• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    2017-06-22 14:44:19WANGJianchunWUChengshengWANGXing
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:王星建春雷諾數(shù)

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Direct numerical simulation(DNS)for low/medium Reynolds lid-driven cavity flow with different schemes are presented.The semi-implicit method for pressure-linked equations(SIMPLE), pressure-implicit splitting of operations(PISO)and pseudo-compressibility schemes are used.The N-S equations are all discretised by the Finite Volume Method for the three schemes,with the same staggered grid arrangement,the fully implicit time-stepping scheme and the QUICK scheme for the discretization of the temporal items and convective transport terms,the results are compared with the benchmark solution reported by Ghia[1].Under the same convergence criteria condition,difference in the stability,accuracy and convergence rate are analyzed.The PISO scheme is the most accurate scheme for low Reynolds number of Re=400 and 1 000 flow.The pseudo-compressibility scheme is found to be the most accurate for Re=5 000 flow.Besides,pseudo-compressibility scheme cost the minimum time to achieve convergence for all the cases,which shows it is one of the best choice for DNS of the low/medium flows.

    SIMPLE;PISO;pseudo-compressibility;DNS;accuracy;convergence rate; stability

    0 Introduction

    In recent years,along with the continuous improvement of computer performance,deepening of the high performance parallel computing study and the fervent need for the industry to the research of the turbulent meticulous flow field,direct numerical simulation(DNS)of the turbulence are constantly studied.Incompressible fluids are the main objects of the DNS research,their governing equations are the incompressible N-S equations.However,a lot of prerequisites need to be met before carrying out the DNS research,for example,a good solver of the governing equations,massively parallel cluster,high precision scheme for the temporal and space discretization,high resolution to catch the minimum scale vortices,and so on.Nowadays,the DNS research is main focused on the low/medium flows since there are so many restrict prerequisites.Among these prerequisites,a good solvers is the fundamental conditions that you can choose to accelerate the DNS program.The main solvers for the incompressible fluid are solving the primitive variable N-S equations,vorticity-stream function method andother methods.SIMPLE and PISO method belong to the first one,the pseudo-compressibility method belongs to other methods.

    The SIMPLE algorithm was relatively straightforward and soon became the main solver of the incompressible flow since it was first put forward in 1972 and it had been successfully implemented in numerous CFD procedures recent years.The PISO scheme was first put forward by Issa in 1986 and was early designed to solve the unsteady N-S equations.The PISO was considered as an extension for the SIMPLE scheme.At the same time,the pseudo-compressibility scheme attracted lots of researchers’attention because the continuous equation and the momentum equations were solved synchronously and the scheme itself had high efficiency.In recent years,these schemes were applied to perform the DNS research by some researchers. Wang et al[2]applied GPU accelerated DNS with the SIMPLE[3-4]scheme to the Re=1 000 and Re=10 000 lid-driven cavity flow and the results agreed with the literature well.Dousset and Pothérat[5]carried out the DNS of low Reynolds Re=100 and Re=200 flows past a truncated square cylinder through the PISO[6]scheme for both steady and unsteady flows and analyzed the formation mechanism of hairpin vortices in the wake of the truncated square cylinder in a duct.Skovorodko[7]used the pseudo-compressibility[8]scheme to complete the DNS of compressible fully developed turbulent Couette flow between two parallel plates and analyzed the slip effects in compressible turbulent channel flow.However,rare articles are found about using the pseudo-compressibility scheme to the DNS of incompressible flows.

    Since the better solver of the N-S equations chosen,the easier the DNS be performed, being aware of the difference among the different kinds of solvers to the governing equations is very important for the DNS research,since you can choose the best solver to your problems. Convergence,accuracy and stability are the three important features used to judge whether a scheme is good or bad for the studied problems.Difference of these important features for the three different schemes is presented in this paper.Same conditions as shown latter are implemented for these different schemes to avoid the influence of other factors in addition to these schemes theirselves.

    1 Numerical methods

    The integral form of the dimensionless incompressible N-S equations is:

    Finite-volume discretion momentum equation in the staggered grid is:

    Mass conservation equation is:

    where the subscripts e,n,w and s represent the control-volume faces and E,N,W and S represent the grid points,nb represents the neighbor grid point as shown in the staggered grid[4,9]system(Fig.1)below.

    Fig.1 Staggered grid system

    1.1 SIMPLE scheme

    There is evidently no equation for the pressure in the incompressible N-S equations,coupling between pressure and velocity is hidden in the continuity equation,bring the problem that how to solve the pressure alone?The Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)was originally put forward by Patankar and Spalding in 1972,resolved the pressurevelocity coupled problem well.Staggered grid arrangement is used in this paper and the main calculation procedures of the SIMPLE algorithm are as follows:

    (2)Solve the discretised momentum Eqs.(4)and(5)to get the u*,v*,using the estimated pressure or the pressure calculated on the last level remarked as P*.

    (3)Calculate the pressure correction P′,ensure the(u*+u′),(v*+v′)corresponding to(P*+P′)satisfy the continuity equation.The pressure correction is then obtained by substituting the corrected velocity into discretised continuity Eq.(6),using the relationship between u′, v′and P′.

    (4)Calculate the velocity corrections u′,v′,ensure the(ue*+ue′ )and(vn*+vn′)still satisfy the linearized momentum equation.

    (5)Set the(u*+u′),(v*+v′)and(P*+aPP′)as the answer of this level and start the calculation for the next level,aPis the under-relax factor,repeat step one to five until the flow field converges,namely the velocities can satisfy both the momentum equations and the continuity equation.The so-called‘level’is the solving process of the algebraic equation set consisted of the fixed coefficient and source.SIMPLE method is essentially a guess-and-correct scheme,the guess steps are 1~3 and correct steps are 4~5.Details refer to the Ref.[6]or[7].

    1.2 PISO scheme

    The PISO method consists of one guess step and two correct steps,the guess step and the first correct step are almost the same of SIMPLE scheme,the main procedure is:

    (1)Guess step-same as the SIMPLE scheme

    Solving discretised momentum equation implicitly based on the estimated or the last level pressure value,remarked as P()k:

    u*,v*and P()kin this step satisfy the momentum equation but may not satisfy the continuity equation.

    (2)First correct step-same as the SIMPLE scheme

    (3)The second correct step-special feature for the PISO scheme

    Search for the second corrected pressure P**and velocities u***,v***based on the calculated pressure P*and velocities u**,v**in the first correct step,make them satisfy the continuity equation and momentum equations better.

    Then,P**,u***,v***are calculated,the second correct step is complemented.Set the P**, u***,v***as the initial value for the next level and continue the procedure above until it satifies the the convergence condition.Details refer to the Ref.[5].

    1.3 Pseudo-compressibility scheme

    Pseudo-compressibility scheme was first put forward by Chorin and Vladimirova separately.The wind tunnel test was started,the wind speed was gradual changed from zero to the stability value,this accelerate process was unsteady.This change from the unsteady to the steady process was essentially the change of the type of governing equations.The idea for the pseudo-compressibility scheme is:If the steady incompressible N-S equations are added an time derivative term?/?t,then they are translated to a virtual unsteady compressible N-S equations.The continuity equation is added pressure derivative term?P/?t,momentum equations are added velocities derivative terms?v→/?t and the N-S equations for the pseudo-compressibility scheme are:

    The procedure for the pseudo-compressibility is very simple:

    (1)Calculate the velocities u,v from the momentum equations(10)based on the estimated pressure or the last level pressure.

    (2)Using the velocities u,v calculated above and the equation(9)to calculate the pressure P.

    (3)Repeat the steps(1-2)until the u,v and P satisfy the convergence condition.

    2 Numerical results

    The convergence criterion[10-11]is:

    where rpis the residual reduction factor,its value range from 0.05 to 0.25.0.1 is used in this paper.

    Accuracy,stability and rapid convergence of the three scheme are compared for three different Reynolds and the corresponding grid number.The results are presented in the Tabs.1-2 and Figs.2-4.As showed in Tab.1,under the same discretised scheme and convergence criterion,different time and iterate number are needed to achieve convergence for different scheme. The pseudo-compressibility cost the minimum time to converge,followed by SIMPLE scheme and then PISO scheme.For the case of Re=400,Re=1 000 and Re=5 000,the corresponding time consumed for SIMPLE scheme is 20.4,18.4 and 44.7 times as the pseudo-compressibility scheme,the time consumed for PISO scheme is 26.2,23.1 and 48.2 times as the pseudocompressibility scheme.Much time are saved for the pseudo-compressibility scheme since it is a non-iterative scheme,while 80%of the time costed in calculation is to solve the pressurecorrect equation.One more pressure correct equation is needed for PISO compare with SIMPLE,which shows the PISO scheme cost maximum time to simulate the steady lid-driven flow.

    Tab.1 Fast convergence for different method under different conditions

    Fig.2 Iterative process or the residual monitor for different scheme at Re=1 000,40*40 grids: UP(SIMPLE);RIGHT(PISO);LEFT(pseudo-compressibility)

    For the stability during iteration,SIMPLE and PISO are better than pseudo-compressibility as the corresponding residual monitor curve shown in Fig.2 for the case Re=1 000.

    It can be seen from Fig.3.that PISO is the most accurate scheme for simulating the velocities in the central line in the case Re=400 and Re=1 000,followed by pseudo-compressibility and then SIMPLE scheme.While for Re=5 000,the pseudo-compressibility scheme is themost accurate scheme,also the streamline for different methods in the case Re=5 000 in Fig.4 shows that the pseudo-compressibility scheme can simulate the secondary vortices that occur in the bottom right corner better and the curve of streamline matches the benchmark results by Ghia better than the SIMPLE and PISO.for simulating the lid-driven flow,followed by pseudo-compressibility and then SIMPLE.In the case of mid Re such as Re=5 000,pseudo-compressibility is thought to be the most accurate scheme for simulating the lid-driven flow.PISO is more accurate than SIMPLE scheme for simulating the lid-driven flow for all the Re number,since PISO has one more pressure correct step than SIMPLE.

    Fig.3 Non-dimensional horizontal(U)and vertical(V)velocity component profiles along the vertical(y)and horizontal(x)centerlines of a wall-driven square enclosure flow

    Fig.4 Streamline for different methods at Re=5 000Thus,in the case of low Re such as Re=400 and 1 000,PISO is the most accurate scheme

    Tab.2 The location of primary and the secondary vortices

    Tab.2 shows that the location of primary and the secondary vortices,when Re=400,the position deviation for the location of primary vortices compared with Ghia’s results for SIMPLE is(+0.003 5,+0.001 9),PISO is(+0.001 5,+0.002 1)and pseudo-compressibility is(+0.003 1, +0.002 5),which shows that the PISO is the most accurate scheme,followed by pseudo-compressibility and then SIMPLE in this case.Similar,when Re=5 000,the position deviation for SIMPLE is(+0.004 4,-0.012 9),for PISO is(+0.008 8,-0.001 7),for pseudo-compressibility is(+0.003 5,-0.000 2),which shows that the pseudo-compressibility is the most accuratescheme in this case.Similarly comparison can be performed to approve the conclusion reached last paragraph.

    3 Conclusions

    Three different numerical schemes applied to numerically simulate the low-medium Reynolds lid-driven cavity flow are presented in this paper,results are compared with benchmark solution reported by Ghia in 1982,difference among these schemes are analyzed and the results are as follows:

    (1)The convergence rate is the best for pseudo-compressibility in different cases,also the accuracy of this scheme is the best in the case of medium and high Reynolds.The iterate residual curve of SIMPLE and PISO schemes is smoother than pseudo-compressibility scheme.

    (2)In the cases of low Reynolds flow,PISO is found to be the most accurate scheme.However,the convergence rate of PISO is the worst among these schemes.It is always more accurate than SIMPLE in all cases.

    In this paper,for medium or high Reynolds like Re=5 000,the pseudo-compressibility is more accurate than the other schemes and for all Reynolds studied in the paper,the convergence rate of pseudo-compressibility is the best.The pseudo-compressibility scheme is considered to be the best choice for direct numerical simulation of low/medium Reynolds steady laminar or turbulence in the future.

    However,there are still some shortcomings for pseudo-compressibility scheme need to be overcome,for example,when come to the unsteady flow,the scheme needs to be re-designed. Besides,the key parameter c for different situations is always different and not easy to design.

    [1]Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411.

    [2]Wang J,Xu M,Ge W,et al.GPU accelerated direct numerical simulation with SIMPLE arithmetic for single-phase flow [J].Chin Sci Bull,2010,55:1979-1986.

    [3]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.

    [4]Patankar S.Numerical heat transfer and fluid flow[M].CRC Press,1980.

    [5]Dousset V,Pothérat A.Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct[J]. Journal of Fluid Mechanics,2010,653:519-536.

    [6]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986,62(1):40-65.

    [7]Skovorodko P A.Slip effects in compressible turbulent channel flow[J].arXiv preprint arXiv:1210.2152,2012.

    [8]Chorin A J.A numerical method for solving incompressible viscous flow problems[J].Journal of Computational Physics, 1967,2(1):12-26.

    [9]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J].Physics of Fluids,1965,8(12):2182.

    [10]Patankar S V.A calculation procedure for two-dimensional elliptic situations[J].Numerical Heat Transfer,1981,4(4): 409-425.

    [11]Van Doormaal J P,Raithby G D.Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7(2):147-163.

    中低雷諾數(shù)流動(dòng)直接數(shù)值模擬的算法比較

    王建春,吳乘勝,王星
    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    文章采用不同的算法對(duì)中低雷諾數(shù)方腔驅(qū)動(dòng)流動(dòng)進(jìn)行了直接數(shù)值模擬,所用算法分別是人工壓縮方法、SIMPLE算法以及PISO算法。三種算法均采用有限體積法基于交錯(cuò)網(wǎng)格技術(shù)離散N-S方程,時(shí)間項(xiàng)采用全隱格式離散,對(duì)流項(xiàng)采用QUICK格式離散,并將它們得到結(jié)果與Ghia發(fā)表的基準(zhǔn)解進(jìn)行了比對(duì)。文中分析了在同樣的收斂條件下,不同算法之間的穩(wěn)定性,收斂速率以及準(zhǔn)確性的差異,發(fā)現(xiàn)PISO算法在較低雷諾數(shù)Re=400和Re=1 000情況下最準(zhǔn)確,而人工壓縮算法在雷諾數(shù)為5 000時(shí)最準(zhǔn)確,在所有計(jì)算的不同Re數(shù)條件下,發(fā)現(xiàn)人工壓縮法達(dá)到收斂所需時(shí)間都是最少的,這可以使它成為中低雷諾數(shù)下研究直接數(shù)值模擬最好的算法之一。

    SIMPLE;PISO;人工壓縮方法;DNS;準(zhǔn)確性;收斂速度;穩(wěn)定性

    O35

    :A

    王建春(1989-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.001

    1007-7294(2017)06-0651-10

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    date:2017-01-12

    Biography:WANG Jian-chun(1989-),male,master student,E-mail:664148138@qq.com; WU Cheng-sheng(1976-),male,researcher.

    王星(1988-),男,中國(guó)船舶科學(xué)研究中心工程師。

    猜你喜歡
    王星建春雷諾數(shù)
    LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS*
    陸建春油畫(huà)作品欣賞
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
    過(guò)建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    高壓旋噴樁在市政道路軟基處理中的質(zhì)量控制與常見(jiàn)病害防治
    基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
    Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory*
    失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
    基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設(shè)計(jì)研究
    操出白浆在线播放| 大陆偷拍与自拍| 他把我摸到了高潮在线观看| 国产一卡二卡三卡精品| 岛国视频午夜一区免费看| 国产又爽黄色视频| 精品人妻在线不人妻| 亚洲欧美日韩无卡精品| 亚洲av成人不卡在线观看播放网| 婷婷精品国产亚洲av在线| 成人国产一区最新在线观看| 日本欧美视频一区| 黄片小视频在线播放| 成人免费观看视频高清| 在线观看日韩欧美| 人妻丰满熟妇av一区二区三区| 黄色成人免费大全| 精品国产一区二区三区四区第35| 69av精品久久久久久| 午夜老司机福利片| 精品高清国产在线一区| 亚洲国产欧美日韩在线播放| 午夜福利,免费看| 最近最新免费中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 手机成人av网站| 欧美av亚洲av综合av国产av| 欧美激情高清一区二区三区| 老司机午夜福利在线观看视频| 9191精品国产免费久久| 无遮挡黄片免费观看| 亚洲精品美女久久av网站| 电影成人av| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| www.自偷自拍.com| 午夜福利在线免费观看网站| aaaaa片日本免费| 丁香六月欧美| 日韩免费av在线播放| 亚洲第一青青草原| 亚洲人成电影观看| 最近最新中文字幕大全电影3 | 国产av精品麻豆| 欧美日韩一级在线毛片| 精品高清国产在线一区| 国产三级在线视频| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 美女福利国产在线| 国产深夜福利视频在线观看| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 天天影视国产精品| 一个人观看的视频www高清免费观看 | 欧美午夜高清在线| 午夜精品在线福利| 久久青草综合色| 久久久久久免费高清国产稀缺| 亚洲精品一二三| 一级片免费观看大全| 成熟少妇高潮喷水视频| 国产亚洲av高清不卡| 另类亚洲欧美激情| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 精品电影一区二区在线| 免费观看人在逋| 欧美黄色淫秽网站| 美女国产高潮福利片在线看| avwww免费| 免费观看人在逋| www国产在线视频色| 又黄又粗又硬又大视频| 一区福利在线观看| 亚洲一区二区三区欧美精品| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产一区二区入口| 欧美成人性av电影在线观看| 亚洲精品国产色婷婷电影| 亚洲欧美激情在线| 天堂√8在线中文| 久久性视频一级片| 啦啦啦在线免费观看视频4| 黄色成人免费大全| 精品久久久久久,| 天堂中文最新版在线下载| 欧美一级毛片孕妇| 久久香蕉精品热| 中文字幕人妻丝袜一区二区| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 80岁老熟妇乱子伦牲交| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | av有码第一页| 女人被狂操c到高潮| 国产精品久久久久成人av| 国产亚洲精品第一综合不卡| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲午夜精品一区,二区,三区| 男女下面进入的视频免费午夜 | 国产蜜桃级精品一区二区三区| 成人免费观看视频高清| 久久久国产成人精品二区 | 性色av乱码一区二区三区2| 成人三级做爰电影| 亚洲熟女毛片儿| 亚洲av成人av| 亚洲免费av在线视频| 热99国产精品久久久久久7| av在线播放免费不卡| av超薄肉色丝袜交足视频| 久久影院123| 久久久久久免费高清国产稀缺| 久久香蕉国产精品| 国产区一区二久久| 国产精品一区二区精品视频观看| 成年人免费黄色播放视频| 麻豆国产av国片精品| 91大片在线观看| 变态另类成人亚洲欧美熟女 | 如日韩欧美国产精品一区二区三区| 久久热在线av| 日本五十路高清| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 午夜视频精品福利| 亚洲欧美一区二区三区黑人| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 精品一区二区三区视频在线观看免费 | 大香蕉久久成人网| 99久久99久久久精品蜜桃| 最好的美女福利视频网| 久久精品成人免费网站| 久久人人爽av亚洲精品天堂| 无遮挡黄片免费观看| 亚洲五月天丁香| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 51午夜福利影视在线观看| 人妻久久中文字幕网| 亚洲欧美激情在线| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 少妇粗大呻吟视频| 亚洲aⅴ乱码一区二区在线播放 | 在线看a的网站| 正在播放国产对白刺激| 亚洲av成人不卡在线观看播放网| 一级,二级,三级黄色视频| 亚洲男人的天堂狠狠| 亚洲专区字幕在线| 国产精品一区二区三区四区久久 | 女生性感内裤真人,穿戴方法视频| 色婷婷av一区二区三区视频| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 日本a在线网址| av天堂久久9| 大型黄色视频在线免费观看| 18禁裸乳无遮挡免费网站照片 | 在线观看日韩欧美| 一二三四在线观看免费中文在| 日本黄色日本黄色录像| 亚洲男人的天堂狠狠| 老司机靠b影院| 99精国产麻豆久久婷婷| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av在线| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 国产色视频综合| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| av福利片在线| 麻豆成人av在线观看| 国产精品日韩av在线免费观看 | 黄色成人免费大全| 亚洲av日韩精品久久久久久密| 老司机福利观看| 身体一侧抽搐| a级毛片在线看网站| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 99久久国产精品久久久| 亚洲中文字幕日韩| 欧美在线一区亚洲| 国产成人精品久久二区二区免费| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区| 99香蕉大伊视频| 亚洲色图av天堂| 日韩三级视频一区二区三区| 搡老乐熟女国产| 免费看a级黄色片| 嫁个100分男人电影在线观看| 丝袜美足系列| 国产欧美日韩精品亚洲av| 91麻豆av在线| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 一边摸一边做爽爽视频免费| 51午夜福利影视在线观看| av国产精品久久久久影院| av欧美777| 无人区码免费观看不卡| 亚洲精品中文字幕在线视频| 久久久久国内视频| 国产成+人综合+亚洲专区| 国产精品二区激情视频| 亚洲欧美精品综合久久99| 欧美日韩亚洲高清精品| 日韩欧美三级三区| 亚洲国产中文字幕在线视频| 日韩成人在线观看一区二区三区| 制服诱惑二区| 一级黄色大片毛片| 天天添夜夜摸| 我的亚洲天堂| 国产一卡二卡三卡精品| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| tocl精华| 又紧又爽又黄一区二区| 黄频高清免费视频| 精品久久久精品久久久| 国产精品九九99| svipshipincom国产片| 精品人妻1区二区| 如日韩欧美国产精品一区二区三区| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 免费不卡黄色视频| 欧美亚洲日本最大视频资源| 久久亚洲真实| 一本大道久久a久久精品| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 欧美老熟妇乱子伦牲交| svipshipincom国产片| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 欧美最黄视频在线播放免费 | 亚洲成a人片在线一区二区| 色哟哟哟哟哟哟| 一级,二级,三级黄色视频| 高清欧美精品videossex| 久久香蕉国产精品| 亚洲色图综合在线观看| 中文字幕人妻丝袜一区二区| 9色porny在线观看| 午夜影院日韩av| 日韩有码中文字幕| 亚洲精品中文字幕在线视频| 久久性视频一级片| 一区二区三区激情视频| 免费看十八禁软件| 少妇 在线观看| 一夜夜www| 99久久99久久久精品蜜桃| 天堂√8在线中文| 制服人妻中文乱码| 男女下面进入的视频免费午夜 | 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品综合一区在线观看 | 韩国av一区二区三区四区| 亚洲熟妇熟女久久| av国产精品久久久久影院| 亚洲成人国产一区在线观看| 国产激情久久老熟女| 韩国精品一区二区三区| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 免费人成视频x8x8入口观看| 国产熟女xx| 国产午夜精品久久久久久| 久久人妻av系列| 欧美黑人精品巨大| 欧美中文综合在线视频| av欧美777| 欧美一级毛片孕妇| 国产一区在线观看成人免费| 欧美成人免费av一区二区三区| 老熟妇仑乱视频hdxx| 成年人黄色毛片网站| 亚洲欧美日韩另类电影网站| 俄罗斯特黄特色一大片| 一本综合久久免费| 少妇裸体淫交视频免费看高清 | 亚洲成av片中文字幕在线观看| 男女高潮啪啪啪动态图| av在线播放免费不卡| 老司机午夜福利在线观看视频| 国产男靠女视频免费网站| 三级毛片av免费| 纯流量卡能插随身wifi吗| 成年人黄色毛片网站| 久久香蕉精品热| 中国美女看黄片| 午夜激情av网站| 一夜夜www| 香蕉久久夜色| 99国产综合亚洲精品| 国产1区2区3区精品| 久久中文看片网| 中文字幕最新亚洲高清| 黄片小视频在线播放| 天堂影院成人在线观看| 亚洲成人国产一区在线观看| 最近最新中文字幕大全电影3 | 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 国产熟女xx| 黑丝袜美女国产一区| 国产99久久九九免费精品| 99热只有精品国产| 人人澡人人妻人| 欧美激情 高清一区二区三区| 成人18禁在线播放| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 丝袜在线中文字幕| 黄色片一级片一级黄色片| 欧美一区二区精品小视频在线| 久久久国产成人免费| 亚洲成人久久性| 欧美色视频一区免费| 亚洲精品在线美女| 中文字幕人妻熟女乱码| 老熟妇仑乱视频hdxx| 欧美日韩福利视频一区二区| 91字幕亚洲| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 在线观看一区二区三区| 在线播放国产精品三级| 亚洲男人天堂网一区| 人人澡人人妻人| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 国产精品爽爽va在线观看网站 | 日本vs欧美在线观看视频| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 性少妇av在线| 国产xxxxx性猛交| 成人亚洲精品av一区二区 | 美女扒开内裤让男人捅视频| av天堂在线播放| 91国产中文字幕| av电影中文网址| 中文字幕人妻丝袜一区二区| 午夜久久久在线观看| 999精品在线视频| 免费搜索国产男女视频| 麻豆一二三区av精品| 亚洲片人在线观看| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看的高清视频| 精品第一国产精品| 丁香欧美五月| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 国产黄a三级三级三级人| 多毛熟女@视频| 亚洲美女黄片视频| av福利片在线| 人人妻人人澡人人看| 不卡一级毛片| av超薄肉色丝袜交足视频| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 成人影院久久| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 超碰97精品在线观看| 视频在线观看一区二区三区| 757午夜福利合集在线观看| 日韩欧美三级三区| 欧美成人免费av一区二区三区| 嫩草影视91久久| 中文欧美无线码| 老司机亚洲免费影院| 国产成人精品在线电影| 国产成人av激情在线播放| 日韩欧美一区视频在线观看| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 一本大道久久a久久精品| 日韩av在线大香蕉| 国产亚洲av高清不卡| tocl精华| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 国产91精品成人一区二区三区| 黄色怎么调成土黄色| 久久久久久久午夜电影 | 日韩人妻精品一区2区三区| 亚洲中文字幕日韩| 国产成人一区二区三区免费视频网站| 搡老岳熟女国产| 伦理电影免费视频| 在线天堂中文资源库| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 又紧又爽又黄一区二区| 日韩有码中文字幕| 在线观看一区二区三区激情| 国产高清videossex| 99国产精品免费福利视频| 国产aⅴ精品一区二区三区波| 日韩欧美一区视频在线观看| 亚洲精品久久午夜乱码| 国产精品爽爽va在线观看网站 | 精品午夜福利视频在线观看一区| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 男女下面插进去视频免费观看| 精品少妇一区二区三区视频日本电影| 久99久视频精品免费| 伊人久久大香线蕉亚洲五| 久久精品国产99精品国产亚洲性色 | 纯流量卡能插随身wifi吗| 亚洲免费av在线视频| 日韩欧美一区视频在线观看| 99精品在免费线老司机午夜| 黄频高清免费视频| 一区二区三区激情视频| 免费在线观看亚洲国产| 日韩 欧美 亚洲 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久精品影院6| 咕卡用的链子| 亚洲一区二区三区欧美精品| 男人舔女人的私密视频| 校园春色视频在线观看| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 天堂中文最新版在线下载| 国产精品亚洲一级av第二区| 视频区图区小说| 国产真人三级小视频在线观看| 国产日韩一区二区三区精品不卡| 免费高清在线观看日韩| 亚洲欧美精品综合一区二区三区| 日韩有码中文字幕| av在线播放免费不卡| 亚洲在线自拍视频| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 很黄的视频免费| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 激情视频va一区二区三区| 性少妇av在线| 国产欧美日韩一区二区三| 国产精品野战在线观看 | 超碰97精品在线观看| 国产亚洲欧美98| 国产蜜桃级精品一区二区三区| 可以在线观看毛片的网站| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 美女 人体艺术 gogo| 亚洲片人在线观看| 国产成人免费无遮挡视频| 久久人妻福利社区极品人妻图片| a级毛片黄视频| 99在线视频只有这里精品首页| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 久久人妻熟女aⅴ| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码| 少妇被粗大的猛进出69影院| 色播在线永久视频| 1024视频免费在线观看| 亚洲精品在线观看二区| 天堂影院成人在线观看| 99精国产麻豆久久婷婷| 亚洲三区欧美一区| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 不卡av一区二区三区| 久久九九热精品免费| 久久欧美精品欧美久久欧美| 久久久久精品国产欧美久久久| 亚洲人成77777在线视频| 久热爱精品视频在线9| 久久这里只有精品19| 黄色女人牲交| 黑人操中国人逼视频| 这个男人来自地球电影免费观看| 午夜免费成人在线视频| 成人18禁高潮啪啪吃奶动态图| 99国产综合亚洲精品| 黄网站色视频无遮挡免费观看| 国产97色在线日韩免费| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区| 成人三级黄色视频| 一级毛片女人18水好多| 精品福利永久在线观看| 国产深夜福利视频在线观看| av天堂久久9| 精品国产乱码久久久久久男人| 在线观看www视频免费| 成年女人毛片免费观看观看9| 一二三四社区在线视频社区8| 免费日韩欧美在线观看| 亚洲人成电影免费在线| av欧美777| 热re99久久国产66热| 又大又爽又粗| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 超碰97精品在线观看| av网站在线播放免费| 女性生殖器流出的白浆| 国产精品1区2区在线观看.| 国产极品粉嫩免费观看在线| 在线永久观看黄色视频| 亚洲一区二区三区不卡视频| 国产av又大| 一区福利在线观看| 亚洲av片天天在线观看| 男人的好看免费观看在线视频 | 久久影院123| 日本免费a在线| 老司机靠b影院| √禁漫天堂资源中文www| 久久久国产精品麻豆| 国产亚洲精品久久久久久毛片| 国产单亲对白刺激| 人人妻人人爽人人添夜夜欢视频| 精品高清国产在线一区| 日日干狠狠操夜夜爽| 国产一区二区三区视频了| 91麻豆av在线| 国产免费现黄频在线看| 成人特级黄色片久久久久久久| 亚洲第一欧美日韩一区二区三区| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美软件| 18美女黄网站色大片免费观看| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 久久九九热精品免费| 精品人妻1区二区| 精品久久久久久久久久免费视频 | 欧美乱码精品一区二区三区| 国产av又大| 久久精品国产亚洲av香蕉五月| 国产伦一二天堂av在线观看| 别揉我奶头~嗯~啊~动态视频| 一区二区日韩欧美中文字幕| 咕卡用的链子| 久久香蕉激情| av视频免费观看在线观看| 欧美乱色亚洲激情| 国产欧美日韩综合在线一区二区| 1024香蕉在线观看| 女性被躁到高潮视频| 免费在线观看亚洲国产|