• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    2017-06-22 14:44:22YangHaixiangWenzhao
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:武漢理工大學(xué)徐海循跡

    Qü Yang,Xü Hai-xiang,Yü Wen-zhao

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    Qü Yanga,b,Xü Hai-xianga,b,Yü Wen-zhaoa,b

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    A simple geometric method for generating curvature-continuous paths in a plan is presented.Based on the curvature-continuous paths,a line-of-sight(LOS)guidance law is utilized to minimize the cross-track error.To attenuate the oscillation of the control signal and obtain smooth control outputs,a modified backstepping controller with actuator dynamics is proposed for path following of overactuated marine crafts.It is worth mentioning that an integral action is added to adapt the slow-varying environmental forces of wind,wave and current forces.Numerical simulations demonstrate the validity of the proposed controller.

    path following;path planning;line-of-sight guidance;backstepping control; actuator dynamics

    0 Introduction

    In many applications,a marine ship has to move along a given path with a desired speed[1]. Different from trajectory tracking which requires the vessel to track pre-specified time functions of all state,path following removes temporal constraints and reduces the tracking problem to only a subset of states[2].The paths usually consist of a set of waypoints using Cartesian coordinate(xk,yk).In addition,each waypoint is usually connected by a circle before and after the waypoint[3].The path following problems can be summarized as following the desired path and obtaining the desired surge speed of the ship[4].

    In path following,the shape and properties of the path have a direct influence on the guidance system.The reason is that the path is defined by a set of ordered waypoints on the map and the discontinuous-curvature paths affect the heading angle commands.Connecting the waypoints can be achieved in many ways,with each one having its own advantages and disad vantages.Two main categories are using spines and combining straight lines and arcs.Dubins[5]showed that for a particle that moves forward with unity speed,the shortest path that meets a curvature bound between a starting point and a finishing point consists of the parts which is astraight line or an arc of a circle of radius R>0.Breivik and Fossen[6]designed paths of straight lines and circles for a fully actuated vessel to comply with the guidance commands.Shanmugavel and Tsourdos et al[7]used Dubins paths with clothoid arcs in the path planning of multiple UAVs to produce feasible paths.Different from Dubins paths,Lekkas and Dahl et al[8]proposed a method for path planning using Fermat’s spiral which has a zero curvature at its origin.Similar to the work of Lekkas and Dahl et al[8],Candeloro and Lekkas et al[9]proposed a two-dimensional curvature-continuous path planning algorithm based on Voronoi diagrams and Fermat’s spirals.The main objectives of the above publications are to find a smooth continuous-curvature path.

    For the controller design for path following,Yuh,Nie and Lee[10]and Sun and Cheah[11]used the adaptive control to stabilize the control system of path following in the presence of unmodelled dynamics and various noise;In Skjetne[12],three different controllers for the elliptical path following were designed,that is the adaptive backstepping procedure,sliding mode control and the nonlinear PID control,and the effectivenesses were compared among them based on experimental tests on the model ship CyberShip II.Based on the LOS guidance, Breivik[13]focused on the two-step backstepping control design for path following of marine crafts.However,these publications did not take into account the influence of actuator dynamics.Actuator dynamics are usually neglected by choosing the bandwidth of the control law sufficient low.As the actuators like propellers,thrusters and rudders have the bandwidth which is close to the bandwidth of most ship,the control signal will have oscillation and the actuator dynamics can not be neglected.Fossen and Berge[14]proposed a nonlinear vectorial backstepping controller for the marine crafts with the actuator dynamics added into the ship maneuvering model.For further research,Morishita and Souza[15]developed a backstepping controller with a passive observer and the actuator dynamics.But the obstacle of the methods proposed by Fossen and Berge[14]and Morishita and Souza[15]are that the controllers were designed for station keeping mode and cannot be applied to path following.

    The main contribution of this paper is twofold.First,a simple geometric method is used to generate the paths consisting of straight lines and arcs.This method allows the straight line to connect with the arc smoothly without curvature discontinuity.Second,the actuator dynamics have been included in the backstepping controller design for path following and the backstepping procedure was extended into three steps.

    The text is organized as follows:Chapter 1 mainly shows the procedure of the proposed path planing.Chapter 2 briefly presents the review of LOS guidance law.Chapter 3 gives a general ship maneuvering model with actuator dynamics in the inertial reference frame and body-fixed reference frame.Chapter 4 shows the proposed backstepping controller design in three steps using the Lyapunov stability analysis.Chapter 5 presents the simulation results.The paper ends with the conclusion.

    1 Continuous curvature path planning

    Path planning is a procedure to determine which route to be taken when moving from one location to another,given a certain number of waypoints to reach along the path.In path following,the line-of-sight angle is presented in the Path Parallel(PP)frame which rotates an angle relative to the inertial frame.The heading angle is determined by the line-of-sight angle and that rotated angle.Thus,discontinuous-curvature of the path will result in sharp variations of the desired heading angle.Here,we will use a simple geometric method to generate the path consisting of straight lines and arcs.

    1.1 The center of circle planning

    Let Pk(k=1,2,3…)denote the available waypoints.Assuming that all the radiuses are given and all the centers locate at the angle bisector of the nearby straight lines,the centers’locations can be easily achieved by the angle bisector theorem. Next,we will use nearby three waypoints to illustrate this problem shown in Fig.1.

    Fig.1 The center of circle planning

    where Rkis the radius of these circles.According to the angle bisector theorem:

    1.2 Path planning with clockwise or anti-clockwise motion

    In this part,the paths with clockwise or anti-clockwise motion will be defined by a mathematic method.For convenience,we will use 4 waypoints to illustrate this problem.The problem of the path planning for this case can be converted into the solving of the tangency points Ti,the central angles θiof arcs and the rotation directions as shown in Fig.2.

    Fig.2 Path planning with clockwise or anti-clockwise motion

    Firstly,we have to know whether the motion between the nearby two straight lines is clockwise or anti-clockwise.Here,we will utilize the concept of the cross product of vectors.

    where γiis the rotation angle and sgn is the sign function.CWi=1 represents the motion is clockwise and CWi=-1 represents the motion is anti-clockwise.The corresponding angular relations are formed as:

    Then,it is easy to solve the tangency point location problem for the beginning and finishing waypoints.

    2 LOS guidance law design

    2.1 LOS guidance law for general paths

    Fossen and Pettersen[16]showed that LOS guidance law for a ship is uniform semiglobal exponential stability(USGES)which is slightly weaker than global exponential stability(GES).Consider that a point particle moves in the two-dimensional plane.Let θ≥0 denotes the path variable.The paths can be parameterized as(xp(θ),yp(θ))by a set of given waypoints(xk,yk)for k=1,2,…as illustrated in Fig.3.In this section,a path parallel(PP)frame hasbeen used,which is rotated around an angle:

    Fig.3 LOS guidance law for a general path

    with respect to the North-East reference frame.For the particle located at the positionx,()y, the cross-track error can be computed as the orthogonal distance in the PP frame defined by the point(xp(θ),yp(θ)).Thus,we can put:

    Expanding Eq.(16)gives the normal form:

    According to Breivik and Fossen[6],the global minimized θ*subjected to Eq.(16)can be defined by:

    In Fossen[17],the kinematic equations can be expressed as the following form:

    Using Eqs.(15),(17),(20)and(21),the differentiation of Eq.(18)gives:

    here the look-ahead distance△can be time-varying using the following equation[18]:

    where ρ is the convergence rate of△.Inserting Eq.(24)into Eq.(23)gives:

    2.2 LOS guidance law for a straight line and a circle

    For a straight line,the PP frame is rotated around an angle α relative to the inertial North-East reference frame shown in Fig.4.Hence,the LOS guidance law in Eq.(24)can be computed as:

    For the circle having non-zero curvature,the LOS guidance law χcis time-varying.By analyzing Fig.5,this angle can be calculated as:

    Fig.4 LOS guidance law for a straight line

    Fig.5 LOS guidance law for a circle

    3 Dynamic position mathematical model

    Motivated by the actuator dynamics adopted by Morishita and Souza[15]and Fossen and Berge[14],the mathematical model for path following can be modified as:

    where η=[x,y,ψ]Tis the generalized position in the inertial reference frame;The body-fixed velocitiy is defined by the vector v=[u,υ,r]T;R(ψ)is the rotation matrix;M∈R3×3is the inertia matrix,D∈R3×3is the damping matrix,Bu∈R3×nis the configuration matrix with n actuators.up∈Rn×1is the return of the propeller thrusts;b∈R3×1is the slow varying environmental forces including wind,waves,currents as well as those induced by actuators;Tn∈Rn×nis a dialogue matrix of positive time constants;uc∈Rn×1is the vector of control outputs determined by the controller;Considering the saturation of the actuators,the control forces in surge,sway and yaw can be limited and represented as:

    where umax∈R3×1and umin∈R3×1are the vectors with maximum and minimum saturation values.Specially,the matrices used in the nonlinear maneuvering model can be given as:

    4 Control system design

    Breivik[19]proposed a two-step backstepping controller for path following without actuator dynamics.In this Chapter,the modified control system design with actuator dynamics will be separated into three parts using a backstepping control.The process of the control system design will be stated as follows.

    Defining the projection vector h:

    The first error variable z1is defined as:

    where ψdis the LOS guidance law angle χ given in Chapter 3.For a straight line,ψd=χsand ψd=χcfor a circle.Similarly,the second error variable z2can be defined as:

    Step 1:Defining the first Lyapunov Function(LF)as:

    The differentiation of Eq.(36)gives:

    Inserting Eq.(35)into Eq.(37)gives:

    Thus,the stabilizing function α13can be chosen as:

    where c1>0 and Eq.(38)will become:

    Step 2:Defining the second Lyapunov Function(LF)as:

    The differentiation of Eq.(41)gives:

    Based on Eqs.(30)and(35),we will have the following result:

    Thus Buupcan be chosen as the second stabilizing function α2.Hence,Eq.(42)can be rewritten as:

    The second stabilizing function can be designed as:

    where K2is a positive diagonal matrix and the adaptive integral action can be chosen as:

    Step 3:Defining the second error variable z3:

    The third Lyapunov Function(LF)can be expressed as:

    The differentiation of Eq.(48)with the insertion of Eqs.(31),(44)and(45)gives:

    Hence,the control law can be given by:

    where K3is a positive diagonal matrix.In path following,we want that the ship moves forward with the given surge speed udand also desire that the sway velocity of the vessel is kept at zero.For the heading angle control,the stabilizing function α13will be used.Thus,the stabilizing functions α1can be written as:

    5 Simulation results

    To evaluate the performance and robustness of this method,the computer simulation with the waypoints given in Tab.1 has been used.This work is based on an over-actuated offshore supply vessel model.The configurations of the actuators are shown in Tab.2.The vessel hydrodynamic coefficients of the matrices M and D used in Chapter 4 are calculated by Computational Fluid Dynamics(CFD)and given in Tab.3.To take into account the differences between the realistic model and the model used in Chapter 3,the vessel realistic model will be adopted in this simulation where the wind,current and wave forces are calculated separately(Appendix A).Therefore,the calculated matrices M and D will be used for controller design and the vessel realistic model in Appendix A will be adopted to represent the real ship motion. The matrices used in this paper are illustrated in Appendix B.The other parameters related to the controller,desired speed and initial states are displayed in Tab.4.

    Tab.2 The configurations of the actuators

    Tab.3 The used parameters for the model ship

    Tab.4 The other parameters used in the simulation

    To illustrate the validity of the proposed method,the simulation will be adopted in the computer.The results of path following and heading angle tracking are depicted in Fig.6 and Fig.7.Fig.6 shows the path planning with the given waypoints and the ship can follow the smoothpaths consisting of straight lines and circle arcs.Fig.7 presents the desired heading angle generated by the LOS guidance law and the actual ship heading angle.The sharp change heading angle demonstrates that the ship locates in the circle arcs and the almost constant heading angle represents the ship locates in the straight lines.

    Fig.6 Path following for the model ship

    Fig.7 Actual yaw angle tracks the desired LOS angle

    In order to demonstrate the advantages of including the actuators in the modified controller,the performances with actuator dynamics and without the inclusion of the actuator dynamics are compared shown in Fig.8(a)and Fig.8(b).Taking into account the actuator dynamics,the control outputs are smoother than those without actuator dynamics.The time lag between the control outputs and the real propeller forces caused by the actuator dynamics tends to retard the ship motion,and the controller without actuator dynamics will compensate for it by magnifying the control outputs.Thus,the control outputs without actuator dynamics have the sharp changes to the saturation values,which is impossible for the actuators to attain.As the bandwidth of the actuator dynamics is close to the bandwidth of the ship motion,the modified backstepping controller with actuator dynamics is suitable to have smoother control outputs.

    Fig.8 Control outputs with actuator dynamics(dashed)and without actuator dynamics(solid)

    Fig.9 shows the ship tracks the given surge speed udperfectly.Fig.10 indicates the results of the integral action.It is worth noting that the bigger elements in the gain matrix Γ will make the bigger oscillation of the adaption forces.

    Fig.9 Ship velocity

    Fig.10 Behavior of the integral action

    6 Conclusion

    This paper demonstrates the planning of a continuous-curvature path with straight lines and circles by using a simple geometric method.In order to attenuate the oscillation of the control signal caused by the time lag,a modified backstepping controller with actuator dynamics is proposed to obtain a smooth control outputs.Integral action is adopted to adapt the slow varying environmental forces consisting of wind,wave and current forces.The stability of the closed-loop system with actuator dynamics is assured through Lyapunov stability analysis. Simulation results exactly confirm the good performance of the LOS guidance law and the control system.

    [1]Fossen T I.Guidance and control of ocean vehicles[M].John Wiley&Sons,1994.

    [2]Peymani E,Fossen T I.A Lagrangian framework to incorporate positional and velocity constraints to achieve path-following control[C].In Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC),2011:3940-3945.

    [3]Fossen T I,Breivik M,Skjetne R.Line-of-sight path following of underactuated marine craft[C]//In Proceedings of the 6th IFAC MCMC.Spain,2003:244-249.

    [4]Skjetne R,Fossen T I,Kokotovic P.Output maneuvering for a class of nonlinear systems[C]//In Proceedings of 15th IFAC World Congress on Automatic Control.Spain,2002.

    [5]Dubins L E.On curves of minimal length with a constraint on average curvature,and with prescribed initial and terminal positions and tangents[J].American Journal of Mathematics,1957:497-516.

    [6]Breivik M,Fossen T I.Path following of straight lines and circles for marine surface vessels[C]//In Proceedings of the 6th IFAC CAMS.Italy,2004:65-70.

    [7]Shanmugavel M,Tsourdos A,White B,Zbikowski R.Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J].Control Engineering Practice,2010,18(9):1084-1092.

    [8]Lekkas A M,Dahl A R,Breivik M,Fossen T I.Continuous-curvature path planning using Fermat’s spiral[J].Modeling, Identification and Control,2013,34(4):183-198.

    [9]Candeloro M,Lekkas A M,Soerensen A,Fossen T I.Continuous curvature path planning using Voronoi diagrams and Fermat’s spirals[J].Control Applications in Marine Systems,2013,9(1):132-137.

    [10]Yuh J,Nie J,Lee C G.Experimental study on adaptive control of underwater robots[C].In Proceedings of IEEE International Conference on Robotics and Automation,1999,1:393-398.

    [11]Sun Y C,Cheah C C.Adaptive setpoint control for autonomous underwater vehicles[C].In Proceedings of 42nd IEEE Conference on Decision and Control,2003,2:1262-1267.

    [12]Skjetne R.The maneuvering problem[D].Ph.D.thesis,Norwegian University of Science and Technology,2005.

    [13]Breivik M.Topics in guided motion control of marine vehicles[D].Ph.D.thesis,Norwegian University of Science and Technology,2010.

    [14]Fossen T I,Berge S P.Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C].In Proceedings of the 36th IEEE Conference on Decision and Control,1997,5:4237-4242.

    [15]Morishita H M,Souza C E S.Modified observer backstepping controller for a dynamic positioning system[J].Control Engineering Practice,2014,33:105-114.

    [16]Fossen T I,Pettersen K Y.On uniform semiglobal exponential stability(USGES)of proportional line-of-sight guidance laws[J].Automatica,2014,50(11):2912-2917.

    [17]Fossen T I.Handbook of marine craft hydrodynamics and motion control[M].John Wiley&Sons,2011.

    [18]Lekkas A M,Fossen T I.A time-varying lookahead distance guidance law for path following[C]//In Proceedings of 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Italy,2012.

    [19]Breivik M,Fossen T I.Path following for marine surface vessels[C]//In Proceedings of the OTO’04.Japan,2004:2282-2289.

    [20]Skjetne R.Smogeli O N,Fossen T I.A nonlinear ship manoeuvering model:identification and adaptive control with experiments for a model ship[J].Modeling,Identification and Control,2004,25(1):3-27.

    Appendix A:The realistic ship model

    The mathematical model proposed by Fossen[17]for the ship can be given as:

    where MRBis the rigid-body inertial matrix and MAis the added inertial matrix.The term τwindand τwaveare the wind and wave forces.For the detailed calculations of wind and wave forces, see Fossen,reference(P188-199)[17].The term vr∈R3×1is the relative speed vector with respect to the effect of currents.The relation between vrand v can be expressed as[20]:

    where Vcand βcare the current speed and direction in the inertial reference frame.

    Appendix B:Some matrices used in the simulation

    The following matrices are used in this paper:

    基于動態(tài)執(zhí)行機構(gòu)的船舶循跡反步積分控制

    瞿洋a,b,徐海祥a,b,余文曌a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢430063)

    文章針對連續(xù)曲率路徑,用一種簡單的幾何方法生成連續(xù)曲率的路徑?;谠搸缀畏椒ㄉ傻倪B續(xù)路徑,文中利用line-of-sight(LOS)引導(dǎo)律解決了循跡控制中橫向偏差最小的問題。為了減弱控制輸出的振蕩和獲得平滑的控制輸出,一種基于動態(tài)執(zhí)行機構(gòu)的改進反步積分控制器在過驅(qū)動船舶循跡控制中得到了應(yīng)用。值得注意的是,文中用積分操作來抵抗風(fēng)浪流環(huán)境力。數(shù)值分析結(jié)果展示了該控制器的有效性。

    循跡控制;路徑規(guī)劃;LOS引導(dǎo)律;反步積分控制;動態(tài)執(zhí)行機構(gòu)

    U674.38

    :A

    國家自然科學(xué)基金項目資助(61301279,51479158)

    瞿洋(1992-),男,武漢理工大學(xué)交通學(xué)院碩士;

    U674.38

    :A

    10.3969/j.issn.1007-7294.2017.06.004

    1007-7294(2017)06-0685-13

    徐海祥(1975-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    date:2016-12-16

    Supported by the National Natural Science Foundation of China(61301279,51479158)

    Biography:Qü Yang(1991-),male,master candidate;Xü Hai-xiang(1975-),male,Ph.D,professor, corresponding author,E-mail:qukaiyang@163.com;Yü Wen-zhao(1989-),male,Ph.D.

    余文曌(1989-),男,武漢理工大學(xué)交通學(xué)院講師。

    猜你喜歡
    武漢理工大學(xué)徐海循跡
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    基于DFT算法的電力巡檢無人機循跡檢測系統(tǒng)設(shè)計
    徐海根(徐海)藝術(shù)作品欣賞
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    基于單片機的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    Lanterne-volant
    A Brief Study Of The Interactive-oriented Language Teaching
    岛国毛片在线播放| 男女床上黄色一级片免费看| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看| 两人在一起打扑克的视频| 9色porny在线观看| 超碰97精品在线观看| 国产又爽黄色视频| 日本a在线网址| 一区二区av电影网| 亚洲精品久久午夜乱码| 五月天丁香电影| 99热全是精品| 亚洲少妇的诱惑av| 啦啦啦 在线观看视频| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 无限看片的www在线观看| 蜜桃国产av成人99| 十八禁高潮呻吟视频| 人妻一区二区av| 纵有疾风起免费观看全集完整版| 各种免费的搞黄视频| 少妇猛男粗大的猛烈进出视频| 午夜两性在线视频| www日本在线高清视频| 精品国内亚洲2022精品成人 | 超碰97精品在线观看| 嫩草影视91久久| av在线老鸭窝| 日本91视频免费播放| 国产精品香港三级国产av潘金莲| 亚洲国产看品久久| 国产在线观看jvid| 巨乳人妻的诱惑在线观看| 国产av一区二区精品久久| 宅男免费午夜| 午夜免费观看性视频| 欧美午夜高清在线| 19禁男女啪啪无遮挡网站| 久久99一区二区三区| 首页视频小说图片口味搜索| 久久久久网色| 国产成人系列免费观看| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美网| 少妇粗大呻吟视频| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| 久久综合国产亚洲精品| 韩国精品一区二区三区| 国产免费现黄频在线看| 日韩大片免费观看网站| 亚洲专区字幕在线| 久久精品熟女亚洲av麻豆精品| 国内毛片毛片毛片毛片毛片| 亚洲欧洲日产国产| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| 亚洲av国产av综合av卡| 欧美大码av| 国产精品1区2区在线观看. | 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| 最新的欧美精品一区二区| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 热99久久久久精品小说推荐| 亚洲一区二区三区欧美精品| 精品国内亚洲2022精品成人 | 99国产精品99久久久久| 亚洲伊人色综图| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 免费日韩欧美在线观看| 精品视频人人做人人爽| 最近最新中文字幕大全免费视频| 在线av久久热| 啦啦啦中文免费视频观看日本| 中文字幕av电影在线播放| 丰满迷人的少妇在线观看| 国产人伦9x9x在线观看| 久久ye,这里只有精品| 一级毛片女人18水好多| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 建设人人有责人人尽责人人享有的| www.自偷自拍.com| 久热这里只有精品99| 国产精品久久久人人做人人爽| 深夜精品福利| 人人妻人人澡人人爽人人夜夜| 国产有黄有色有爽视频| 一进一出抽搐动态| 高清欧美精品videossex| 欧美精品高潮呻吟av久久| 性色av乱码一区二区三区2| 日韩中文字幕视频在线看片| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看 | 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 精品高清国产在线一区| 男女午夜视频在线观看| 精品福利永久在线观看| 国产一区二区 视频在线| 每晚都被弄得嗷嗷叫到高潮| 午夜福利免费观看在线| 中文字幕色久视频| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产 | 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 啦啦啦中文免费视频观看日本| 丝瓜视频免费看黄片| 午夜福利乱码中文字幕| 免费观看人在逋| 热99re8久久精品国产| 精品欧美一区二区三区在线| 女性被躁到高潮视频| avwww免费| 国产精品 国内视频| 国产人伦9x9x在线观看| 亚洲全国av大片| 精品久久久久久久毛片微露脸 | 18禁观看日本| 免费女性裸体啪啪无遮挡网站| 2018国产大陆天天弄谢| 一级a爱视频在线免费观看| 高清视频免费观看一区二区| 日本wwww免费看| 亚洲av片天天在线观看| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 色播在线永久视频| 国产在线观看jvid| 国产一区有黄有色的免费视频| 亚洲国产精品999| 精品久久久久久久毛片微露脸 | 大码成人一级视频| 久久久久久久精品精品| a级毛片黄视频| 一边摸一边做爽爽视频免费| 国产又爽黄色视频| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| 国产一区二区在线观看av| 91麻豆av在线| av国产精品久久久久影院| 亚洲欧美精品综合一区二区三区| 亚洲 国产 在线| 91精品三级在线观看| 久久人妻熟女aⅴ| 丝袜人妻中文字幕| 高清av免费在线| 黄网站色视频无遮挡免费观看| 日韩三级视频一区二区三区| 日韩中文字幕视频在线看片| 在线亚洲精品国产二区图片欧美| 高清黄色对白视频在线免费看| 免费av中文字幕在线| 亚洲精品国产区一区二| 欧美xxⅹ黑人| 国产99久久九九免费精品| 久久精品国产a三级三级三级| 男女免费视频国产| 国产精品一区二区免费欧美 | 欧美另类一区| 久久久久久久大尺度免费视频| 黑丝袜美女国产一区| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 久久人妻福利社区极品人妻图片| xxxhd国产人妻xxx| 精品人妻在线不人妻| 香蕉国产在线看| 中文字幕av电影在线播放| 国产又爽黄色视频| 黄色片一级片一级黄色片| 一边摸一边抽搐一进一出视频| 人人妻人人爽人人添夜夜欢视频| 可以免费在线观看a视频的电影网站| 麻豆乱淫一区二区| 日韩欧美一区二区三区在线观看 | 新久久久久国产一级毛片| 一区二区日韩欧美中文字幕| 日韩熟女老妇一区二区性免费视频| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 国产精品熟女久久久久浪| 无遮挡黄片免费观看| 蜜桃在线观看..| 久久精品人人爽人人爽视色| 老司机影院毛片| 日本av免费视频播放| 91麻豆av在线| 精品少妇久久久久久888优播| 欧美性长视频在线观看| 亚洲国产欧美日韩在线播放| 国产av一区二区精品久久| 久久天躁狠狠躁夜夜2o2o| 久久这里只有精品19| 黑人欧美特级aaaaaa片| 不卡av一区二区三区| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 亚洲性夜色夜夜综合| 国产色视频综合| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 国产成人欧美| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx| 午夜福利影视在线免费观看| 久久av网站| 亚洲成国产人片在线观看| 午夜两性在线视频| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 国产一卡二卡三卡精品| 亚洲综合色网址| 久久久久久久国产电影| 成人手机av| 无限看片的www在线观看| 国产精品二区激情视频| 老司机午夜福利在线观看视频 | 亚洲国产欧美日韩在线播放| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 飞空精品影院首页| 国产精品一区二区在线观看99| 成人国语在线视频| 91字幕亚洲| 又大又爽又粗| 欧美日韩国产mv在线观看视频| 亚洲视频免费观看视频| www.精华液| av天堂在线播放| a在线观看视频网站| 欧美人与性动交α欧美软件| 19禁男女啪啪无遮挡网站| 中文字幕色久视频| 又紧又爽又黄一区二区| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 91麻豆av在线| 国产亚洲av高清不卡| 五月开心婷婷网| 人妻久久中文字幕网| 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 1024视频免费在线观看| xxxhd国产人妻xxx| 国产真人三级小视频在线观看| 青草久久国产| 99国产精品99久久久久| 新久久久久国产一级毛片| 日韩欧美免费精品| 国产区一区二久久| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 女人久久www免费人成看片| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡 | 久久天堂一区二区三区四区| 欧美日韩成人在线一区二区| 国产精品一区二区免费欧美 | tocl精华| 亚洲欧美日韩高清在线视频 | 精品人妻一区二区三区麻豆| videosex国产| 国产区一区二久久| 久久精品国产综合久久久| 午夜影院在线不卡| 别揉我奶头~嗯~啊~动态视频 | 一进一出抽搐动态| 欧美日韩黄片免| 久久99一区二区三区| 国产免费一区二区三区四区乱码| 亚洲男人天堂网一区| 国产亚洲午夜精品一区二区久久| 美女中出高潮动态图| 久久久精品国产亚洲av高清涩受| 婷婷成人精品国产| www.av在线官网国产| 亚洲人成电影免费在线| 亚洲欧美日韩高清在线视频 | 久久精品国产a三级三级三级| 国产一区二区三区在线臀色熟女 | 亚洲欧美日韩高清在线视频 | 国产又爽黄色视频| av网站免费在线观看视频| 2018国产大陆天天弄谢| 老熟妇乱子伦视频在线观看 | 久久九九热精品免费| xxxhd国产人妻xxx| 一二三四社区在线视频社区8| av一本久久久久| 一个人免费看片子| 国产黄频视频在线观看| 精品第一国产精品| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 亚洲国产av新网站| 热99国产精品久久久久久7| 日本91视频免费播放| 1024视频免费在线观看| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 国产伦人伦偷精品视频| 欧美少妇被猛烈插入视频| 中文字幕制服av| 天天添夜夜摸| 国产区一区二久久| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 日韩,欧美,国产一区二区三区| 精品一区二区三区四区五区乱码| 欧美性长视频在线观看| 宅男免费午夜| 久久精品久久久久久噜噜老黄| 王馨瑶露胸无遮挡在线观看| 精品人妻1区二区| 久久精品成人免费网站| av国产精品久久久久影院| av在线老鸭窝| 超色免费av| 日日爽夜夜爽网站| 无遮挡黄片免费观看| av超薄肉色丝袜交足视频| 精品第一国产精品| av线在线观看网站| 大型av网站在线播放| 青春草亚洲视频在线观看| 欧美+亚洲+日韩+国产| 美女大奶头黄色视频| 黑人操中国人逼视频| 久久久欧美国产精品| 啪啪无遮挡十八禁网站| 日韩三级视频一区二区三区| 国产麻豆69| 99久久综合免费| 一区二区日韩欧美中文字幕| 国产精品 国内视频| 正在播放国产对白刺激| 少妇 在线观看| 国产欧美亚洲国产| 亚洲国产av新网站| 丝袜脚勾引网站| 国产一区二区三区综合在线观看| 在线av久久热| 日韩 亚洲 欧美在线| 人人妻人人澡人人爽人人夜夜| 777米奇影视久久| 亚洲精品国产区一区二| 在线天堂中文资源库| 在线av久久热| 又紧又爽又黄一区二区| 久久女婷五月综合色啪小说| 欧美另类一区| 亚洲中文字幕日韩| 天天添夜夜摸| 99国产精品99久久久久| 女性生殖器流出的白浆| 精品久久久精品久久久| 在线看a的网站| 久久精品亚洲熟妇少妇任你| av网站免费在线观看视频| 97人妻天天添夜夜摸| 男女边摸边吃奶| 欧美精品亚洲一区二区| 中国美女看黄片| 日韩一区二区三区影片| 久久精品亚洲av国产电影网| 国产精品一二三区在线看| a在线观看视频网站| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 丝袜在线中文字幕| 一进一出抽搐动态| 午夜福利视频在线观看免费| 91麻豆av在线| 考比视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲av美国av| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 精品久久久精品久久久| 天天操日日干夜夜撸| 一边摸一边抽搐一进一出视频| 美女大奶头黄色视频| 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 999久久久精品免费观看国产| 两性夫妻黄色片| 丝袜在线中文字幕| 桃红色精品国产亚洲av| 精品国产国语对白av| 无遮挡黄片免费观看| 亚洲av成人不卡在线观看播放网 | 首页视频小说图片口味搜索| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 成人影院久久| 天天影视国产精品| 99香蕉大伊视频| 国产亚洲av高清不卡| 精品一区二区三区av网在线观看 | 欧美精品亚洲一区二区| 香蕉丝袜av| av在线播放精品| 宅男免费午夜| 国产男女内射视频| 精品亚洲成国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 精品国产一区二区三区久久久樱花| 精品第一国产精品| 蜜桃在线观看..| 一级毛片女人18水好多| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 久久国产精品影院| 午夜精品久久久久久毛片777| 好男人电影高清在线观看| 女人精品久久久久毛片| 久久精品aⅴ一区二区三区四区| 91大片在线观看| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久| 午夜精品国产一区二区电影| 日本91视频免费播放| 免费观看a级毛片全部| 亚洲自偷自拍图片 自拍| 人妻一区二区av| 成人三级做爰电影| 18禁观看日本| 午夜精品久久久久久毛片777| 狂野欧美激情性bbbbbb| 黑丝袜美女国产一区| 啦啦啦中文免费视频观看日本| 亚洲国产看品久久| 亚洲国产av新网站| 悠悠久久av| 1024视频免费在线观看| 波多野结衣av一区二区av| 亚洲国产av新网站| av欧美777| 久久午夜综合久久蜜桃| www.av在线官网国产| 美国免费a级毛片| 交换朋友夫妻互换小说| 99热全是精品| 久久久精品国产亚洲av高清涩受| 美女中出高潮动态图| www.熟女人妻精品国产| 两个人免费观看高清视频| 午夜久久久在线观看| 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 91九色精品人成在线观看| 精品人妻熟女毛片av久久网站| www.精华液| 日本91视频免费播放| 精品久久久久久电影网| 一级a爱视频在线免费观看| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区 | 亚洲九九香蕉| 成人影院久久| 国产一区有黄有色的免费视频| 超色免费av| 亚洲欧美精品综合一区二区三区| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 捣出白浆h1v1| 欧美大码av| 亚洲精品一二三| www.熟女人妻精品国产| 两个人免费观看高清视频| 男女国产视频网站| 美女中出高潮动态图| 免费久久久久久久精品成人欧美视频| 91精品三级在线观看| 一本久久精品| a在线观看视频网站| 亚洲av成人不卡在线观看播放网 | 亚洲成av片中文字幕在线观看| 黑人操中国人逼视频| 亚洲精华国产精华精| 老熟妇仑乱视频hdxx| 亚洲国产欧美在线一区| 亚洲成av片中文字幕在线观看| 精品久久久精品久久久| a在线观看视频网站| 亚洲伊人色综图| svipshipincom国产片| 91精品三级在线观看| 无限看片的www在线观看| 亚洲人成电影观看| 十八禁高潮呻吟视频| 高清在线国产一区| 黄色视频不卡| 精品一区二区三区av网在线观看 | 伊人久久大香线蕉亚洲五| 中国美女看黄片| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 欧美另类一区| 亚洲欧美色中文字幕在线| 亚洲精品乱久久久久久| 波多野结衣av一区二区av| 极品人妻少妇av视频| 午夜免费成人在线视频| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 最新的欧美精品一区二区| 亚洲成人免费电影在线观看| 青草久久国产| 丝袜在线中文字幕| bbb黄色大片| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 在线天堂中文资源库| a级毛片黄视频| 亚洲熟女精品中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲 欧美一区二区三区| 国产福利在线免费观看视频| 黄色 视频免费看| 成人三级做爰电影| 国产精品九九99| 男人爽女人下面视频在线观看| 最黄视频免费看| 国产一区有黄有色的免费视频| 高潮久久久久久久久久久不卡| 狠狠婷婷综合久久久久久88av| 999久久久精品免费观看国产| 大码成人一级视频| www.av在线官网国产| 精品福利观看| 老司机午夜十八禁免费视频| 亚洲第一青青草原| 日韩免费高清中文字幕av| 香蕉国产在线看| 啦啦啦免费观看视频1| 中文字幕av电影在线播放| 电影成人av| 国产精品影院久久| 9色porny在线观看| 男女免费视频国产| 天天躁夜夜躁狠狠躁躁| 国产高清videossex| 香蕉丝袜av| 婷婷成人精品国产| 国产男女内射视频| 国产一区二区三区在线臀色熟女 | 亚洲人成电影免费在线| 80岁老熟妇乱子伦牲交| 搡老熟女国产l中国老女人| 桃红色精品国产亚洲av| 国产日韩欧美在线精品| 黄色毛片三级朝国网站| 这个男人来自地球电影免费观看| av在线老鸭窝| 国产成人av激情在线播放| 91成年电影在线观看| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 中文欧美无线码| 老司机靠b影院| 日本一区二区免费在线视频| 狠狠精品人妻久久久久久综合| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品第一综合不卡| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 免费一级毛片在线播放高清视频 | 飞空精品影院首页| 女人精品久久久久毛片| 久久久精品免费免费高清| 看免费av毛片| 黑人猛操日本美女一级片| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 国产成人精品无人区| 97精品久久久久久久久久精品| 欧美日韩视频精品一区| 新久久久久国产一级毛片| 多毛熟女@视频| 久久亚洲精品不卡| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看| 久久精品亚洲熟妇少妇任你| 亚洲熟女精品中文字幕|