• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    2017-06-22 14:44:22YangHaixiangWenzhao
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:武漢理工大學(xué)徐海循跡

    Qü Yang,Xü Hai-xiang,Yü Wen-zhao

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    Qü Yanga,b,Xü Hai-xianga,b,Yü Wen-zhaoa,b

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    A simple geometric method for generating curvature-continuous paths in a plan is presented.Based on the curvature-continuous paths,a line-of-sight(LOS)guidance law is utilized to minimize the cross-track error.To attenuate the oscillation of the control signal and obtain smooth control outputs,a modified backstepping controller with actuator dynamics is proposed for path following of overactuated marine crafts.It is worth mentioning that an integral action is added to adapt the slow-varying environmental forces of wind,wave and current forces.Numerical simulations demonstrate the validity of the proposed controller.

    path following;path planning;line-of-sight guidance;backstepping control; actuator dynamics

    0 Introduction

    In many applications,a marine ship has to move along a given path with a desired speed[1]. Different from trajectory tracking which requires the vessel to track pre-specified time functions of all state,path following removes temporal constraints and reduces the tracking problem to only a subset of states[2].The paths usually consist of a set of waypoints using Cartesian coordinate(xk,yk).In addition,each waypoint is usually connected by a circle before and after the waypoint[3].The path following problems can be summarized as following the desired path and obtaining the desired surge speed of the ship[4].

    In path following,the shape and properties of the path have a direct influence on the guidance system.The reason is that the path is defined by a set of ordered waypoints on the map and the discontinuous-curvature paths affect the heading angle commands.Connecting the waypoints can be achieved in many ways,with each one having its own advantages and disad vantages.Two main categories are using spines and combining straight lines and arcs.Dubins[5]showed that for a particle that moves forward with unity speed,the shortest path that meets a curvature bound between a starting point and a finishing point consists of the parts which is astraight line or an arc of a circle of radius R>0.Breivik and Fossen[6]designed paths of straight lines and circles for a fully actuated vessel to comply with the guidance commands.Shanmugavel and Tsourdos et al[7]used Dubins paths with clothoid arcs in the path planning of multiple UAVs to produce feasible paths.Different from Dubins paths,Lekkas and Dahl et al[8]proposed a method for path planning using Fermat’s spiral which has a zero curvature at its origin.Similar to the work of Lekkas and Dahl et al[8],Candeloro and Lekkas et al[9]proposed a two-dimensional curvature-continuous path planning algorithm based on Voronoi diagrams and Fermat’s spirals.The main objectives of the above publications are to find a smooth continuous-curvature path.

    For the controller design for path following,Yuh,Nie and Lee[10]and Sun and Cheah[11]used the adaptive control to stabilize the control system of path following in the presence of unmodelled dynamics and various noise;In Skjetne[12],three different controllers for the elliptical path following were designed,that is the adaptive backstepping procedure,sliding mode control and the nonlinear PID control,and the effectivenesses were compared among them based on experimental tests on the model ship CyberShip II.Based on the LOS guidance, Breivik[13]focused on the two-step backstepping control design for path following of marine crafts.However,these publications did not take into account the influence of actuator dynamics.Actuator dynamics are usually neglected by choosing the bandwidth of the control law sufficient low.As the actuators like propellers,thrusters and rudders have the bandwidth which is close to the bandwidth of most ship,the control signal will have oscillation and the actuator dynamics can not be neglected.Fossen and Berge[14]proposed a nonlinear vectorial backstepping controller for the marine crafts with the actuator dynamics added into the ship maneuvering model.For further research,Morishita and Souza[15]developed a backstepping controller with a passive observer and the actuator dynamics.But the obstacle of the methods proposed by Fossen and Berge[14]and Morishita and Souza[15]are that the controllers were designed for station keeping mode and cannot be applied to path following.

    The main contribution of this paper is twofold.First,a simple geometric method is used to generate the paths consisting of straight lines and arcs.This method allows the straight line to connect with the arc smoothly without curvature discontinuity.Second,the actuator dynamics have been included in the backstepping controller design for path following and the backstepping procedure was extended into three steps.

    The text is organized as follows:Chapter 1 mainly shows the procedure of the proposed path planing.Chapter 2 briefly presents the review of LOS guidance law.Chapter 3 gives a general ship maneuvering model with actuator dynamics in the inertial reference frame and body-fixed reference frame.Chapter 4 shows the proposed backstepping controller design in three steps using the Lyapunov stability analysis.Chapter 5 presents the simulation results.The paper ends with the conclusion.

    1 Continuous curvature path planning

    Path planning is a procedure to determine which route to be taken when moving from one location to another,given a certain number of waypoints to reach along the path.In path following,the line-of-sight angle is presented in the Path Parallel(PP)frame which rotates an angle relative to the inertial frame.The heading angle is determined by the line-of-sight angle and that rotated angle.Thus,discontinuous-curvature of the path will result in sharp variations of the desired heading angle.Here,we will use a simple geometric method to generate the path consisting of straight lines and arcs.

    1.1 The center of circle planning

    Let Pk(k=1,2,3…)denote the available waypoints.Assuming that all the radiuses are given and all the centers locate at the angle bisector of the nearby straight lines,the centers’locations can be easily achieved by the angle bisector theorem. Next,we will use nearby three waypoints to illustrate this problem shown in Fig.1.

    Fig.1 The center of circle planning

    where Rkis the radius of these circles.According to the angle bisector theorem:

    1.2 Path planning with clockwise or anti-clockwise motion

    In this part,the paths with clockwise or anti-clockwise motion will be defined by a mathematic method.For convenience,we will use 4 waypoints to illustrate this problem.The problem of the path planning for this case can be converted into the solving of the tangency points Ti,the central angles θiof arcs and the rotation directions as shown in Fig.2.

    Fig.2 Path planning with clockwise or anti-clockwise motion

    Firstly,we have to know whether the motion between the nearby two straight lines is clockwise or anti-clockwise.Here,we will utilize the concept of the cross product of vectors.

    where γiis the rotation angle and sgn is the sign function.CWi=1 represents the motion is clockwise and CWi=-1 represents the motion is anti-clockwise.The corresponding angular relations are formed as:

    Then,it is easy to solve the tangency point location problem for the beginning and finishing waypoints.

    2 LOS guidance law design

    2.1 LOS guidance law for general paths

    Fossen and Pettersen[16]showed that LOS guidance law for a ship is uniform semiglobal exponential stability(USGES)which is slightly weaker than global exponential stability(GES).Consider that a point particle moves in the two-dimensional plane.Let θ≥0 denotes the path variable.The paths can be parameterized as(xp(θ),yp(θ))by a set of given waypoints(xk,yk)for k=1,2,…as illustrated in Fig.3.In this section,a path parallel(PP)frame hasbeen used,which is rotated around an angle:

    Fig.3 LOS guidance law for a general path

    with respect to the North-East reference frame.For the particle located at the positionx,()y, the cross-track error can be computed as the orthogonal distance in the PP frame defined by the point(xp(θ),yp(θ)).Thus,we can put:

    Expanding Eq.(16)gives the normal form:

    According to Breivik and Fossen[6],the global minimized θ*subjected to Eq.(16)can be defined by:

    In Fossen[17],the kinematic equations can be expressed as the following form:

    Using Eqs.(15),(17),(20)and(21),the differentiation of Eq.(18)gives:

    here the look-ahead distance△can be time-varying using the following equation[18]:

    where ρ is the convergence rate of△.Inserting Eq.(24)into Eq.(23)gives:

    2.2 LOS guidance law for a straight line and a circle

    For a straight line,the PP frame is rotated around an angle α relative to the inertial North-East reference frame shown in Fig.4.Hence,the LOS guidance law in Eq.(24)can be computed as:

    For the circle having non-zero curvature,the LOS guidance law χcis time-varying.By analyzing Fig.5,this angle can be calculated as:

    Fig.4 LOS guidance law for a straight line

    Fig.5 LOS guidance law for a circle

    3 Dynamic position mathematical model

    Motivated by the actuator dynamics adopted by Morishita and Souza[15]and Fossen and Berge[14],the mathematical model for path following can be modified as:

    where η=[x,y,ψ]Tis the generalized position in the inertial reference frame;The body-fixed velocitiy is defined by the vector v=[u,υ,r]T;R(ψ)is the rotation matrix;M∈R3×3is the inertia matrix,D∈R3×3is the damping matrix,Bu∈R3×nis the configuration matrix with n actuators.up∈Rn×1is the return of the propeller thrusts;b∈R3×1is the slow varying environmental forces including wind,waves,currents as well as those induced by actuators;Tn∈Rn×nis a dialogue matrix of positive time constants;uc∈Rn×1is the vector of control outputs determined by the controller;Considering the saturation of the actuators,the control forces in surge,sway and yaw can be limited and represented as:

    where umax∈R3×1and umin∈R3×1are the vectors with maximum and minimum saturation values.Specially,the matrices used in the nonlinear maneuvering model can be given as:

    4 Control system design

    Breivik[19]proposed a two-step backstepping controller for path following without actuator dynamics.In this Chapter,the modified control system design with actuator dynamics will be separated into three parts using a backstepping control.The process of the control system design will be stated as follows.

    Defining the projection vector h:

    The first error variable z1is defined as:

    where ψdis the LOS guidance law angle χ given in Chapter 3.For a straight line,ψd=χsand ψd=χcfor a circle.Similarly,the second error variable z2can be defined as:

    Step 1:Defining the first Lyapunov Function(LF)as:

    The differentiation of Eq.(36)gives:

    Inserting Eq.(35)into Eq.(37)gives:

    Thus,the stabilizing function α13can be chosen as:

    where c1>0 and Eq.(38)will become:

    Step 2:Defining the second Lyapunov Function(LF)as:

    The differentiation of Eq.(41)gives:

    Based on Eqs.(30)and(35),we will have the following result:

    Thus Buupcan be chosen as the second stabilizing function α2.Hence,Eq.(42)can be rewritten as:

    The second stabilizing function can be designed as:

    where K2is a positive diagonal matrix and the adaptive integral action can be chosen as:

    Step 3:Defining the second error variable z3:

    The third Lyapunov Function(LF)can be expressed as:

    The differentiation of Eq.(48)with the insertion of Eqs.(31),(44)and(45)gives:

    Hence,the control law can be given by:

    where K3is a positive diagonal matrix.In path following,we want that the ship moves forward with the given surge speed udand also desire that the sway velocity of the vessel is kept at zero.For the heading angle control,the stabilizing function α13will be used.Thus,the stabilizing functions α1can be written as:

    5 Simulation results

    To evaluate the performance and robustness of this method,the computer simulation with the waypoints given in Tab.1 has been used.This work is based on an over-actuated offshore supply vessel model.The configurations of the actuators are shown in Tab.2.The vessel hydrodynamic coefficients of the matrices M and D used in Chapter 4 are calculated by Computational Fluid Dynamics(CFD)and given in Tab.3.To take into account the differences between the realistic model and the model used in Chapter 3,the vessel realistic model will be adopted in this simulation where the wind,current and wave forces are calculated separately(Appendix A).Therefore,the calculated matrices M and D will be used for controller design and the vessel realistic model in Appendix A will be adopted to represent the real ship motion. The matrices used in this paper are illustrated in Appendix B.The other parameters related to the controller,desired speed and initial states are displayed in Tab.4.

    Tab.2 The configurations of the actuators

    Tab.3 The used parameters for the model ship

    Tab.4 The other parameters used in the simulation

    To illustrate the validity of the proposed method,the simulation will be adopted in the computer.The results of path following and heading angle tracking are depicted in Fig.6 and Fig.7.Fig.6 shows the path planning with the given waypoints and the ship can follow the smoothpaths consisting of straight lines and circle arcs.Fig.7 presents the desired heading angle generated by the LOS guidance law and the actual ship heading angle.The sharp change heading angle demonstrates that the ship locates in the circle arcs and the almost constant heading angle represents the ship locates in the straight lines.

    Fig.6 Path following for the model ship

    Fig.7 Actual yaw angle tracks the desired LOS angle

    In order to demonstrate the advantages of including the actuators in the modified controller,the performances with actuator dynamics and without the inclusion of the actuator dynamics are compared shown in Fig.8(a)and Fig.8(b).Taking into account the actuator dynamics,the control outputs are smoother than those without actuator dynamics.The time lag between the control outputs and the real propeller forces caused by the actuator dynamics tends to retard the ship motion,and the controller without actuator dynamics will compensate for it by magnifying the control outputs.Thus,the control outputs without actuator dynamics have the sharp changes to the saturation values,which is impossible for the actuators to attain.As the bandwidth of the actuator dynamics is close to the bandwidth of the ship motion,the modified backstepping controller with actuator dynamics is suitable to have smoother control outputs.

    Fig.8 Control outputs with actuator dynamics(dashed)and without actuator dynamics(solid)

    Fig.9 shows the ship tracks the given surge speed udperfectly.Fig.10 indicates the results of the integral action.It is worth noting that the bigger elements in the gain matrix Γ will make the bigger oscillation of the adaption forces.

    Fig.9 Ship velocity

    Fig.10 Behavior of the integral action

    6 Conclusion

    This paper demonstrates the planning of a continuous-curvature path with straight lines and circles by using a simple geometric method.In order to attenuate the oscillation of the control signal caused by the time lag,a modified backstepping controller with actuator dynamics is proposed to obtain a smooth control outputs.Integral action is adopted to adapt the slow varying environmental forces consisting of wind,wave and current forces.The stability of the closed-loop system with actuator dynamics is assured through Lyapunov stability analysis. Simulation results exactly confirm the good performance of the LOS guidance law and the control system.

    [1]Fossen T I.Guidance and control of ocean vehicles[M].John Wiley&Sons,1994.

    [2]Peymani E,Fossen T I.A Lagrangian framework to incorporate positional and velocity constraints to achieve path-following control[C].In Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC),2011:3940-3945.

    [3]Fossen T I,Breivik M,Skjetne R.Line-of-sight path following of underactuated marine craft[C]//In Proceedings of the 6th IFAC MCMC.Spain,2003:244-249.

    [4]Skjetne R,Fossen T I,Kokotovic P.Output maneuvering for a class of nonlinear systems[C]//In Proceedings of 15th IFAC World Congress on Automatic Control.Spain,2002.

    [5]Dubins L E.On curves of minimal length with a constraint on average curvature,and with prescribed initial and terminal positions and tangents[J].American Journal of Mathematics,1957:497-516.

    [6]Breivik M,Fossen T I.Path following of straight lines and circles for marine surface vessels[C]//In Proceedings of the 6th IFAC CAMS.Italy,2004:65-70.

    [7]Shanmugavel M,Tsourdos A,White B,Zbikowski R.Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J].Control Engineering Practice,2010,18(9):1084-1092.

    [8]Lekkas A M,Dahl A R,Breivik M,Fossen T I.Continuous-curvature path planning using Fermat’s spiral[J].Modeling, Identification and Control,2013,34(4):183-198.

    [9]Candeloro M,Lekkas A M,Soerensen A,Fossen T I.Continuous curvature path planning using Voronoi diagrams and Fermat’s spirals[J].Control Applications in Marine Systems,2013,9(1):132-137.

    [10]Yuh J,Nie J,Lee C G.Experimental study on adaptive control of underwater robots[C].In Proceedings of IEEE International Conference on Robotics and Automation,1999,1:393-398.

    [11]Sun Y C,Cheah C C.Adaptive setpoint control for autonomous underwater vehicles[C].In Proceedings of 42nd IEEE Conference on Decision and Control,2003,2:1262-1267.

    [12]Skjetne R.The maneuvering problem[D].Ph.D.thesis,Norwegian University of Science and Technology,2005.

    [13]Breivik M.Topics in guided motion control of marine vehicles[D].Ph.D.thesis,Norwegian University of Science and Technology,2010.

    [14]Fossen T I,Berge S P.Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C].In Proceedings of the 36th IEEE Conference on Decision and Control,1997,5:4237-4242.

    [15]Morishita H M,Souza C E S.Modified observer backstepping controller for a dynamic positioning system[J].Control Engineering Practice,2014,33:105-114.

    [16]Fossen T I,Pettersen K Y.On uniform semiglobal exponential stability(USGES)of proportional line-of-sight guidance laws[J].Automatica,2014,50(11):2912-2917.

    [17]Fossen T I.Handbook of marine craft hydrodynamics and motion control[M].John Wiley&Sons,2011.

    [18]Lekkas A M,Fossen T I.A time-varying lookahead distance guidance law for path following[C]//In Proceedings of 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Italy,2012.

    [19]Breivik M,Fossen T I.Path following for marine surface vessels[C]//In Proceedings of the OTO’04.Japan,2004:2282-2289.

    [20]Skjetne R.Smogeli O N,Fossen T I.A nonlinear ship manoeuvering model:identification and adaptive control with experiments for a model ship[J].Modeling,Identification and Control,2004,25(1):3-27.

    Appendix A:The realistic ship model

    The mathematical model proposed by Fossen[17]for the ship can be given as:

    where MRBis the rigid-body inertial matrix and MAis the added inertial matrix.The term τwindand τwaveare the wind and wave forces.For the detailed calculations of wind and wave forces, see Fossen,reference(P188-199)[17].The term vr∈R3×1is the relative speed vector with respect to the effect of currents.The relation between vrand v can be expressed as[20]:

    where Vcand βcare the current speed and direction in the inertial reference frame.

    Appendix B:Some matrices used in the simulation

    The following matrices are used in this paper:

    基于動態(tài)執(zhí)行機構(gòu)的船舶循跡反步積分控制

    瞿洋a,b,徐海祥a,b,余文曌a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢430063)

    文章針對連續(xù)曲率路徑,用一種簡單的幾何方法生成連續(xù)曲率的路徑?;谠搸缀畏椒ㄉ傻倪B續(xù)路徑,文中利用line-of-sight(LOS)引導(dǎo)律解決了循跡控制中橫向偏差最小的問題。為了減弱控制輸出的振蕩和獲得平滑的控制輸出,一種基于動態(tài)執(zhí)行機構(gòu)的改進反步積分控制器在過驅(qū)動船舶循跡控制中得到了應(yīng)用。值得注意的是,文中用積分操作來抵抗風(fēng)浪流環(huán)境力。數(shù)值分析結(jié)果展示了該控制器的有效性。

    循跡控制;路徑規(guī)劃;LOS引導(dǎo)律;反步積分控制;動態(tài)執(zhí)行機構(gòu)

    U674.38

    :A

    國家自然科學(xué)基金項目資助(61301279,51479158)

    瞿洋(1992-),男,武漢理工大學(xué)交通學(xué)院碩士;

    U674.38

    :A

    10.3969/j.issn.1007-7294.2017.06.004

    1007-7294(2017)06-0685-13

    徐海祥(1975-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    date:2016-12-16

    Supported by the National Natural Science Foundation of China(61301279,51479158)

    Biography:Qü Yang(1991-),male,master candidate;Xü Hai-xiang(1975-),male,Ph.D,professor, corresponding author,E-mail:qukaiyang@163.com;Yü Wen-zhao(1989-),male,Ph.D.

    余文曌(1989-),男,武漢理工大學(xué)交通學(xué)院講師。

    猜你喜歡
    武漢理工大學(xué)徐海循跡
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    基于DFT算法的電力巡檢無人機循跡檢測系統(tǒng)設(shè)計
    徐海根(徐海)藝術(shù)作品欣賞
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    基于單片機的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    Lanterne-volant
    A Brief Study Of The Interactive-oriented Language Teaching
    免费黄频网站在线观看国产| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 国语对白做爰xxxⅹ性视频网站| 好男人在线观看高清免费视频| 最近最新中文字幕免费大全7| 黑人高潮一二区| 亚洲国产精品专区欧美| 国产精品一及| 97人妻精品一区二区三区麻豆| h日本视频在线播放| 亚洲精品一区蜜桃| 最后的刺客免费高清国语| 美女国产视频在线观看| 亚洲色图av天堂| 亚洲精品一区蜜桃| 最近最新中文字幕大全电影3| 日韩免费高清中文字幕av| 高清欧美精品videossex| 性色avwww在线观看| 99热全是精品| 亚洲国产精品成人久久小说| 一级黄片播放器| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久精品94久久精品| 久久热精品热| 中文字幕人妻熟人妻熟丝袜美| 性色avwww在线观看| 中文乱码字字幕精品一区二区三区| 久久综合国产亚洲精品| 哪个播放器可以免费观看大片| eeuss影院久久| 亚洲精品亚洲一区二区| 国产精品偷伦视频观看了| 成人黄色视频免费在线看| 国产午夜福利久久久久久| 在线播放无遮挡| 日本黄色片子视频| 天堂俺去俺来也www色官网| 午夜福利视频精品| 噜噜噜噜噜久久久久久91| 一级毛片 在线播放| 久久久成人免费电影| www.色视频.com| 精品国产乱码久久久久久小说| 婷婷色麻豆天堂久久| 插逼视频在线观看| 精品酒店卫生间| 成人亚洲精品一区在线观看 | 亚洲av成人精品一二三区| 在线a可以看的网站| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 欧美成人a在线观看| 在线观看免费高清a一片| 色视频在线一区二区三区| 一本一本综合久久| 男人和女人高潮做爰伦理| 国产精品嫩草影院av在线观看| 欧美性猛交╳xxx乱大交人| 欧美精品人与动牲交sv欧美| 欧美丝袜亚洲另类| 欧美3d第一页| 黄色视频在线播放观看不卡| 欧美xxxx性猛交bbbb| 中文字幕制服av| 男人狂女人下面高潮的视频| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 国产精品蜜桃在线观看| 亚洲成人一二三区av| 国产91av在线免费观看| 亚洲精品乱码久久久v下载方式| 乱码一卡2卡4卡精品| 亚洲久久久久久中文字幕| 免费av观看视频| 午夜日本视频在线| 国产精品爽爽va在线观看网站| 少妇熟女欧美另类| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 毛片女人毛片| 天堂网av新在线| 大话2 男鬼变身卡| 一边亲一边摸免费视频| 国产 精品1| 午夜视频国产福利| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 午夜日本视频在线| 卡戴珊不雅视频在线播放| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看 | 我的老师免费观看完整版| 国产精品人妻久久久影院| 好男人在线观看高清免费视频| 秋霞伦理黄片| 亚洲av国产av综合av卡| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 亚洲av免费在线观看| 日韩亚洲欧美综合| 久热这里只有精品99| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 丝瓜视频免费看黄片| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 热99国产精品久久久久久7| 精品视频人人做人人爽| 男人舔奶头视频| 偷拍熟女少妇极品色| 18禁动态无遮挡网站| 看十八女毛片水多多多| 99热网站在线观看| 国产亚洲精品久久久com| 黄色欧美视频在线观看| 亚洲欧美日韩无卡精品| av国产久精品久网站免费入址| av在线老鸭窝| 只有这里有精品99| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 国产av不卡久久| 99热6这里只有精品| 亚洲,欧美,日韩| 久久久久精品久久久久真实原创| 中文乱码字字幕精品一区二区三区| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 精品一区二区三卡| 亚洲精品日韩av片在线观看| 大香蕉97超碰在线| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 少妇 在线观看| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 久久久久久久久久成人| 亚洲精品色激情综合| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 久久久成人免费电影| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 高清日韩中文字幕在线| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 99热网站在线观看| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱| 亚洲美女视频黄频| 一级黄片播放器| 伦理电影大哥的女人| 黄片无遮挡物在线观看| 色视频在线一区二区三区| 亚洲人成网站在线播| av.在线天堂| 亚洲国产欧美人成| 乱系列少妇在线播放| 久久精品熟女亚洲av麻豆精品| 成年女人看的毛片在线观看| 亚洲av免费在线观看| 久久人人爽人人片av| 免费大片黄手机在线观看| 一级毛片 在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 男女下面进入的视频免费午夜| 2021少妇久久久久久久久久久| kizo精华| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 大香蕉久久网| 欧美另类一区| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 久久精品综合一区二区三区| 国产在线一区二区三区精| 22中文网久久字幕| 69人妻影院| 真实男女啪啪啪动态图| 日本午夜av视频| 亚洲精品国产av成人精品| 午夜日本视频在线| 日韩免费高清中文字幕av| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 99视频精品全部免费 在线| 国产成人精品婷婷| 成年av动漫网址| 国产免费一级a男人的天堂| 观看美女的网站| tube8黄色片| 亚洲欧美精品专区久久| 国产精品熟女久久久久浪| 亚洲性久久影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人av在线免费| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 亚洲av中文av极速乱| av卡一久久| 波多野结衣巨乳人妻| 精品国产三级普通话版| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 国产成人午夜福利电影在线观看| 亚洲国产欧美在线一区| 99久久人妻综合| 久久精品人妻少妇| 热99国产精品久久久久久7| 在线精品无人区一区二区三 | 日本欧美国产在线视频| 成年版毛片免费区| 成人漫画全彩无遮挡| 中文字幕人妻熟人妻熟丝袜美| 亚洲真实伦在线观看| 春色校园在线视频观看| 国产白丝娇喘喷水9色精品| 97在线视频观看| 高清毛片免费看| 日韩人妻高清精品专区| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| 欧美高清性xxxxhd video| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频 | 久久97久久精品| 午夜精品一区二区三区免费看| av免费观看日本| 五月天丁香电影| 亚洲国产日韩一区二区| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 日韩中字成人| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花 | 日韩一区二区视频免费看| 精品国产三级普通话版| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说| 性色avwww在线观看| 内射极品少妇av片p| 一边亲一边摸免费视频| 亚洲人成网站高清观看| 亚洲av男天堂| 香蕉精品网在线| 男的添女的下面高潮视频| av卡一久久| 色5月婷婷丁香| 国产亚洲91精品色在线| 真实男女啪啪啪动态图| 久久久成人免费电影| 成人鲁丝片一二三区免费| 制服丝袜香蕉在线| 嫩草影院入口| 久久久久国产网址| 一级毛片久久久久久久久女| 97超碰精品成人国产| 各种免费的搞黄视频| 特大巨黑吊av在线直播| 精品人妻视频免费看| 好男人在线观看高清免费视频| 亚洲成色77777| 中国国产av一级| 男人添女人高潮全过程视频| 亚洲精品色激情综合| 亚洲人成网站在线播| 只有这里有精品99| 亚洲精品第二区| 欧美三级亚洲精品| 久久久久九九精品影院| 免费av不卡在线播放| 黄色怎么调成土黄色| 亚洲三级黄色毛片| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 亚洲精品成人av观看孕妇| 身体一侧抽搐| 日韩免费高清中文字幕av| 精品酒店卫生间| 国产精品女同一区二区软件| 久久久欧美国产精品| 777米奇影视久久| 久久精品国产亚洲av天美| 男人舔奶头视频| 欧美成人a在线观看| 亚洲成人一二三区av| 亚洲,一卡二卡三卡| 国产精品国产三级国产专区5o| 亚洲国产精品999| 国产有黄有色有爽视频| 亚洲av男天堂| 日本一二三区视频观看| 成人欧美大片| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 永久网站在线| 亚洲精品成人久久久久久| tube8黄色片| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| 欧美3d第一页| 日本黄大片高清| 久久久精品94久久精品| 免费黄网站久久成人精品| 22中文网久久字幕| 久久午夜福利片| 久热这里只有精品99| 日本wwww免费看| 建设人人有责人人尽责人人享有的 | 精品久久久久久久久av| 国产精品一二三区在线看| 欧美最新免费一区二区三区| 欧美一区二区亚洲| 欧美高清性xxxxhd video| 亚洲精品自拍成人| 99热全是精品| 九草在线视频观看| 国产精品一及| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说 | 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 欧美少妇被猛烈插入视频| 国产v大片淫在线免费观看| 插逼视频在线观看| 亚洲最大成人av| 成年av动漫网址| 边亲边吃奶的免费视频| 69人妻影院| 老女人水多毛片| 亚洲真实伦在线观看| 最后的刺客免费高清国语| 久久久欧美国产精品| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 国产极品天堂在线| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 又大又黄又爽视频免费| 国产淫片久久久久久久久| 久久久久久久久久久免费av| 日韩av免费高清视频| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 久久99热这里只有精品18| 日本三级黄在线观看| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 亚洲国产精品专区欧美| 国产精品麻豆人妻色哟哟久久| 日日撸夜夜添| 免费少妇av软件| 国产成人精品婷婷| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 中国国产av一级| 亚洲国产精品999| 一级二级三级毛片免费看| 99久久精品一区二区三区| 亚洲欧洲日产国产| 亚洲精品一二三| 欧美性感艳星| www.av在线官网国产| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 插阴视频在线观看视频| 日本黄大片高清| 中文乱码字字幕精品一区二区三区| 国产高潮美女av| 国产美女午夜福利| 国产亚洲5aaaaa淫片| 人妻系列 视频| 黄片无遮挡物在线观看| 国产爽快片一区二区三区| 日韩精品有码人妻一区| 老女人水多毛片| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| av在线天堂中文字幕| 一个人看视频在线观看www免费| 啦啦啦中文免费视频观看日本| 99久久九九国产精品国产免费| 一个人观看的视频www高清免费观看| .国产精品久久| 国语对白做爰xxxⅹ性视频网站| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 久久99蜜桃精品久久| 蜜桃亚洲精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 亚洲av福利一区| 国产伦精品一区二区三区四那| 激情 狠狠 欧美| 在线精品无人区一区二区三 | 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 99久久精品一区二区三区| 舔av片在线| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 免费观看av网站的网址| 国产美女午夜福利| 少妇人妻一区二区三区视频| 亚洲国产精品国产精品| 2018国产大陆天天弄谢| 亚洲精品一二三| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 一级毛片电影观看| 干丝袜人妻中文字幕| 高清毛片免费看| 国产黄色免费在线视频| 禁无遮挡网站| 岛国毛片在线播放| 大片电影免费在线观看免费| 婷婷色av中文字幕| 制服丝袜香蕉在线| av国产久精品久网站免费入址| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 亚洲三级黄色毛片| 久久久成人免费电影| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 午夜激情福利司机影院| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 国产精品99久久久久久久久| 日韩强制内射视频| av专区在线播放| 日韩三级伦理在线观看| 别揉我奶头 嗯啊视频| 欧美bdsm另类| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 亚洲欧美中文字幕日韩二区| 亚洲精品乱久久久久久| 大香蕉97超碰在线| 久久久久久久久久人人人人人人| 久久影院123| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 男女那种视频在线观看| 亚洲真实伦在线观看| 少妇 在线观看| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说| 日本黄大片高清| 亚洲精品国产av成人精品| 国产高清不卡午夜福利| 午夜福利视频精品| 大香蕉久久网| 久久6这里有精品| 黄色配什么色好看| 久久99热这里只频精品6学生| 日韩国内少妇激情av| av在线天堂中文字幕| 成人午夜精彩视频在线观看| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 成人黄色视频免费在线看| 51国产日韩欧美| 1000部很黄的大片| 久久久久九九精品影院| 三级男女做爰猛烈吃奶摸视频| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 青青草视频在线视频观看| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂 | 国产大屁股一区二区在线视频| 国产成人91sexporn| 久久久久久久久久久丰满| 日韩不卡一区二区三区视频在线| 欧美极品一区二区三区四区| 少妇丰满av| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 香蕉精品网在线| 免费观看a级毛片全部| 亚洲精品第二区| 日韩一本色道免费dvd| 一本一本综合久久| 大陆偷拍与自拍| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 啦啦啦在线观看免费高清www| 国产91av在线免费观看| 久久精品国产自在天天线| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 午夜福利视频1000在线观看| 夜夜看夜夜爽夜夜摸| 亚洲av免费高清在线观看| 在线看a的网站| 男人和女人高潮做爰伦理| 身体一侧抽搐| 国产精品99久久99久久久不卡 | 最近中文字幕2019免费版| 日韩免费高清中文字幕av| 欧美三级亚洲精品| 春色校园在线视频观看| 欧美区成人在线视频| 一级爰片在线观看| 五月伊人婷婷丁香| 亚洲精品中文字幕在线视频 | 美女cb高潮喷水在线观看| 天堂中文最新版在线下载 | 成人午夜精彩视频在线观看| av一本久久久久| 久久亚洲国产成人精品v| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频 | 免费av观看视频| av在线天堂中文字幕| 亚洲在久久综合| 少妇猛男粗大的猛烈进出视频 | 一区二区三区免费毛片| 人体艺术视频欧美日本| 亚洲四区av| 中文天堂在线官网| 18禁动态无遮挡网站| 国产成人福利小说| h日本视频在线播放| 97精品久久久久久久久久精品| 国产精品秋霞免费鲁丝片| 另类亚洲欧美激情| 能在线免费看毛片的网站| 免费看a级黄色片| 最近最新中文字幕大全电影3| 免费大片18禁| 天堂中文最新版在线下载 | freevideosex欧美| 乱码一卡2卡4卡精品| 亚洲av一区综合| 欧美三级亚洲精品| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 欧美激情久久久久久爽电影| 简卡轻食公司| 日韩不卡一区二区三区视频在线| 欧美高清成人免费视频www| 亚洲va在线va天堂va国产| 一区二区三区精品91| 国产成人a区在线观看| 久久97久久精品| 日韩人妻高清精品专区| av在线app专区| 少妇裸体淫交视频免费看高清| 欧美xxⅹ黑人| 久久久久久久国产电影| 国产亚洲最大av| 欧美区成人在线视频| 一级av片app| 色哟哟·www| 亚洲经典国产精华液单| 99热6这里只有精品| 爱豆传媒免费全集在线观看| 久久久久国产网址| 少妇 在线观看| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| 亚洲国产色片| 少妇人妻久久综合中文| 在线精品无人区一区二区三 | 欧美变态另类bdsm刘玥| 日韩欧美精品免费久久| 国产 一区精品| 成年女人在线观看亚洲视频 | 亚洲精品自拍成人| 免费黄频网站在线观看国产| 啦啦啦中文免费视频观看日本| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 亚洲欧美日韩卡通动漫| 2022亚洲国产成人精品| 午夜精品一区二区三区免费看| 毛片一级片免费看久久久久| 久久99蜜桃精品久久| 成人一区二区视频在线观看| 亚洲国产最新在线播放| 成人黄色视频免费在线看| 午夜视频国产福利| 美女cb高潮喷水在线观看| 在线观看一区二区三区| 免费看不卡的av|