鐵膜[24-26]與沉淀型氧化鋯膜[27]。此類沉淀型吸附膜的制作思路為:首先使用作原料的水凝膠中均勻分布待沉淀的離子,如制作沉淀氧化鐵和沉淀氧化鋯膜時將制好的水凝膠浸泡在相應(yīng)的鐵鹽和鋯鹽溶液中;然后,將均勻分布好待沉淀離子的水凝膠轉(zhuǎn)移到含有可與之產(chǎn)生沉淀的離子溶液中,使作為吸附劑的沉淀在水凝膠中形成,從而得到吸附劑均勻分布的沉淀型吸附膜[23-24]。
1.1.2 厚度
在串聯(lián)使用DGT和其他單個或多個基于擴散傳質(zhì)的原位技術(shù)(如DGT、平板光極等)時,降低總體擴散層厚度從而保證更好的空間分辨率十分關(guān)鍵。除了傳統(tǒng)的擴散膜被完全舍棄而以濾膜作為擴散層外,降低吸附膜的厚度也會提升其后諸層的實際分辨能力[28-29]。
1.2 采樣裝置的設(shè)計
采樣裝置設(shè)計的一個重要方面就是要保證介質(zhì)中溶質(zhì)的二維分布能被真實地記錄到DGT中。這不僅包括控制采樣過程對介質(zhì)的擾動,還要能確保所研究的空間范圍內(nèi)溶質(zhì)的擴散過程得到精確控制。
1.2.1 用于沉積物原位分析的裝置
沉積物的孔隙度或含水率隨深度變化的幅度并不陡峭,在DGT探測的空間范圍內(nèi)可認(rèn)為能夠保證一致的擴散條件[25-26]。用于沉積物原位高分辨分析的DGT采樣裝置設(shè)計大都基于標(biāo)準(zhǔn)型DGT探針(圖2)。標(biāo)準(zhǔn)型探針的結(jié)構(gòu)包括一塊含有矩形凹槽的塑料支撐板、置于凹槽中的DGT膠層、膠層上覆蓋的濾膜以及扣于其最上的一塊含有矩形采樣窗口的塑料蓋板。商品化的標(biāo)準(zhǔn)型DGT探針可通過DGT官網(wǎng)(www.dgtresearch.com或www.dgtresearch.com.cn)購買。該標(biāo)準(zhǔn)型探針既可以用于從原位采集的沉積物柱樣[32],也可以通過手動或者水下著陸設(shè)備原位插入到沉積物中直接采集目標(biāo)元素溶質(zhì)的空間分布信息[24,33]。雖然這種探針設(shè)計最初主要被用于研究目標(biāo)元素的一維分布,但后續(xù)報道表明這種設(shè)計同樣可以獲得元素的二維高分辨分布信息[27,34-36]。
圖2 標(biāo)準(zhǔn)型DGT探針結(jié)構(gòu)示意圖Figure 2 Schematic view of a DGT probe
標(biāo)準(zhǔn)型DGT探針之外,其他尺寸和結(jié)構(gòu)的用戶定制或特殊用途的DGT探針同樣被廣泛采用[37-41]。其中一種由Robertson等[38]開發(fā)的大尺寸DGT探針被用于DGT-DET(Diffusive Equilibrium in Thin-films,平衡擴散技術(shù))同時成像,其總尺寸為275 mm×110 mm×14 mm,且有170 mm×80 mm的采樣窗口。后續(xù)的其他研究中,這種加大型探針也有被再次使用[29,39-40]。然而由于這種探針底部缺少楔形設(shè)計,插入時的阻力以及其對介質(zhì)的擾動需要額外注意。另一種稱為限制型探針的裝置中,密集的細(xì)條型凹槽設(shè)計最初被用于DET空間分辨分析中限制溶質(zhì)在相鄰膠區(qū)域間的擴散[39]。由于其能代替高分辨分析中繁瑣的切膠步驟,近來同樣被用于DGT以分析U、Fe和Mn的毫米級分布[44]。
1.2.2 用于土壤原位分析的裝置
由于自然土壤含水率一般遠(yuǎn)低于沉積物,DGT技術(shù)用于土壤高分辨原位分析時實驗裝置往往也有所不同。雖然淹水的稻田土壤依然可以采用用于沉積物的DGT探針,但對于更多的非淹水環(huán)境中的土壤,由于其低含水率嚴(yán)重影響溶質(zhì)的擴散過程,為了在土壤介質(zhì)中使用DGT技術(shù),需要對采樣裝置進(jìn)行改造。其核心就是要保證測量過程中土壤擁有合適而均一的含水率。至今為止,關(guān)于用DGT進(jìn)行土壤原位高分辨的研究大部分是在關(guān)注根際土壤環(huán)境。
通常待研究的土壤和植物會被置于根際箱中進(jìn)行培養(yǎng)[25,28,45-47](圖3)。通過均勻加水控制土壤含水率到達(dá)所需水平,植物培養(yǎng)期間通過控制根際箱的傾斜角度使得植物根系貼壁生長。進(jìn)行DGT測量時,將覆有濾膜的DGT吸附膠貼于箱板內(nèi)壁,然后裝回根際箱進(jìn)行測量,既保證了根際土測量所需的含水率,又保證了土壤和根系盡可能貼近DGT膜。
1.2.3 與平板光極(Planar optode)聯(lián)用的裝置設(shè)計
DGT技術(shù)原位高分辨分析根際土壤和沉積物過程中,為了得到同一目標(biāo)區(qū)域內(nèi)pH和O2等環(huán)境參數(shù)的二維分布信息,通常將DGT技術(shù)與平板光極技術(shù)串聯(lián)使用[46-47]。實驗裝置設(shè)置如圖3。考慮到DGT吸附膠對平板光極待測物良好的透過性,同時為了避免前者對光極膜熒光信號記錄的影響,通常將DGT吸附膠覆蓋于平板光極之上,使DGT吸附膠介于待測介質(zhì)和光極膜之間組成DGT-光極串聯(lián)結(jié)構(gòu)[47-51]。
圖3 DGT用于根際土壤原位高分辨分析的裝置圖Figure 3 Design of an experimental device incorporating rhizosphere box,DGT and optode
1.3 分析方法
在選用合適的吸附膠和采樣裝置完成對待測元素的高精度記錄后,選用適當(dāng)?shù)姆治龇椒ㄗx取吸附膠上的二維分布信息將成為DGT高分辨分析中的關(guān)鍵。在針對DET樣品的首次原位高分辨分析的嘗試中,質(zhì)子誘導(dǎo)X射線發(fā)射光譜(PIXE)被用于獲取亞毫米級沉積物中Fe、Mn的分布[52]。但由于PIXE分析昂貴的成本、漫長的時間、儀器的稀缺[53]以及對大多數(shù)痕量元素的靈敏度較低[40],基于PIXE的分析方法并不令人滿意。
1.3.1 切膠分析法
第一個嘗試解決上述問題的替代方法是切膠分析法[37]。經(jīng)過對水凝膠的切割、洗脫后,每小片膠中記錄的元素濃度可以通過常用的濕法分析如離子色譜(IC)、石墨爐原子吸收光譜(GF-AAS)、電感耦合等離子體發(fā)射光譜(ICP-OES)或電感耦合等離子體質(zhì)譜(ICP-MS)等準(zhǔn)確測定。顯然,用于高分辨分析的切膠分析法的關(guān)鍵在于切割得到的膠樣品尺寸。
最初的切膠方法為手動把膠切成1 cm長、1~2 mm寬的細(xì)小長條[40],但由于過于繁瑣且不夠精準(zhǔn),便催生出了配備有游標(biāo)微調(diào)器控制的切片機[54],從而能夠精確而高效地進(jìn)行切割。至此,膠樣品不僅可以被切成長寬分別為1 cm和1 mm的更小的膠塊,提高了豎直方向分辨率,而且還產(chǎn)生了一種切成3 mm×3 mm小膠塊式的切割方式,從而更能揭示多元素二維分布的區(qū)域化特征和極值點的存在,催生了后續(xù)多元素二維成像方面的研究。隨后,切膠法所得的分辨率逐漸向亞毫米尺度發(fā)展,精確切得的膠塊可達(dá)450 μm×450 μm。但由于切膠分析法本身特點決定的對眾多細(xì)小膠塊的后續(xù)操作過于耗時,在亞微米級分辨率上的二維高分辨研究還需其他更好的方法。
1.3.2 計算機成像密度法
計算機成像密度法(CID)是使用平板掃描儀以圖像方式讀取DGT膠上溶質(zhì)的二維分布,并通過計算機圖像處理軟件分析特定顏色的密度值從而給出待測物濃度的高分辨分析方法。該方法最初被用于測量AgI膠上記錄的溶解性硫化物的亞毫米級二維濃度分布[24]。相比于上述的切膠分析法,計算機成像密度法不僅對儀器要求不高,且定量精準(zhǔn)(回收率95%,精度5%)[24],極大提高了高分辨二維分析的速度和分辨率,只需一次掃描就能得到理論分辨率238 μm的分布圖[24]。
CID分析法顯而易見的弊端就是通常只能分析一種元素。這主要由于一般掃描儀只利用三個色彩通道記錄顏色,即紅色(620~740 nm)、綠色(495~570 nm)和藍(lán)色(450~495 nm),從而使得其對不同分析物各自光譜的解析變得困難。目前使用CID進(jìn)行二維高分辨分析的方法除了上述的AgI-硫化物系統(tǒng)外,還包括使用菲啰嗪-Fe(Ⅱ)和氧化鋯-溶解活性磷(DRP)系統(tǒng)分別對Fe(Ⅱ)和DRP的測定[53,55-56]。為了解決CID方法分析物單一的問題,一種思路是使用更先進(jìn)的掃描設(shè)備,用更多的色彩通道記錄細(xì)化的光譜信息,從而使不同分析物的光譜得以分別解析分析,如高光譜成像方法(HSI)[52-53]。然而當(dāng)同時分析多個元素時,分析就可能變得非常復(fù)雜和不準(zhǔn)確,這時就需要采用激光剝蝕聯(lián)用技術(shù)。
1.3.3 激光剝蝕聯(lián)用分析法
激光剝蝕-電感耦合等離子體質(zhì)譜聯(lián)用技術(shù)(LA-ICP-MS)自20世紀(jì)80年代出現(xiàn)以來[54-55],已成為當(dāng)下生物或地質(zhì)樣品成像分析的主流技術(shù)[61-63]。由于其基于激光聚焦的微米級剝蝕光斑尺寸和強大的ICP-MS分析系統(tǒng)(圖4),樣品的多元素高分辨成像分析技術(shù)得到了巨大進(jìn)步。在2003年首次出現(xiàn)了將LA-ICP-MS應(yīng)用于DGT樣品的高分辨分析的報道,經(jīng)數(shù)據(jù)處理后Motelica-Heino等[64]得到了Fe、Mn、Co、Ni和Cu在100 μm分辨率的濃度分布。
將LA-ICP-MS用于DGT吸附膠的高分辨分析,除了LA-ICP-MS固有的多元素同步分析和分辨率的優(yōu)勢,DGT膠的使用還提高了定量分析的準(zhǔn)確度。DGT對待測物富集采集的過程可以被看做是一種樣品基質(zhì)純化和統(tǒng)一化的過程,無論是將DGT放在簡單的實驗室配置的溶液中還是復(fù)雜的環(huán)境介質(zhì)中,最終富集到吸附膠上的待測物都會有一個共同的基質(zhì),即凝膠的碳骨架和均勻分布的吸附材料。所以,對于DGT樣品分析來說,與樣品基質(zhì)嚴(yán)格匹配的標(biāo)樣通常能夠輕易制得,而這是絕大部分基于LA-ICP-MS的固體樣品定量分析的難點和關(guān)鍵[60-61]。
圖4 激光剝蝕電感耦合等離子體質(zhì)譜分析示意圖Figure 4 Diagram of analysis of DGT using LA-ICP-MS
2.1 沉積物
目前使用DGT進(jìn)行的大部分原位高分辨研究主要是針對沉積物,并取得了一些關(guān)鍵的科學(xué)發(fā)現(xiàn)。作為一種目前已被廣泛認(rèn)可的地球化學(xué)理論,沉積物微生境中金屬和硫化物高度區(qū)域化的分布和緊密關(guān)聯(lián)的遷移釋放就是由DGT的高分辨研究所發(fā)現(xiàn)的。因為微生物對硫酸鹽等氧化態(tài)礦物的還原受控于具有反應(yīng)活性的有機物,所以硫等許多元素的釋放行為都高度依賴于有機質(zhì)團塊的位置、大小以及反應(yīng)性(圖5)。根據(jù)由DGT原位研究獲得的這些元素釋放的空間規(guī)律,人們也重新審視了以前過于簡化的一維反應(yīng)傳輸模型,開始考慮包含微生境的更加完整的三維反應(yīng)傳輸模型[23,35,57,64,67-70]。
通過使用CID和激光剝蝕高分辨多接收等離子體質(zhì)譜(LA-HR-MC-ICP-MS)分析DGT樣品,準(zhǔn)確研究了沉積物間隙水硫化物中硫同位素二維空間(100 μm分辨率)變化特征[71]。發(fā)現(xiàn)微生境中δ34S相對背景值高達(dá)+20‰,表明如果微生境中這種小尺度的Rayleigh分餾普遍存在(比如對于C、N和Fe),則會對沉積物中元素同位素數(shù)據(jù)的解讀意義重大。
圖5 (a)掃描得到的AgI膠的灰度圖像,其中含53個微生境覆蓋了膠6.9%的表面區(qū)域(膠尺寸:17.2 mm×141.6 mm),膠表面區(qū)域約11%的硫化物的總水平方向凈流量可歸因于微生境;(b)和(c)圓形微生境的三維圖,膠放置在含有取自Esthwaite Water的沉積物的中宇宙中進(jìn)行。引自Widerlund等[35]Figure 5(a)Scanned grayscale image of a AgI gel with 53 microniches covering 6.9%of the gel surface area(gel size 17.2 mm×141.6 mm).Approximately 11%of the total horizontal net flux of sulfide on the gel surface area can be attributed to microniches.(b)and(c)Three-dimensional plot of circular microniches.Gel deployed in mesocosm with sediment from Esthwaite Water.Cited from Widerlund et al[35]
圖6 (a)多毛目潛穴的光極氧氣圖像;(b)和(c)流經(jīng)潛穴相同區(qū)域的Cu和Pb相應(yīng)的累計流量。引自Stahl等[51]Figure 6(a)Planar optode oxygen image of the polychaete burrow;(b)and(c)Corresponding integrated Cu and Pb fluxes across the same area of the burrow,respectively.Cited from Stahl et al[51]
通過串聯(lián)使用DGT和平面光極技術(shù),Stahl等[51]證明了在沉積物中含有較高氧氣濃度的多毛目潛穴壁附近Cu和Pb的局部釋放(圖6)。隨后Han等[49]進(jìn)一步結(jié)合氧氣光極和氧化鋯DGT制成復(fù)合傳感膜,并應(yīng)用到沉積物中,揭示了其中小尺度異質(zhì)性的存在。
2.2 根際土壤
雖然將DGT用于研究土壤和植物根際的研究在2010、2012年才見諸報道[25,45],但卻立即展現(xiàn)了此類應(yīng)用的廣闊前景,并取得了關(guān)鍵的發(fā)現(xiàn)。植物根系作為植物與土壤物質(zhì)交換的通道,其具體過程和狀態(tài)的闡明對理解植物吸收各種元素有著關(guān)鍵意義,但由于長期缺乏同時測量各種毒性或營養(yǎng)元素有效濃度和關(guān)乎元素土壤生物化學(xué)過程的含氧量、pH等重要環(huán)境參數(shù)的原位測定技術(shù),影響植物根系吸收這些元素的過程始終難以精確研究。具有原位高分辨分析能力的DGT技術(shù)與平板光極技術(shù)的聯(lián)用克服了之前的困難。通過在根際箱實驗中串聯(lián)使用DGT和平板光極,Williams等[47]首次發(fā)現(xiàn)水稻根尖附近存在一個As、Pb和Fe釋放的顯著提高,同時伴隨著氧氣富集和pH降低的區(qū)域(圖7)。在另一項研究中,Hoefer等[46]同樣在柳苗(Salix smithiana)根部附近觀測到了更高的Zn和Cd的釋放,隨后Hoefer等[50]又將pH光極膜和DGT吸附膜整合到同一水凝膠層,從而實現(xiàn)了對柳苗根際土壤pH和金屬釋放的時空同步成像研究(圖8)。
自DGT技術(shù)及其姊妹技術(shù)DET誕生以來,對異質(zhì)性環(huán)境介質(zhì)的原位高分辨研究始終是一個重要的發(fā)展方向。為了更準(zhǔn)確、更方便地用DGT技術(shù)研究介質(zhì)中待測物的空間分布,DGT的吸附膠、裝置等都經(jīng)過了專門的優(yōu)化設(shè)計;為了更準(zhǔn)確方便地讀取DGT記錄在吸附膠上的溶質(zhì)分布,多種高分辨測量手段也進(jìn)行了不斷地創(chuàng)新和發(fā)展;而為了更科學(xué)地解讀在土壤和沉積物中DGT測得的結(jié)果,一整套的DGT理論被建立和完善起來,同時還開發(fā)出了用于模擬計算的計算機軟件DIFS模型(詳見本系列第一篇[4])。
作為一種被動采樣技術(shù),DGT及其相關(guān)技術(shù)突破性地測量了具有環(huán)境意義的元素的有效態(tài)濃度,并實現(xiàn)了對土壤和沉積物中重金屬的高分辨原位研究。尤其在《水污染防治行動計劃》(水十條)、《土壤污染防治行動計劃》(土十條)出臺及國家對重金屬污染和食品安全問題越來越重視的大背景下,DGT技術(shù)在沉積物和土壤中對污染物微界面機制的原位高分辨率研究,將為揭示控制重金屬污染的關(guān)鍵過程,從而針對性地制定管理控制方案提供重要理論支持。同時,相關(guān)的新型高均勻度吸附膜和基于復(fù)合材料的重金屬-營養(yǎng)鹽-環(huán)境參數(shù)等多指標(biāo)同步監(jiān)測技術(shù)的開發(fā),以及利用DGT原位高分辨技術(shù)對沉積物、根際土壤中關(guān)鍵生物地球化學(xué)過程的研究應(yīng)用,都將作為未來DGT原位高分辨研究的熱點而具有廣闊的發(fā)展空間。
[1]Davison W,Zhang H.In situ speciation measurements of trace componentsinnatural watersusingthin-filmgels[J].Nature,1994,367(6463):546-548.
[2]Zhang H,Zhao F J,Sun B,et al.A new method to measure effective soil solution concentration predicts copper availability to plants[J].Environmental Science&Technology,2001,35(12):2602-2607.
[3]Van Der Veeken P L R,Pinheiro J P,Van Leeuwen H P.Metal speciation by DGT/DET in colloidal complex systems[J].Environmental Science&Technology,2008,42(23):8835-8840.
[4]羅 軍,王曉蓉,張 昊,等.梯度擴散薄膜技術(shù)(DGT)的理論及其在環(huán)境中的應(yīng)用Ⅰ:工作原理、特性與在土壤中的應(yīng)用[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(2):205-213.
圖7 (a)一組水稻根部附近O2、Pb、Fe、As、Co、Mn、Zn和Ni的圖像;測量通過縱向放置O2光極-DGT傳感器到厭氧土壤中,并圍繞一淹沒于土壤表面下10 mm的根尖進(jìn)行;(b)一組生長在同一土壤中水-土界面下10.5 cm深度的水稻根部附近pH和Pb、Fe、As、Co、Mn、Cu、Ni的二維呈現(xiàn),圖像由一pH光極組合一超薄0.05 mm的Chelex DGT獲得。引自Williams等[47]Figure 7(a)Visualization of O2,Pb,F(xiàn)e,As,Co,Mn,Zn,and Ni around a set of rice roots.Measurements were made by deploying an O2optode-DGT sensor vertically in the anoxic soil and encompassed a submerged root tip located 10 mm below the soil surface.(b)Two-dimensional representation of pH,Pb,F(xiàn)e,As,Co,Mn,Cu,and Ni around a different set of rice root grown in the same soil at a depth of 10.5 cm from the soil-water interface.The images were obtained from a pH optode partnered with an ultrathin 0.05 mm Chelex DGT.Cited from Williams et al[47]
LUO Jun,WANG Xiao-rong,ZHANG Hao,et al.Theory and application of diffusive gradients in thin films in soils[J].Journal of Agro-Environment Science,2011,30(2):205-213.
[5]Scheffer F,Schachtschabel P,Blume H,et al.Lehrbuch der Bodenkunde[M].2002:593.
[6]Berner R A.Early diagenesis:A theoretical approach[M].Princeton:Princeton University Press,1980.
[7]Aller R C.Sedimentary diagenesis,depositional environments,and benthic fluxes[J].Treatise on Geochemistry,2014,8:293-334.
[8]Stockdale A,Davison W,Zhang H.Micro-scale biogeochemical heterogeneity in sediments:A review of available technology and observed evidence[J].Earth-Science Reviews,2009,92(1):81-97.
[9]Kühl M.The benthic boundary layer[M].New York:Oxford University Press,2001:180-210.
[10]Weisenseel M H,Dorn A,Jaffe L F.Natural H+currents traverse growing roots and root hairs of barley(Hordeum vulgare L.)[J].Plant Physiology,1979,64(3):512-518.
[11]Taillefert M,Luther G W,Nuzzio D B.The application of electroanalytical tools for in situ measurements in aquatic systems[J].Electroanalysis,2000,12(6):401-412.
[12]Wenzel W W,Wieshammer G,Fitz W J,et al.Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution[J].Plant and Soil,2001,237(1):37-45.
[13]Teasdale P R,Batley G E,Apte S C,et al.Pore water sampling with sediment peepers[J].Trends in Analytical Chemistry,1995,14(6):250-256.
[14]Jaillard B,Ruiz L,Arvieu J C.pH mapping in transparent gel using color indicator videodensitometry[J].Plant and Soil,1996,183(1):85-95.
圖8 Salix smithiana根際的化學(xué)成像。每種分析物圖像左側(cè)的豎條顯示了Cd2+、Zn2+、Mn2+、Cu2+的DGT流量(pg·cm-2·s-1)和pH的標(biāo)定范圍,F(xiàn)e、Ni2+、Al3+、Co2+、Pb2+則以未經(jīng)標(biāo)定、經(jīng)13C標(biāo)準(zhǔn)化的值顯示,并使用同經(jīng)標(biāo)定圖像相同的顏色體系,即高膠負(fù)載值對應(yīng)亮色(白)而低膠負(fù)載值對應(yīng)暗色(黑)。研究區(qū)域(Region of Interest,ROI)為平面光極-DGT放置前拍攝的照片。引自Hoefer等[50]Figure 8 Chemical images of the Salix smithiana rhizosphere.Bars on the left side of each analyte image show the calibration ranges for Cd2+,Zn2+,Mn2+,Cu2+as DGT flux(pg·cm-2·s-1)and pH.Fe,Ni2+,Al3+,Co2+and Pb2+are shown as uncalibrated,13C-normalized values,utilizing the same color scheme as for the calibrated images with high gel loadings corresponding to bright(white)and low gel loadings corresponding to dark(black)color.The region of interest(ROI)displays a photograph taken prior to PO-DGT deployment.Cited from Hoefer et al[50]
[15]Bhat K K S,Nye P H.Diffusion of phosphate to plant roots in soil[J].Plant and Soil,1973,38(1):161-175.
[16]Han C,Ren J,Tang H,et al.Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode[J].Science of the Total Environment,2016,569/570:1232-1240.
[17]Glud R N,Ramsing N B,Gundersen J K,et al.Planar optodes:A new tool for fine scale measurements of two-dimensional O2distribution in benthic communities[J].Marine Ecology Progress Series,1996,140(1/2/3):217-226.
[18]Santner J,Larsen M,Kreuzeder A,et al.Two decades of chemical imaging of solutes in sediments and soils:A review[J].Analytica Chimica Acta,2015,878:9-42.
[19]Davison W,Zhang H,Grime G W.Performance characteristics of gel probes used for measuring the chemistry of pore waters[J].Environmental Science&Technology,1994,28(9):1623-1632.
[20]Warnken K W,Zhang H,Davison W.Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry[J].Anal Chem,2004,76(20):6077-6084.
[21]Warnken K W,Zhang H,Davison W.Performance characteristics of suspended particulate reagent-iminodiacetate as a binding agent for diffusive gradients in thin films[J].Analytica Chimica Acta,2004,508(1):41-51.
[22]Devries C R,Wang F Y.In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters[J].Environmental Science&Technology,2003,37(4):792-797.
[23]Stockdale A,Davison W,Zhang H.High-resolution two-dimensional quantitative analysis of phosphorus,vanadium and arsenic,and qualitative analysis of sulfide,in a freshwater sediment[J].Environmental Chemistry,2008,5(2):143-149.
[24]Teasdale P R,Hayward S,Davison W.In situ,high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry[J].Analytical Chemistry,1999,71(11):2186-2191.
[25]Santner J,Prohaska T,Luo J,et al.Ferrihydrite containing gel for chemical imaging of labile phosphate species in sediments and soils using diffusive gradients in thin films[J].Anal Chem,2010,82(18):7668-7674.
[26]Luo J,Zhang H,Santner J,et al.Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(Ⅴ),selenium(Ⅵ),vanadium(Ⅴ),and antimony(Ⅴ)[J].Analytical Chemistry,2010,82(21):8903-8909.
[27]Guan D X,Williams P N,Luo J,et al.Novel precipitated zirconiabased DGT technique for high-resolution imaging of oxyanions in waters and sediments[J].Environmental Science&Technology,2015,49(6):3653-3661.
[28]Kreuzeder A,Santner J,Prohaska T,et al.Gel for simultaneous chemical imaging of anionic and cationic solutes using diffusive gradients in thin films[J].Analytical Chemistry,2013,85(24):12028-12036.
[29]Lehto N J,Davison W,Zhang H.The use of ultra-thin diffusive gradients in thin-films(DGT)devices for the analysis of trace metal dynamics in soils and sediments:A measurement and modelling approach[J].Environmental Chemistry,2012,9(4):415-423.
[30]Bahr D B,Hutton E W H,Syvitski J P M,et al.Exponential approxima-tions to compacted sediment porosity profiles[J].Computers and Geosciences,2001,27(6):691-700.
[31]Ehrenberg S N,Nadeau P H.Sandstone vs.carbonate petroleum reservoirs:A global perspective on porosity-depth and porosity-permeability relationships[J].AAPG Bulletin,2005,89(4):435-445.
[32]Zhang H,Davison W,Gadi R,et al.In situ measurement of dissolved phosphorus in natural waters using DGT[J].Analytica Chimica Acta,1998,370(1):29-38.
[33]Fones G R,Davison W,Holby O,et al.High-resolution metal gradients measured by in situ DGT/DET deployment in black sea sediments using an autonomous benthic lander[J].Limnology and Oceanography,2001,46(4):982-988.
[34]Pagès A,Teasdale P R,Robertson D,et al.Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(Ⅱ)and sulfide in seagrass sediment porewaters[J].Chemosphere,2011,85(8):1256-1261.
[35]Widerlund A,Davison W.Size and density distribution of sulfide-producingmicronichesinlakesediments[J].EnvironmentalScience&Technology,2007,41(23):8044-8049.
[36]Bennett W W,Teasdale P R,Welsh D T,et al.Inorganic arsenic and iron(Ⅱ)distributions in sediment porewaters investigated by a combined DGT-colourimetric DET technique[J].Environmental Chemistry,2012,9(1):31-40.
[37]Krom M D,Davison P,Zhang H,et al.High-resolution pore-water sampling with a gel sampler[J].Limnology and Oceanography,1994,39(8):1967-1972.
[38]Robertson D,Teasdale P R,Welsh D T.A novel gel-based technique for the high resolution,two-dimensional determination of iron(Ⅱ)and sulfide in sediment[J].Limnology and Oceanography-Methods,2008,6(10):502-512.
[39]Fones G R,Davison W,Grime G W.Development of constrained DET for measurements of dissolved iron in surface sediments at sub-mm resolution[J].Science of the Total Environment,1998,221(2/3):127-137.
[40]Zhang H,Davison W,Miller S,et al.In situ high resolution measurements of fluxes of Ni,Cu,Fe,and Mn and concentrations of Zn and Cd in porewaters by DGT[J].Geochimica et Cosmochimica Acta,1995,59(20):4181-4192.
[41]Bennett W W,Welsh D T,Serriere A,et al.A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters[J].Chemosphere,2015,119:547-552.
[42]Robertson D,Welsh D T,Teasdale P R.Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(Ⅱ)and sulfide[J].Environmental Chemistry,2009,6(1):60-69.
[43]Pagès A,Grice K,Vacher M,et al.Characterizing microbial communities and processes in a modern stromatolite(Shark Bay)using lipid biomarkers and two-dimensional distributions of porewater solutes[J].Environmental Microbiology,2014,16(8):2458-2474.
[44]Docekal B,Gregusova M.Segmented sediment probe for diffusive gradient in thin films technique[J].Analyst,2012,137(2):502-507.
[45]Santner J,Zhang H,Leitner D,et al.High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L.cultivars[J].Environmental and Experimental Botany,2012,77:219-226.
[46]Hoefer C,Santner J,Puschenreiter M,et al.Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application[J].Environmental Science&Technology,2015,49(7):4522-4529.
[47]Williams P N,Santner J,Larsen M,et al.Localized flux maxima of arsenic,lead,and iron around root apices in flooded lowland rice[J].Environmental Science&Technology,2014,48(15):8498-8506.
[48]Christel W,Zhu K,Hoefer C,et al.Spatiotemporal dynamics of phosphorus release,oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers[J].Science of the Total Environment,2016,554/555:119-129.
[49]Han C,Ren J,Wang Z,et al.A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water[J].Water Research,2017,108:179-188.
[50]Hoefer C,Santner J,Borisov S M,et al.Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer[J].Analytica Chimica Acta,2017,950:88-97.
[51]Stahl H,Warnken K W,Sochaczewski L,et al.A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes[J].Limnology and Oceanography:Methods,2012,10(5):389-401.
[52]Davison W,Grime G W,Morgan J A W,et al.Distribution of dissolved iron in sediment pore waters at submillimetre resolution[J].Nature,1991,352(6333):323-325.
[53]Jézéquel D,Brayner R,Metzger E,et al.Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging,Thau lagoon(France)[J].Estuarine,Coastal and Shelf Science,2007,72(3):420-431.
[54]Shuttleworth S M,Davison W,Hamilton-Taylor J.Two-dimensional and fine structure in the concentrations of iron and manganese in sediment pore-waters[J].Environmental Science&Technology,1999,33(23):4169-4175.
[55]Ding S M,Jia F,Xu D,et al.High-resolution,two-dimensional measurement of dissolved reactive phosphorus in sediments using the diffusive gradients in thin films technique in combination with a routine procedure[J].Environmental Science&Technology,2011,45(22):9680-9686.
[56]Ding S M,Wang Y,Xu D,et al.Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films[J].Environmental Science&Technology,2013,47(14):7821-7829.
[57]Cesbron F,Metzger E,Launeau P,et al.Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thinfilm and hyperspectral methods[J].Environmental Science&Technology,2014,48(5):2816-2826.
[58]Manley M.Near-infrared spectroscopy and hyperspectral imaging:Non-destructive analysis of biological materials[J].Chemical Society Reviews,2014,43(24):8200-8214.
[59]Arrowsmith P,Hughes S K.Entrainment and transport of laser ablatedplumes for subsequent elemental analysis[J].Applied Spectroscopy,1988,42(7):1231-1239.
[60]Gray A L.Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J].Analyst,1985,110(5):551-556.
[61]Becker J S,Matusch A,Wu B.Bioimaging mass spectrometry of trace elements-recent advance and applications of LA-ICP-MS:A review[J].Analytica Chimica Acta,2014,835:1-18.
[62]Koch J,Gunther D.Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry[J].Applied Spectroscopy,2011,65(5):155A-162A.
[63]Kindness A,Sekaran C N,Feldmann J.Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry[J].Clin Chem,2003,49(11):1916-1923.
[64]Motelica-Heino M,Naylor C,Zhang H,et al.Simultaneous release of metals and sulfide in lacustrine sediment[J].Environmental Science&Technology,2003,37(19):4374-4381.
[65]Pisonero J,Fliegel D,Gu D,et al.High efficiency aerosol dispersion cell for laser ablation-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2006,21(9):922-931.
[66]Kivel N,Potthast H-D,Günther-Leopold I,et al.Modeling of the plasma extraction efficiency of an inductively coupled plasma-mass spectrometer interface using the direct simulation Monte Carlo method[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2014,93:34-40.
[67]Pages A,Welsh D T,Teasdale P R,et al.Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay,WA[J].Marine Chemistry,2014,167:102-112.
[68]Fones G R,Davison W,Hamilton-Taylor J.The fine-scale remobilization of metals in the surface sediment of the North-east Atlantic[J].Continental Shelf Research,2004,24(13/14):1485-1504.
[69]Tankere-Muller S,Zhang H,Davison W,et al.Fine scale remobilisation of Fe,Mn,Co,Ni,Cu and Cd in contaminated marine sediment[J].Marine Chemistry,2007,106(1):192-207.
[70]Sochaczewski L,Stockdale A,Davison W,et al.A three-dimensional reactive transport model for sediments,incorporating microniches[J].Environmental Chemistry,2008,5(3):218-225.
[71]Widerlund A,Nowell G M,Davison W,et al.High-resolution measurements of sulphur isotope variations in sediment pore-waters by laser ablation multicollector inductively coupled plasma mass spectrometry[J].Chemical Geology,2012,291:278-285.
Theory and application of diffusive gradients in thin-films in the environment:High-resolution analysis and its applications in soils and sediments
FANG Xu1,LUO Jun1*,GAO Yue2,WILLIAMS Paul3,ZHANG Hao4,DAVISON William4
(1.State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;2.Department of Analytical,Environmental and Geochemistry(AMGC),VUB,Pleinlaan 2,1050 Brussels,Belgium;3.Institute for Global Food Security,Queen′s University Belfast,Belfast BT9 7BL,United Kingdom;4.Lancaster Environment Centre,Lancaster University,Lancaster LA1 4YQ,United Kingdom)
In this paper,we systematically introduce the methodology of in situ high-resolution application of diffusive gradients in thinfilms(DGT)in soil and sediment media in terms of design of binding gels,design of sampling devices,and methods of analysis.Important research results obtained from the in situ high-resolution application in the rhizosphere and sediment since the advent of DGT were also reviewed.The discovery of the highly localized distribution and correlated release of sulfide and metals in sediment and the localized flux maxima of metals around plant roots in soil were both enabled by the in situ high-resolution DGT application.With the combined application of complementary planar optode techniques,2-D distribution of key environmental parameters such as O2and pH could also be imaged with ideal spatiotemporal relevance with DGT-measured species.In the end,the outlook on future DGT in situ high-resolution research was made to the development of a novel highly homogeneous binding gel for a wider spectrum of environmentally important analytes and further application in soils and sediments targeting decisive biogeochemical processes.With the recent establishment of the Action Plan for SoilPollution Prevention and Control and the background that China is paying more attention to enhancing its environment,the in situ high-resolution study on the micro-interfacial mechanisms of pollutants in soil and sediment by DGT is capable of revealing key controlling processes in heavy metal contamination and providing important theoretical supports for management strategies accordingly,thus promoting the prevention and remediation of soil and sediment pollution as well as the control of crop safety in China.
diffusive gradients in thin-films(DGT);soil;sediment;high resolution;in situ;metals
X53
A
1672-2043(2017)09-1693-10
10.11654/jaes.2017-0454
房 煦,羅 軍,高 悅,等.梯度擴散薄膜技術(shù)(DGT)的理論及其在環(huán)境中的應(yīng)用Ⅱ:土壤與沉積物原位高分辨分析中的方法與應(yīng)用[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(9):1693-1702.
FANG Xu,LUO Jun,GAO Yue,et al.Theory and application of diffusive gradients in thin-films in the environment:High-resolution analysis and its applications in soils and sediments[J].Journal of Agro-Environment Science,2017,36(9):1693-1702.
2017-03-28
房 煦(1992—),男,安徽界首人,碩士研究生,從事基于DGT的新型環(huán)境分析技術(shù)研究。E-mail:fangaxu@126.com
*通信作者:羅 軍E-mail:esluojun@nju.edu.cn
國家自然科學(xué)基金項目(21477053)
Project supported:The National Natural Science Foundation of China(21477053)