陳 震,段福義,范永申,賈艷輝,黃修橋(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所/河南省節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新鄉(xiāng) 453002)
噴灌機(jī)全噴灑域與疊加域水量分布特性的靜態(tài)模擬
陳 震,段福義,范永申,賈艷輝,黃修橋※
(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所/河南省節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新鄉(xiāng) 453002)
該文研究噴灌機(jī)噴頭組合噴灑特性,針對(duì)大型平移式噴灌機(jī)NelsonR3000、O3000旋轉(zhuǎn)折射式噴頭,開(kāi)展試驗(yàn)測(cè)量其單噴頭水量分布并計(jì)算其噴灑均勻系數(shù)(Christiansen uniformity, CU)、分布均勻系數(shù)(distribution uniformity,DU)。用MATLAB編程模擬了2噴頭和多噴頭組合,針對(duì)多噴頭組合,分析和區(qū)分全噴灑域和疊加域,計(jì)算2種噴頭全噴灑域與疊加域的CU、DU和平均噴灑強(qiáng)度(mean spraying intensity,MSI),全面掌握并評(píng)價(jià)噴頭水力性能。結(jié)果顯示:在安裝壓力調(diào)節(jié)器情境下,R3000單噴頭在壓力150 kPa、O3000單噴頭在壓力200 kPa時(shí),CU、DU值最大。2個(gè)噴頭組合無(wú)法展現(xiàn)噴灌機(jī)噴頭組合效果。R3000多噴頭組合全噴灑域內(nèi),CU最大值68%,DU隨噴頭間距的增大逐漸上升;O3000多噴頭組合CU、DU最大值分別為72%、57%。疊加域內(nèi)R3000、O3000噴頭CU、DU、MSI值高于全噴灑域,但達(dá)不到行噴CU≥85%的要求,可能由于計(jì)算CU、DU等的數(shù)據(jù)點(diǎn)多、單噴頭數(shù)據(jù)不理想、常規(guī)測(cè)量方法測(cè)量點(diǎn)少且在疊加域內(nèi)等原因。該文發(fā)現(xiàn)當(dāng)前大型噴灌機(jī)的噴頭間距組合不是CU、DU最優(yōu)組合,區(qū)分了噴頭噴灑組合后疊加域和全噴灑域,并分別計(jì)算疊加域和全噴灑域CU、DU和MSI,為噴灌機(jī)系統(tǒng)的安裝設(shè)計(jì)提供了一種參考。
噴頭;均勻度;壓力; Nelson R3000;O3000;疊加法;噴灑組合
噴灌是當(dāng)前主要的灌水方式之一,截止2015年中國(guó)噴灌面積達(dá)到了3 204.68×103hm2[1]。隨著土地的流轉(zhuǎn),在大田尺度上大型噴灌機(jī)灌溉具有很大的優(yōu)勢(shì)。當(dāng)前國(guó)內(nèi)外關(guān)于大型噴灌機(jī)的變量灌溉、分區(qū)控制等研究逐步深入[2-4]。其中,控制改變噴灌機(jī)的噴頭噴灑范圍、噴灑強(qiáng)度是實(shí)現(xiàn)變量、變域灌溉的一種主要方式[5-8]。目前噴灌機(jī)上常用Nelson R3000和O3000折射式噴頭,低壓、具有很好的抗風(fēng)性能,在現(xiàn)在大型噴灌機(jī)上受到廣泛的應(yīng)用[9-11]。
噴頭的性能是決定噴灌效果的基礎(chǔ)和前提,而噴頭性能通常通過(guò)工作壓力、流量、噴頭均勻性、噴灑強(qiáng)度、噴灑半徑以及多噴頭組合效果來(lái)衡量。噴頭的均勻性常用的評(píng)價(jià)指標(biāo)有噴灌均勻系數(shù)(Christiansen uniformity,CU)和分布均勻系數(shù)(distribution uniformity,DU)[12-17],其中根據(jù)噴灌均勻系數(shù)定義和計(jì)算方式的不同,可分為基于平均偏差的均勻系數(shù)、基于標(biāo)準(zhǔn)偏差的均勻系數(shù)、強(qiáng)調(diào)部分水量特征的分布均勻系數(shù)、基于概率分布函數(shù)的均勻系數(shù)和基于空間分布函數(shù)的均勻系數(shù)5大類,不同的評(píng)價(jià)指標(biāo)針對(duì)性不同[13]。噴頭的均勻性受組合間距、冠層等影響,噴灌水量噴灑到土壤,存在土壤再分配的過(guò)程[18]。關(guān)于噴頭的組合問(wèn)題,韓文霆等[15]試驗(yàn)研究了基于扇形通孔動(dòng)靜片調(diào)節(jié)器的變量噴頭在系統(tǒng)不同壓力工況下組合噴灌時(shí)的水量分布及噴灌均勻度等水力性能,并與傳統(tǒng)圓形噴灑域噴頭進(jìn)行了對(duì)比;此外針對(duì)Nelson R33噴頭三角形組合方式采用線性插值、立方插值、三次樣條插值的兩次插值法、距離插值法和平面插值法計(jì)算了克里斯琴森均勻度并使用Sprinkler3D和SIUEW1.0 2個(gè)軟件計(jì)算組合均勻度[17]。江蘇大學(xué)針對(duì)全射流噴頭,利用MATLAB編程,對(duì)噴頭組合進(jìn)行了三維插值模擬,編程相對(duì)簡(jiǎn)單,組合效果易于三維展示[19-22]。嚴(yán)海軍等[23]根據(jù)Hunter和Rainbird公司分別提供的PGP型和R50型園林地埋式噴頭進(jìn)行了不同組合系數(shù)的噴灑性能模擬試驗(yàn),發(fā)現(xiàn)在最大零漏噴范圍內(nèi),噴灌均勻系數(shù)的大小與組合形式關(guān)系不大,主要取決于噴頭結(jié)構(gòu)及徑向水量分布曲線的特點(diǎn)。DEPIVOT是基于VB語(yǔ)言設(shè)計(jì)的評(píng)價(jià)指針式噴灌機(jī)軟件,可以計(jì)算線性均勻度及根據(jù)土壤入滲特性估算潛在徑流[24],在指針式噴灌機(jī)設(shè)計(jì)及其性能評(píng)價(jià)上可參考應(yīng)用。
綜上,當(dāng)前大型噴灌機(jī)的噴頭噴灑組合效果,大部分通過(guò)CU、DU衡量。同時(shí),噴頭的組合間距大部分通過(guò)桁架的長(zhǎng)度和供水管輸水量決定噴頭的間距,國(guó)內(nèi)常用噴頭組合間距以2.9 m居多。為此,本文針對(duì)當(dāng)前噴灌機(jī)常用的Nelson噴頭R3000和O3000進(jìn)行測(cè)量模擬多噴頭不同間距組合,對(duì)比噴灑組合模擬效果,并用MATLAB編程區(qū)分多噴頭組合全噴灑域與疊加域,分別分析全噴灑域與疊加域CU、DU和MSI,研究2種噴頭特性及其在大型噴灌機(jī)中使用的組合效果,為大型噴灌機(jī)系統(tǒng)的安裝設(shè)計(jì)提供了一種參考。
1.1 噴頭噴灑試驗(yàn)系統(tǒng)
噴頭噴灑試驗(yàn)系統(tǒng)主要有潛水泵、閥門(mén)、輸水管、渦輪流量計(jì)、壓力表、噴頭和雨量筒等。試驗(yàn)在水利部節(jié)水灌溉設(shè)備質(zhì)量檢測(cè)中心大廳進(jìn)行,試驗(yàn)程序和方法參照《美國(guó)農(nóng)業(yè)工程師學(xué)會(huì)噴灌分布測(cè)試標(biāo)準(zhǔn)》[25],試驗(yàn)噴頭為Nelson R3000和O3000低壓旋轉(zhuǎn)噴頭。參考噴灌機(jī)噴頭高度,試驗(yàn)噴頭距地面高度1.8 m。噴頭連接壓力調(diào)節(jié)器,試驗(yàn)用22號(hào)噴嘴,內(nèi)徑4.7 mm,噴頭正常工作壓力為0.1 kPa。雨量筒直徑10 cm,高15 cm,試驗(yàn)在大廳內(nèi)無(wú)風(fēng)條件下進(jìn)行。雨量筒以噴頭垂下地面位置為中心輻射徑向布置,布置8條輻射線,雨量筒間距為0.5 m。圖1噴頭試驗(yàn)布置示意圖。
圖1 噴頭試驗(yàn)系統(tǒng)及雨量筒布置示意圖Fig.1 Schematic of catch cans layout and sprinkler experiment system
1.2 均勻度計(jì)算
單噴頭和組合噴頭的均勻度計(jì)算,根據(jù)單噴頭和組合噴頭組合方式及其組合間距,選用克里斯琴森均勻度計(jì)算噴頭組合均勻度[13-14],計(jì)算公式為
式中CU為克里斯琴森均勻度,%;hi為第i個(gè)測(cè)點(diǎn)的降水深,mm;h為噴灑面積上各測(cè)點(diǎn)平均降水深,mm;n為測(cè)點(diǎn)數(shù)目。
對(duì)于徑向布置的雨量筒噴灑試驗(yàn),需用不同計(jì)算方法將實(shí)測(cè)徑向降水深數(shù)據(jù)轉(zhuǎn)換為網(wǎng)格點(diǎn)的降水深,然后計(jì)算CU。一般是根據(jù)噴頭不同的組合方式和組合間距,通過(guò)二維插值,將單噴頭圓形噴灑域的水量分布試驗(yàn)數(shù)據(jù)轉(zhuǎn)換為多噴頭組合的網(wǎng)格型數(shù)據(jù),然后按照均勻度的計(jì)算方法求得多噴頭組合均勻度。
[14-15]計(jì)算DU:
式中ix為第i個(gè)測(cè)點(diǎn)的水深,mm。
如果田間絕大多數(shù)測(cè)點(diǎn)水深與平均值接近,個(gè)別測(cè)點(diǎn)水深與平均值偏差較大甚至為0(漏噴)時(shí),CU難以反映這種情況,可用DU克服CU描述水量分布均勻性時(shí)的上述缺點(diǎn),美國(guó)農(nóng)業(yè)部推薦采用DU來(lái)描述水量分布的均勻性[15,18]。
1.3 模擬插值方法
噴頭組合后通過(guò)2次插值計(jì)算噴灑區(qū)域內(nèi)任意一點(diǎn)P的降水深。如圖2所示,首先通過(guò)徑向插值分別計(jì)算出各輻射線上與點(diǎn)P距噴頭距離相同的Ai處的降水深hi(i=1,2,…8)。再利用同一圓周上的數(shù)據(jù)采用相同的插值法計(jì)算出所求網(wǎng)格點(diǎn)P的降水深。所用的插值方法主要為3次樣條插值,3次樣條插值是指通過(guò)一系列形值點(diǎn)的1條光滑曲線,在插值區(qū)間內(nèi)滿足插值公式,最高次冪不高于3次的樣條函數(shù)。
圖2 數(shù)據(jù)點(diǎn)樣條插值示意圖Fig.2 Simulation interpolation schematic diagram
1.4 全噴灑域、疊加域和非疊加域區(qū)分
如果A點(diǎn)距離最近2個(gè)噴頭的距離小于等于噴頭的噴灑半徑,則A點(diǎn)屬于疊加域內(nèi)的點(diǎn),否則為非疊加域內(nèi)的點(diǎn)。插值轉(zhuǎn)換成直角坐標(biāo)系后,在坐標(biāo)系內(nèi)噴灑強(qiáng)度大于0的區(qū)域,為全噴灑域。
2.1 單噴頭噴灑特性
2.1.1 單噴頭噴灑域內(nèi)噴灑水深DU和CU
對(duì)2種噴頭設(shè)置同樣的6組試驗(yàn):壓力50~300 kPa,步長(zhǎng)50 kPa,結(jié)果如圖3所示。R3000噴頭CU均值為68.79%,DU均值50.82%,CU和DU的標(biāo)準(zhǔn)差(standard deviation,SD)分別為9.18%、8.18%。噴頭壓力在50~150 kPa間,CU、DU隨著壓力增大而增大;當(dāng)壓力超過(guò)150 kPa后,隨著壓力增大,CU、DU逐漸下降;CU和DU變化趨勢(shì)一致,CU波動(dòng)幅度較DU稍大。說(shuō)明R3000在試驗(yàn)中運(yùn)行壓力為150 kPa時(shí),噴灑效果最好(CU和DU分別為76.7%和62.0%)。O3000 噴頭CU均值為65.33%,DU均值55.69%,CU和DU的SD分別為3.65%、5.22%。噴頭壓力在50~200 kPa間,CU、DU隨著壓力增大而增大;當(dāng)壓力超過(guò)200 kPa后,隨著壓力增大,CU、DU逐漸下降;CU和DU變化趨勢(shì)基本一致,DU變化幅度較CU大。說(shuō)明O3000在試驗(yàn)中壓力為200 kPa時(shí),均勻性最好(CU和DU分別為69.8%和60.9%)。2個(gè)噴頭對(duì)比發(fā)現(xiàn),在壓力50~300 kPa間,CU均值以R3000(68.79%)>O3000(65.33%),R3000的噴灑均勻性好一點(diǎn);而DU均值以R3000(50.82%)<O3000(55.69%),說(shuō)明空間分布均勻性O(shè)3000較R3000好。根據(jù)SD分析發(fā)現(xiàn),壓力在50~300 kPa間時(shí),O3000的CU和DU較R3000穩(wěn)定。
圖3 測(cè)試壓力下噴頭的分布均勻系數(shù)(DU)和組合均勻系數(shù)(CU)Fig.3 Christian uniformity coefficient (CU) and distribution uniformity coefficient (DU) of sprinklers with tested pressures
2.1.2 單噴頭水量分布
表1為2種噴頭在150 kPa下,至噴頭不同距離徑向布置雨量筒的實(shí)測(cè)降水深均值。采用MATLAB編程對(duì)噴頭噴灑強(qiáng)度進(jìn)行插值,R3000和O3000噴頭的噴灑半徑分別為7.5和8 m。采用3次樣條插值,在無(wú)風(fēng)條件下2個(gè)噴頭的水量分布情況如圖4所示。從表1降水深值和圖4噴灑強(qiáng)度均可看出,R3000噴頭水量在距噴頭2 m和4.5 m左右分布最多,O3000在噴頭周圍1 m內(nèi)水量比較多,其次是在5~6.5 m范圍內(nèi)分布較多。
表1 150 kPa壓力下至噴頭距離的降水深Table 1 Water depth at different distance to sprinkler under 150 kPa pressure mm
2.2 同類型2個(gè)噴頭組合噴灑特性
采用MATLAB插值后,將極坐標(biāo)轉(zhuǎn)化到直角坐標(biāo)系,找出噴水的部分,計(jì)算兩噴頭組合的CU、DU及平均噴灑強(qiáng)度(mean spraying intensity,MSI)。
圖4 150 kPa壓力單噴頭水量分布Fig.4 Single sprinkler water distribution under 150 kPa pressure
圖5 a為兩R3000噴頭組合CU、DU和MSI,可看出,兩噴頭間距在1~8 m間,CU總體呈先降低后增高趨勢(shì),拐點(diǎn)在兩噴頭間距為4.5 m的地方。組合后的最大值在兩噴頭間距為1 m時(shí),CU為77%,4.5 m時(shí)CU最低,為63%。兩噴頭間距在1~5.5 m間,組合后DU小于60%,間距6~8 m DU超過(guò)60%。MSI隨著兩噴頭間間距增大,逐漸減小。圖5b為兩O3000噴頭組合后的CU、DU和MSI,可看出,兩噴頭間距在1~7 m間,CU總體呈逐漸減小趨勢(shì),直到6.5 m處出現(xiàn)拐點(diǎn),拐點(diǎn)后上升趨勢(shì)較平緩。組合后的最大值在兩噴頭間距為1 m時(shí),CU為74%;4.5 m時(shí)CU最低66.8%。兩噴頭不同間距組合后DU呈現(xiàn)一定波動(dòng)變化,波動(dòng)范圍在54%~60%,間距2.5 m DU最小,為54%。MSI隨著兩噴頭間距增大,逐漸減小。圖6為兩噴頭1、3、7 m組合噴灑強(qiáng)度分布情況,隨著間距的變大,兩噴頭間的疊加部分在不斷的減少、噴灑范圍在逐漸增大。
圖5 兩噴頭組合的均勻系數(shù)和平均噴灑強(qiáng)度(MSI)Fig.5 Uniformity coefficient and mean spraying intensity (MSI) of 2 sprinklers combinations
2.3 多噴頭組合噴灑特性
2.3.1 多噴頭組合全噴灑域情況
采用MATLAB插值后,將極坐標(biāo)轉(zhuǎn)化到直角坐標(biāo)系,找出噴水的部分,計(jì)算多噴頭組合CU、DU、MSI和噴灑范圍(spraying range,SR),如圖7所示。由圖7可知,R3000噴頭間距在1~6 m間,CU總體呈上升趨勢(shì),6 m后略下降。組合后的最大值出現(xiàn)在兩噴頭6 m間距時(shí),CU為68%;噴頭間距1 m時(shí),CU最低51%。多噴頭組合DU隨著噴頭間距的增大,呈現(xiàn)逐漸上升趨勢(shì),變化區(qū)間為28%~58%,間距6 m DU超過(guò)50%。多噴頭等間距組合情況下,SR與噴頭間距(x)呈線性相關(guān),噴頭間距x∈[1~8] m,噴灑范圍SR∈[24~89] m。對(duì)MSI趨勢(shì)進(jìn)行擬合得到,MSI與噴頭組合間距存在指數(shù)函數(shù)關(guān)系,x∈[1~7.5] m,在噴頭間距為3 m左右,MSI與SR 2條線有交叉,此點(diǎn)噴頭間距是當(dāng)前平移式噴灌機(jī)常用噴頭組合間距。O3000多噴頭組合情況CU、DU、MSI、SR如圖7c~圖7d所示,可看出,噴頭間距在1~8 m間,CU、DU總體呈遞增趨勢(shì),在5.5 m時(shí)CU略下降。CU、DU組合后的最大值都出現(xiàn)在噴頭7 m間距時(shí),CU為72 %、DU為57%;噴頭間距1 m時(shí),CU、DU最低,分別為55 %、31%。多噴頭等間距組合情況下,SR與x呈線性相關(guān),x∈[1~8] m,SR∈[25~95] m。 對(duì)MSI趨勢(shì)進(jìn)行擬合得到,MSI與噴頭組合間距存在指數(shù)函數(shù)關(guān)系x∈[1~8] m。在噴頭間距為3 m時(shí),MSI與SR 2條線有交叉,此點(diǎn)噴頭間距是當(dāng)前平移式噴灌機(jī)常用噴頭組合間距。圖8為多噴頭1、3、7 m組合噴灑強(qiáng)度分布情況,隨著間距的變大,多噴頭間的疊加部分在不斷的減少、噴灑范圍在逐漸增大。
圖6 兩噴頭1、3、7 m組合噴灑強(qiáng)度分布Fig.6 Spraying intensity distribution of 2 sprinklers combination with spacing 1, 3 and 7 m
圖7 多噴頭組合均勻系數(shù)、平均噴灑強(qiáng)度及噴灑范圍(SR)Fig.7 Uniformity coefficient, MSI and spraying range (SR) of multiple sprinklers
圖8 多噴頭1、3、7 m組合全噴灑域噴灑強(qiáng)度分布Fig.8 Spraying intensity distribution of multiple sprinklers combination with spacing 1, 3 and 7 m in whole spraying area
2.3.2 多噴頭組合疊加域情況
采用MATLAB提取噴頭噴灑疊加區(qū)域,得到R3000的多噴頭組合疊加域CU、DU和MSI,如圖9a所示。隨著噴頭間距不斷變大,CU、DU呈現(xiàn)逐漸增高趨勢(shì)。在噴頭間距為6 m時(shí),CU達(dá)到噴灌工程規(guī)范中規(guī)定的行噴均勻度85%,DU為77%。噴頭間距在3.5 m后,DU超過(guò)65%。MSI隨著噴頭間距x的增大而減小,呈現(xiàn)指數(shù)函數(shù)關(guān)系:MSI=36.53 x-0.57(R2 = 0.993),x∈[1~7.5] m。提取疊加部分的MSI分布見(jiàn)圖10a~圖10c,隨著噴頭間距的變大,3個(gè)以上的噴頭噴灑重復(fù)疊加的區(qū)域逐漸減小。同時(shí),整個(gè)噴灑范圍在不斷的增大。
圖9 多噴頭組合疊加部分均勻系數(shù)和MSIFig.9 Uniformity intensity and MSI of many sprinklers combinations in overlap area
圖10 多噴頭1、3、7 m組合疊加部分噴灑強(qiáng)度分布Fig.10 Spraying intensity distribution of many sprinklers combinations with spacing 1, 3 and 7 m in overlap area
O3000的多噴頭組合疊加部分CU、DU和MSI如圖9b。噴頭間距在1~4.5 m內(nèi),組合間距變大,CU、DU呈現(xiàn)逐漸增高趨勢(shì),4.5 m時(shí)出現(xiàn)1個(gè)峰,此時(shí)CU=81.4%,DU=71.4%。在噴頭間距為5.5 m時(shí),CU、DU出現(xiàn)局部低值,分別為80%、67.8%。此后,噴頭間距增大,CU、DU逐漸增大。MSI隨著噴頭間距x的增大而減小,呈現(xiàn)MSI=29.42 x-0.6(R2 = 0.993),x∈[1~8 m]。提取疊加部分的噴灑強(qiáng)度分布見(jiàn)圖10d~圖10f,從圖中可以清晰地看出,O3000和R3000的疊加后疊加域的面積變化趨勢(shì)基本一致,但噴灑強(qiáng)度存在一定的差異,O3000噴灑強(qiáng)度比R3000噴灑強(qiáng)度分布更均勻些。
在MATLAB軟件中采用兩次插值的方法,得到單噴頭噴灑分布,插值的思路與前人研究[18,20,26-27]一致。多噴頭組合模擬數(shù)據(jù)采用室內(nèi)試驗(yàn)多條輻射線上的數(shù)據(jù),非單獨(dú)1條線的數(shù)據(jù),參考了Evans等做法[28]。結(jié)果發(fā)現(xiàn),Nelson R3000和O3000噴頭在安裝壓力調(diào)節(jié)器條件下,測(cè)試壓力在50~300 kPa范圍內(nèi),R3000和O3000噴頭分別在壓力150和200 kPa時(shí),CU、DU達(dá)到最優(yōu),這與鞏興暉[26]、Evans等[28]結(jié)論相近。本文發(fā)現(xiàn),兩噴頭組合由于噴頭間距的調(diào)整導(dǎo)致噴頭的噴灑疊加范圍在不斷的變化,重合率隨著組合間距的變大而減小,兩噴頭組合均勻度出現(xiàn)“V”型變化趨勢(shì)。大型噴灌機(jī)用折射式噴頭兩兩組合無(wú)法體現(xiàn)其在噴灌機(jī)上的組合效果,需通過(guò)多噴頭組合展現(xiàn)噴灌機(jī)的噴頭組合特性。
多噴頭組合后發(fā)現(xiàn),組合間距在1.9、2.9 m處,組合均勻度CU、DU并不最優(yōu),這也是印證了國(guó)內(nèi)噴灌機(jī)的生產(chǎn)是根據(jù)桁架的長(zhǎng)度和主管的管徑(輸水量)確定噴頭的組合間距。組合間距的不同均勻度亦不同[28],當(dāng)前主要測(cè)試和模擬大型噴灌機(jī)噴灑均勻度的方法為田間雨量筒測(cè)試法,經(jīng)過(guò)加權(quán)計(jì)算出均勻度,以此為評(píng)價(jià)大型噴灌機(jī)的依據(jù)[24,29-31]。本文借鑒了這些研究方法,用多條輻射線上的點(diǎn)數(shù)據(jù)模擬單噴頭噴灑數(shù)據(jù),以此為基礎(chǔ)疊加出多噴頭的組合噴灑情況。多噴頭組合均勻度的計(jì)算采用疊加后的數(shù)據(jù)計(jì)算得到,數(shù)據(jù)量大,涵蓋所有變化情況,與只通過(guò)測(cè)量噴灌機(jī)噴灑1條輻射線上的幾個(gè)點(diǎn)數(shù)據(jù)不同。本文組合后的均勻度值較他人[24,29]的研究計(jì)算值低,分析原因發(fā)現(xiàn):1)本文程序插值計(jì)算的水深點(diǎn)密度太大,是常規(guī)測(cè)量CU、DU值所用數(shù)據(jù)點(diǎn)的數(shù)萬(wàn)倍,數(shù)據(jù)點(diǎn)多涵蓋噴灑域全部變化情況,是導(dǎo)致計(jì)算的CU、DU值偏低的重要原因之一;2)本文采用的單噴頭數(shù)據(jù)為8條輻射線上點(diǎn)數(shù)據(jù),而非旋轉(zhuǎn)式噴頭常采用1條輻射線的數(shù)據(jù),實(shí)測(cè)8條輻射線數(shù)據(jù)有很大的差異性以及通過(guò)8條輻射線的數(shù)據(jù)計(jì)算得到單噴頭噴灑均勻性不高,也是導(dǎo)致模擬后計(jì)算多噴頭組合CU、DU值偏低的重要原因;3)本文模擬計(jì)算了噴灌機(jī)的靜態(tài)噴灑疊加,噴灑域內(nèi)有的點(diǎn)有單噴頭噴灑點(diǎn)、兩噴頭疊加點(diǎn)、三噴頭疊加點(diǎn)和四噴頭噴灑疊加點(diǎn),這些點(diǎn)數(shù)據(jù)存在很大的差異亦是出現(xiàn)CU、DU值偏低的原因之一;4)利用單噴頭數(shù)據(jù)組合疊加出多噴頭數(shù)據(jù),與真實(shí)的噴灑疊加存在差異,真實(shí)噴頭水滴疊加存在相互碰撞、水滴再分布現(xiàn)象。
本文針對(duì)多噴頭組合的CU、DU和MSI的計(jì)算,進(jìn)行了全噴灑域與疊加域的對(duì)比計(jì)算,發(fā)現(xiàn)疊加域的CU、DU和MSI值在相同噴頭間距時(shí)高于全噴灑域,這與事實(shí)相符。隨著噴頭間距不斷增大,全噴灑域面積有所增加,疊加域面積存在先變大后變小現(xiàn)象,還需要模擬計(jì)算進(jìn)一步明確具體的變化過(guò)程,但MSI在全噴灑域和疊加域均不斷減小。現(xiàn)實(shí)測(cè)量評(píng)價(jià)大型噴灌機(jī)的CU、DU時(shí),采取的雨量筒測(cè)量法,放置雨量筒的點(diǎn)都在噴頭疊加域內(nèi),只能反映靜態(tài)疊加域內(nèi)幾個(gè)點(diǎn)值,無(wú)法完全反映整個(gè)噴灑域及其疊加域內(nèi)情況。在未來(lái)的研究中,將進(jìn)一步結(jié)合大型噴灌機(jī)的田間實(shí)測(cè)情況,考慮噴灌機(jī)的行走速率的變化,進(jìn)一步分析模擬噴灌機(jī)的噴灑效果,以及考慮雨滴的大小與蒸散發(fā)的關(guān)系做更深一步研究。
該文應(yīng)用試驗(yàn)與插值方法研究噴灌機(jī)單噴頭、兩噴頭和多噴頭水分分布特性,結(jié)論如下:
1)單噴頭試驗(yàn)中,在壓力50~300 kPa間,R3000和O3000 噴灑均勻度均值分別為68.79%和65.33%。根據(jù)標(biāo)準(zhǔn)差和分布均勻系數(shù),O3000好于R3000。在150 kPa下,R3000噴頭水量在距噴頭2 m和4.5 m左右分布最多,而O3000在噴頭周圍1 m內(nèi)水量比較多。
2)兩R3000噴頭間距在1~8 m間,CU呈先降低后增高趨勢(shì),拐點(diǎn)在兩噴頭間距為4.5 m的地方。兩O3000噴頭間距在1~7 m間,CU總體呈逐漸減小趨勢(shì),直到6.5 m處出現(xiàn)拐點(diǎn)。MSI隨著兩噴頭間距增大,逐漸減小。兩噴頭組合由于噴頭間距的調(diào)整導(dǎo)致噴頭的噴灑疊加范圍在不斷的變化,重合率隨著組合間距的變大而減小,兩噴頭組合均勻度出現(xiàn)“V”型變化趨勢(shì)。大型噴灌機(jī)用折射式噴頭兩兩組合無(wú)法體現(xiàn)其在噴灌機(jī)上的組合效果,需通過(guò)多噴頭組合展現(xiàn)噴灌機(jī)的噴頭組合特性。
3)多噴頭組合試驗(yàn)表明,在噴頭間距為6 m時(shí),R3000的CU達(dá)到噴灌工程規(guī)范中規(guī)定的行噴均勻度85%,DU為77%。隨著噴頭間距的變大,3個(gè)以上的噴頭噴灑重復(fù)疊加的區(qū)域在逐漸減小,同時(shí),整個(gè)噴灑疊加區(qū)域在不斷的增大。O3000和R3000的疊加后疊加域的面積變化趨勢(shì)基本一致,但MSI存在一定的差異,O3000MSI分布均勻性上比R3000的更均勻些。比較疊加域和全噴灑域的CU、DU值,疊加域的值更高,現(xiàn)實(shí)測(cè)量噴灌機(jī)的噴灑均勻度用的雨量筒法測(cè)量的值,基本為疊加域中的值。全噴灑域計(jì)算出的CU、DU及MSI更能代表大型噴灌機(jī)的真實(shí)噴灑效果。
本文區(qū)分噴灌機(jī)的全噴灑域與疊加域,而計(jì)算得到的CU、DU值較其他研究偏低原因在于采用8條輻射線上的點(diǎn)數(shù)據(jù)插值疊加,而非常用的單條輻射線上的點(diǎn)數(shù)據(jù)插值疊加;疊加計(jì)算數(shù)據(jù)點(diǎn)多,涵蓋全部變化情況;此外,缺少了真實(shí)噴灑情境下不同噴頭噴灑水滴相互碰撞再分布的情況。
[參 考 文 獻(xiàn)]
[1] 中華人民共和國(guó)水利部編. 2016中國(guó)水利統(tǒng)計(jì)年鑒[M].北京:中國(guó)水利水電出版社,2016.
[2] 趙偉霞,李久生,栗巖峰. 大型噴灌機(jī)變量灌溉技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):1-7. Zhao Weixia, Li Jiusheng, Li Yanfeng. Review on variable rate irrigation with continuously moving sprinkler machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 1-7. (in Chinese with English abstract)
[3] 金宏智,何建強(qiáng),錢一超. 變量技術(shù)在精準(zhǔn)灌溉上的應(yīng)用[J]. 節(jié)水灌溉,2003(1):1-3. Jin Hongzhi, He Jianqiang, Qian Yichao. Application of VRT in precision irrigation[J]. Water Saving Irrigation, 2003(1): 1-3. (in Chinese with English abstract)
[4] 韓文霆,吳普特,馮浩,等. 方形噴灑域變量施水精確灌溉噴頭實(shí)現(xiàn)理論研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2003(2):105-107. Han Wenting, Wu Pute, Feng Hao, et al. Variable-rate sprinklers for precision irrigation on square area[J]. Agricultural Research in the Arid Areas, 2003(2): 105-107. (in Chinese with English abstract)
[5] Haghverdi A, Leib B G, Washington-Allen R A, et al. Perspectives on delineating management zones for variable rate irrigation[J]. Computers and Electronics in Agriculture, 2015, 117: 154-167.
[6] King B A, Wall R W, Kincaid D C, et al. Field testing of a variable rate sprinkler and control system for site-specific water and nutrient application[J]. Applied Engineering in Agriculture, 2005, 21(5): 847-853.
[7] Evans R G, LaRue J, Stone K C, et al. Adoption of sitespecific variable rate sprinkler irrigation systems[J]. Irrigation Science, 2013, 31: 871-887.
[8] O′Shaughness S A, Evett S R, Colaizzi P D, et al. Wireless sensor network effectively controls center pivot irrigation of sorghum[J]. Applied Engineering in Agriculture, 2013, 29(6): 853-864.
[9] Haghverdi A, Leib B G, Washington-Allen R A, et al. Studying uniform and variable rate center pivot irrigation strategies with the aid of site-specific water production functions[J]. Computers and Electronics in Agriculture, 2016, 123: 327-340.
[10] Sui R, Fisher D K. Field test of a center pivot irrigation system[J]. Applied Engineering in Agriculture, 2015, 31(1): 83-88.
[11] O’ Shaughness S A, Evett S R, Colaizzi P D. Dynamic prescription maps for site-specific variable rate irrigation of cotton[J]. Agriculture Water Management, 2015, 159: 123-138.
[12] King B A, Bjorneberg D L. Evaluation of potential runoff and erosion of four center pivot irrigation sprinklers[J]. Applied Engineering in Agriculture, 2011, 27(1): 75-85.
[13] 韓文霆,吳普特,楊青,等. 噴灌水量分布均勻性評(píng)價(jià)指標(biāo)比較及研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(9):172-177. Han Wenting, Wu Pute, Yang Qing, et al. Advances and comparisons of uniformity evaluation index of sprinkle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 172-177. (in Chinese with English abstract)
[14] 李久生,饒敏杰. 噴灌水量分布均勻性評(píng)價(jià)指標(biāo)的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(4):78-82. Li Jiusheng, Rao Minjie. Evaluation methods of sprinkler water nonuniformity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(4): 78-82. (in Chinese with English abstract)
[15] 韓文霆,王玄,孫瑜. 噴灌水量分布動(dòng)態(tài)模擬與均勻性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):159-164,200. Han Wenting, Wang Xuan, Sun Yu. Dynamic simulation for sprinkler irrigation water distribution with uniformity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 159-164, 200. (in Chinese with English abstract) [16] Tarjuelo J M, Montero J, Honrubia F T, et al. Analysis of uniformity of sprinkle irrigation in a semi-arid area[J]. Agricultural Water Management, 1999, 40(2): 315-331.
[17] 韓文霆,崔利華,吳普特,等. 正三角形組合噴灌均勻度計(jì)算方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):99-107. Han Wenting, Cui Lihua, Wu Pute, et al. Calculation methods for irrigation uniformity with sprinklers spaced in regular triangle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 99-107. (in Chinese with English abstract)
[18] 韓文霆,姚小敏,朱冰欽,等. 變量噴灑噴頭組合噴灌試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(7):121-126,112. Han Wenting, Yao Xiaomin, Zhu Bingqin, et al. test and evaluation on variable-rate irrigation sprinkler[J] Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 121-126,112. (in Chinese with English abstract)
[19] 袁壽其,朱興業(yè),李紅,等. 基于MATLAB全射流噴頭組合噴灌計(jì)算模擬[J]. 排灌機(jī)械,2008,26(1):47-52. Yuan shouqi, Zhu Xingye, Li Hong, et al. Simulation of combined irrigation for complete fluidic sprinkler based on MATLAB[J]. Drainage and Irrigation Machinery, 2008, 26(1): 47-52. (in Chinese with English abstract)
[20] 朱興業(yè),劉俊萍,袁壽其. 旋轉(zhuǎn)式射流噴頭結(jié)構(gòu)參數(shù)及組合間距對(duì)噴灑均勻性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(6):66-72. Zhu Xingye, Liu Junping, Yuan Shouqi. Effect on spraying uniformity based on geometrical parameters and combined spacing of rotational fluidic sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 66-72. (in Chinese with English abstract)
[21] Dwomoh F A, Shouqi Y, Hong L. Field performance characteristics of fluidic sprinkler[J]. Applied Engineering in Agriculture, 2013, 29(4): 529-536.
[22] Zhu X, Yuan S, Li H, et al. Irrigation uniformity with complete fluidic sprinkler in no-wind conditions[J]. Computer and Computing Technologies in Agriculture II, 2009, 2(295): 909-917.
[23] 嚴(yán)海軍,鄭耀泉. 兩種園林地埋式噴頭組合噴灑性能的模擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):84-86. Yan Haijun, Zheng Yaoquan. Simulating sprinkler performance of two combined pop-up sprinklers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 4-86. (in Chinese with English abstract)
[24] Valín M I, Cameira M R, Teodoro P R, et al. DEPIVOT: A model for center-pivot design and evaluation[J]. Computers and Electronics in Agriculture, 2012, 87: 159-170.
[25] ANSI/ASAE. Procedure for Sprinkler Distribution Testing for Research Purposes[M]. USA: ASAE S330, 2003.
[26] 鞏興暉. 移動(dòng)式噴灌機(jī)折射式噴頭水量及動(dòng)能分布規(guī)律研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Gong Xinghui, Study on the Water and Specific Power Distribution of the Spray-plate Sprinkler used in the Moving Sprinkler Machine[D].Yangling: Northwest A & F University, 2015. (in Chinese with English abstract)
[27] 李永沖,嚴(yán)海軍,徐成波,等.考慮水滴運(yùn)動(dòng)蒸發(fā)的噴灌水量分布模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(7):127-132. Li Yongchong,Yan Haijun, Xu Chengbo, et al. Simulation of sprinkler water distribution with droplet dynamics and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 44(7): 127-132. (in Chinese with English abstract)
[28] Evans R G, Han S, Kroeger M W. Spatial distribution and uniformity evaluations for chemigation with center pivots[J]. Transactions of the ASAE, 1995, 38(1): 85-92.
[29] Mohamed H, Abd El-wahed M M, Lorenzini G. Harvesting water in a center pivot irrigation system: Evaluation of distribution uniformity with varying operating parameters[J]. Journal of Engineering Thermoplastics, 2015, 24(2): 143-151.
[30] Moreno M A, Medina D, Ortega J F, et al. Optimal design of center pivot systems with water supplied from wells[J]. Agricultural Water Management, 2012, 107: 112-121.
[31] Ouazaa S, Latorre B, Burguete J, et al. Effect of the start-stop cycle of center-pivot towers on irrigation performance: Experiments and simulations[J]. Agricultural Water Management, 2015, 147: 163-174.
Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler
Chen Zhen, Duan Fuyi, Fan Yongshen, JiaYanhui, Huang Xiuqiao※
(Farmland Irrigation Research Institute, CAAS, Henan Key Laboratory of Water-saving Agriculture, Xinxiang 453002, China)
This paper focused on water distribution characteristics of single, double and multiple sprinklers of large-scale lateral-moving sprinkler system. An experiment was carried out to measure Nelson R3000 and O3000 single sprinkler water distribution by catch cans. The catch cans were laid in the radiation lines in 8 directions. The spacing of 2 catch cans was 0.5 m along each line. The center point was a set of sprinkler, including a sprinkling system mounted 1.8 m high. A total of 6 pressures (from 50 kPa to 300 kPa) were applied in the process of measurement of a single sprinkler. Measurements included water depth, spraying radius, discharge and running time. The Christiansen uniformity (CU) and distribution uniformity (DU) of sprinklers were calculated. The superposition method with MATLAB was conducted to simulate water distribution of 2 sprinklers and multiple sprinklers by single sprinkler data. Meanwhile, CU, DU and mean spraying intensity (MSI) of 2 sprinklers and multiple sprinklers were obtained in MATLAB. Moreover, the overlap area (OA) and non-overlap area (NOA) were separated according to superposition principle and spraying spacing. The theory was that if one-point MSI was not 0, the point belonged to the whole spraying area. Meanwhile, the distances between the point and 2 of the sprinklers were less than spraying radius, which meant the point was in the OA. Otherwise, this point was in the NOA. The results showed the mean CU and DU of R3000 sprinkler were 68.79% and 50.82%. The CU and DU of R3000 sprinkler increased before the pressure of 150 kPa, indicating that the spraying effect was best at 150 kPa. The mean CU and DU of O3000 sprinkler were 65.33% and 55.69%. The CU and DU of R3000 sprinkler increased before the pressure of 200 kPa, indicating that the spraying effect was best at 200 kPa. The standard deviation of the uniformity showed that the O3000 was more stable than the R3000 at the pressure of 50-300 kPa. The water depth distribution and spraying intensity distribution at 150 kPa away from the sprinkler and showed that the R3000 had the highest water depth at about 2 and 4.5 m away from the sprinkler and the O3000 had the highest water depth at about 5-6.5 m away from the sprinkler. The spraying radius of R3000 and O3000 was 7.5 and 8.0 m, respectively. For the 2 R3000 sprinklers combinations, the CU decreased with the spacing of the 2 sprinklers increased to 4.5 m, the DU was smaller than 60% when the spacing between the 2 sprinklers was 1-5.5 m, and the mean spraying intensity (MSI) decreased with the spacing increased. For the 2 O3000 sprinklers combinations, the CU decreased with the spacing of the 2 sprinklers increased to 6.5 m, the DU was about 54%-60% when the spacing between the 2 sprinklers was 1-8 m, and the MSI decreased with the spacing increased. The overlap area of the 2 sprinklers decreased but the spraying range increased with the spacing increased from 1 to 7 m. For the multiple R3000 sprinklers combinations, the CU increased when the spacing was increased from 1 m to 6 m and the maximum CU was 68% at the spacing of 6 m, and the DU increased when the spacing increased and its value was above 50% at the spacing of 6 m. For the multiple O3000 sprinklers combinations, the CU and DU were highest with 72% and 57%, respectively at the spacing of 7 m, and were lowest with 55% and 31% at the spacing of 1 m. The CU and DU in the overlap area was higher than the whole spraying area but the CU was still lower than 85%. The study provides valuable information for the design of the sprinkler system.
sprinklers; uniformity; pressure; Nelson R3000; O3000; superposition method; sprinkling model
10.11975/j.issn.1002-6819.2017.16.014
S275.5;S277.9+4
A
1002-6819(2017)-16-0104-08
陳 震,段福義,范永申,賈艷輝,黃修橋. 噴灌機(jī)全噴灑域與疊加域水量分布特性的靜態(tài)模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):104-111.
10.11975/j.issn.1002-6819.2017.16.014 http://www.tcsae.org
Chen Zhen, Duan Fuyi, Fan Yongshen, JiaYanhui, Huang Xiuqiao. Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 104-111. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.16.014 http://www.tcsae.org
2017-02-13
2017-06-10
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400104);中央級(jí)科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所)
陳 震,男,博士生,助理研究員,主要從事噴灌技術(shù)研究。新鄉(xiāng)中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,453002。Email:chenzhen@caas.cn
※通信作者:黃修橋,男,研究員,博士生導(dǎo)師,主要從事節(jié)水高效灌溉技術(shù)與裝備研究。新鄉(xiāng) 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,453002。Email:huangxq626@126.com