王金武,唐 漢,沈紅光,白海超,那明君(東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030)
高地隙折腰式水田多功能動力底盤設(shè)計(jì)與試驗(yàn)
王金武,唐 漢,沈紅光,白海超,那明君
(東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030)
針對目前水田農(nóng)用底盤通用性差、轉(zhuǎn)彎半徑大、離地間隙低、田間行駛及爬坡越埂穩(wěn)定性差等問題,結(jié)合東北地區(qū)水稻種植模式和農(nóng)藝要求,該文設(shè)計(jì)了一種高地隙折腰式水田多功能動力底盤,闡述分析了底盤整體結(jié)構(gòu)、傳動系統(tǒng)與工作原理。在靜態(tài)彎曲和扭轉(zhuǎn)工況下進(jìn)行了有限元分析,得到了滿載量化狀態(tài)下車架載荷分布和薄弱部位,有限元分析表明:在滿載彎曲工況下,車架所受最大應(yīng)力發(fā)生在平衡裝置搖擺軸處為130.70 MPa,最大位移發(fā)生在后車架發(fā)動機(jī)安裝梁處為1.56 mm;在滿載扭轉(zhuǎn)工況下,車架所受最大應(yīng)力發(fā)生在右后懸架與縱梁連接處為255.44 MPa,最大位移發(fā)生在車架左縱梁與后橫梁連接處為9.44 mm,為后續(xù)開展車架薄弱區(qū)域的改進(jìn)與輕量化設(shè)計(jì)提供重要依據(jù)。在此基礎(chǔ)上,對動力底盤的轉(zhuǎn)向性能、行駛性能和越埂性能進(jìn)行了理論分析,并以行駛速度、最小轉(zhuǎn)彎半徑、最大爬坡角和最大越埂高度為試驗(yàn)指標(biāo),進(jìn)行了田間性能試驗(yàn)。試驗(yàn)結(jié)果表明:多功能動力底盤田間道路行駛速度范圍為1~14 km/h,水田行駛速度范圍為1~6 km/h,水田行駛最小轉(zhuǎn)彎半徑為3 200 mm,最大爬坡角為56o,最大越埂高度為533 mm,整機(jī)工作性能滿足田間管理作業(yè)要求,提高了水田綜合作業(yè)的高效性和適用性,實(shí)現(xiàn)動力底盤的一機(jī)多用。該研究可為水田田間管理作業(yè)的有效實(shí)施提供綜合應(yīng)用平臺和技術(shù)支撐。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);水田;動力底盤;高地隙;折腰轉(zhuǎn)向
水稻是中國主要糧食作物,其種植生產(chǎn)規(guī)模對糧食生產(chǎn)安全具有重要意義[1-3]。水田高效田間管理是水稻高產(chǎn)穩(wěn)產(chǎn)的重要保證,同時有利于標(biāo)準(zhǔn)化農(nóng)田建設(shè)。目前,中國水田綜合機(jī)械化程度較低[4],尤其是田間管理作業(yè)方面,仍以人工勞力為主,其作業(yè)質(zhì)量差、周期長,重復(fù)勞動強(qiáng)度大,一定程度上限制了水稻規(guī)?;?、標(biāo)準(zhǔn)化種植發(fā)展。
水田田間機(jī)械化管理是通過農(nóng)業(yè)機(jī)具完成從插秧或直播過程至收獲前的秧苗運(yùn)輸、除草施肥、植保噴藥等系列作業(yè)的技術(shù)。近些年,隨著水稻種植規(guī)模的不斷發(fā)展,國內(nèi)主產(chǎn)區(qū)對其田間管理綜合作業(yè)機(jī)具的需求日漸迫切,國內(nèi)農(nóng)機(jī)科技人員也研制多種相關(guān)配套作業(yè)機(jī)具,主要通過與拖拉機(jī)懸掛連接,在實(shí)際水田轉(zhuǎn)彎、越埂及爬坡等過程中,整體仍存在操作勞動強(qiáng)度大、變速范圍小及配套農(nóng)具少等問題,且缺少可適用于多種作業(yè)環(huán)節(jié)的承載機(jī)具[5-7]。國內(nèi)外部分高校及科研院所重點(diǎn)對高地隙底盤驅(qū)動技術(shù)及機(jī)具進(jìn)行相關(guān)研究[8-10],多通過對插秧機(jī)底盤或四輪拖拉機(jī)進(jìn)行改制,采用前輪轉(zhuǎn)向形式,轉(zhuǎn)彎半徑大,倒退轉(zhuǎn)彎過程中易造成作物碾壓損傷,且離地間隙低,重心位置高,田間行駛及爬坡越埂穩(wěn)定性較差,無法完全適用于各種田間管理作業(yè)。
針對上述問題,結(jié)合東北地區(qū)水稻種植模式和農(nóng)藝要求,綜合考慮作業(yè)效率、行走穩(wěn)定性及普遍適用性等因素,為解決水稻生產(chǎn)及田間管理存在的實(shí)際問題,提高水稻全程機(jī)械化生產(chǎn)發(fā)展水平,本文重點(diǎn)展開了對高地隙折腰式水田多功能動力底盤的設(shè)計(jì)與試驗(yàn)研究。
1.1 設(shè)計(jì)目標(biāo)
水田作業(yè)環(huán)境較為復(fù)雜多樣,亟需田間管理作業(yè)的高通過性、高機(jī)動性通用動力機(jī)械,滿足病蟲害防治噴藥、施肥等工作部件的配套要求,保證作業(yè)過程中高地隙、輪陷小、順利越埂、減小傷苗和轉(zhuǎn)彎半徑小等要求,實(shí)現(xiàn)田間管理的一機(jī)多用[11]。本研究的設(shè)計(jì)目標(biāo)是為水田田間實(shí)施各種作業(yè)提供綜合應(yīng)用平臺,底盤可掛接不同農(nóng)業(yè)機(jī)具完成運(yùn)秧、施肥、除草及植保等多種作業(yè)。即:1)可順利通過高為500 mm的田埂或坡地,實(shí)現(xiàn)機(jī)具在路面至水田或水田田間的無阻礙行駛作業(yè);2)作業(yè)行駛范圍廣(1~14 km/h),滿足各工況下平穩(wěn)變速作業(yè),實(shí)現(xiàn)機(jī)具田間作業(yè)與道路運(yùn)輸?shù)目焖俎D(zhuǎn)換;3)四輪驅(qū)動,穩(wěn)定性好,爬坡越埂角度≥30°,抗翻傾性能強(qiáng);4)水田轉(zhuǎn)向靈活,轉(zhuǎn)彎半徑小,結(jié)合東北地區(qū)水田中小地塊實(shí)際需求及實(shí)地調(diào)研考察,機(jī)具轉(zhuǎn)彎半徑≤3 500 mm;5)可配置運(yùn)秧貨箱、施肥噴藥等作業(yè)部件,完成各類田間管理作業(yè)。
1.2 整體結(jié)構(gòu)和工作原理
如圖1所示,高地隙折腰式水田多功能動力底盤主要由發(fā)動機(jī)6、前后車架15、7、車架平衡裝置14、車橋18、組合式變速箱9、折腰轉(zhuǎn)向系統(tǒng)(液壓油箱1、轉(zhuǎn)向油缸2、液壓油泵10、搖擺軸11、全液壓轉(zhuǎn)向機(jī)構(gòu)17)、前后行走輪13、8及相關(guān)配件等組成。底盤采用液壓與機(jī)械結(jié)合的傳動方式,結(jié)合東北地區(qū)多種水田種植模式與農(nóng)藝要求[12-13],即常規(guī)水稻種植行距為300 mm,寬窄行種植行距為200 mm+400 mm,植保時期水稻植株高度為400~500 mm,設(shè)計(jì)配置底盤離地間隙、輪距及軸距等相關(guān)結(jié)構(gòu)參數(shù),提高機(jī)具利用率同時減少對植株機(jī)械損傷。為適應(yīng)田間運(yùn)秧、施肥和植保等頻繁越埂作業(yè),應(yīng)具有良好行駛穩(wěn)定性和抗翻傾性,底盤機(jī)架采用鉸接方式將前后兩段車架連接,并配置車架平衡裝置,實(shí)現(xiàn)折腰轉(zhuǎn)向功用,其轉(zhuǎn)彎半徑小,轉(zhuǎn)向靈活。行走系統(tǒng)為四輪驅(qū)動,綜合考慮底盤刮擦、碾壓稻苗,具有足夠行走附著性能,下陷深度不宜超過硬地層等因素[14-15],選取橡膠凸齒窄胎體輪胎,其直徑為1 200 mm,胎體寬為70 mm,提高整機(jī)的越壕溝能力和越垂直障礙能力。
圖1 高地隙折腰式水田多功能動力底盤Fig.1 High clearance roll-waist multifunctional power chassis for paddy field
多功能動力底盤配有液壓輸出系統(tǒng)及動力輸出系統(tǒng),以實(shí)現(xiàn)病蟲害防治噴藥、施肥等各類田間管理作業(yè)。安裝運(yùn)秧貨架可完成水稻秧苗田間運(yùn)輸;安裝單圓盤撒肥裝置可完成水田施肥作業(yè),動力由配套液壓系統(tǒng)提供,通過液壓馬達(dá)驅(qū)動圓盤撒肥裝置將顆粒肥料離心拋灑[16-17];安裝噴藥裝置可完成水田植保作業(yè),由動力輸出軸和液壓系統(tǒng)提供動力,藥液流經(jīng)分配閥,一部分回流到藥箱進(jìn)行調(diào)壓和攪拌,另一部分由噴頭噴出,液壓系統(tǒng)控制噴霧桁架的升降展開[18]。具體技術(shù)參數(shù)如表1所示。
表1 多功能動力底盤技術(shù)參數(shù)Table 1 Technical parameters of multifunctional power chassis
傳動系統(tǒng)采用傳統(tǒng)常規(guī)原則設(shè)計(jì)[13],發(fā)動機(jī)分3路動力輸出,分別驅(qū)動液壓輸出系統(tǒng)、動力輸出系統(tǒng)和前后行走輪,動力輸出路線如圖2所示。發(fā)動機(jī)動力通過帶傳動和離合器傳至液壓輸出系統(tǒng)和組合式變速箱,由液壓輸出系統(tǒng)驅(qū)動底盤折腰轉(zhuǎn)向、懸掛農(nóng)具升降及桁架展開等;由組合式變速箱輸出動力分2路,即一路通過動力輸出軸連接外置農(nóng)業(yè)機(jī)具實(shí)施水田作業(yè),另一路經(jīng)變速箱及中央傳動的變速變扭后傳遞至前后差速器和減速器,將動力等量分配給左右半軸驅(qū)動行走輪運(yùn)動,實(shí)現(xiàn)四輪行走驅(qū)動。
傳動系統(tǒng)總傳動比等于各部分傳動比的乘積,主要由發(fā)動機(jī)轉(zhuǎn)速、行駛速度及驅(qū)動行走輪直徑?jīng)Q定。為充分利用發(fā)動機(jī)功率,對各擋位傳動比進(jìn)行合理分配,即
圖2 總體傳動系統(tǒng)示意圖Fig.2 Schematic diagram of overall transmission system
為合理配置擋位數(shù)目及傳動比,同時滿足變速箱結(jié)構(gòu)簡單緊湊、工作性能穩(wěn)定等要求,選取ST6+2型組合式變速箱為動力底盤傳動核心,通過擋位較多的主變速箱和僅分高低擋的副變速箱串聯(lián)實(shí)現(xiàn)擋位變化[19],其主變速箱配有3個前進(jìn)擋和1個倒擋,副變速箱配有高、低擋2個擋位,組合后總計(jì)8個擋位。根據(jù)各級傳動裝置作業(yè)要求,對各組傳動比進(jìn)行合理分配,其各級傳動比為
式中di為發(fā)動機(jī)與離合器帶傳動比;bi為主變速箱傳動比;gi為副變速箱傳動比;hi為中央傳動比;zi為行走輪終端傳動比。
通過各級傳動比關(guān)系,分別確定中央傳動比、行走輪終端傳動比和主、副變速箱傳動比,在滿足各類工作要求時,應(yīng)適當(dāng)加大行走輪終端傳動比[20-22],減小主、副變速箱傳動比,縮小其結(jié)構(gòu)尺寸,實(shí)現(xiàn)變速箱輕量化設(shè)計(jì),具體傳動比分配如表2所示。
表2 各級傳動比分配方案Table 2 Distribution scheme of transmission ratio at all levels
3.1 車架結(jié)構(gòu)設(shè)計(jì)
車架作為多功能動力底盤的關(guān)鍵部件之一,占底盤整體質(zhì)量的較大比例,其質(zhì)量分布及動靜態(tài)載荷特性直接影響整體轉(zhuǎn)向、越埂和田間通過性。結(jié)合鉸接式和邊梁式車架特點(diǎn)[23-24],設(shè)計(jì)車架整體為折腰鉸接式,前后車架由4根縱梁、10根橫梁和10根豎梁以焊接方式剛性連接,并通過鉸接裝置將2部分組合,車架總長為3 200 mm,寬為800 mm,其中前車架長為820 mm,后車架長為2 000 mm,如圖3所示??v梁分別貫穿于前后車架,對其強(qiáng)度要求較高,選用截面為80 mm×40 mm×4 mm(長×寬×厚)的45號鋼成型方管制造。其中車架平衡裝置配置安裝在前車架下方,主要通過搖擺軸以鉸接形式與前車架橫梁掛接,調(diào)節(jié)越埂作業(yè)時車架總體平衡[25],選用截面為40 mm×40 mm× 4 mm(長×寬×厚)的45號鋼成型方管制造。搖擺軸將前車架所承受載荷傳遞至前車橋,所需較大的抗彎強(qiáng)度,選用直徑為30 mm的Q235低碳鋼實(shí)心軸。在車架各結(jié)構(gòu)完成必要功能前提下,運(yùn)用有限元軟件對其整體剛度及強(qiáng)度進(jìn)行模擬分析,以保證其具有承受多種工況下沖擊載荷的能力。
3.2 車架有限元分析
在此基礎(chǔ)上,利用三維建模軟件Creo Parametric 2.0建立車架參數(shù)化幾何模型,并導(dǎo)入至有限元分析軟件ANSYS Workbench 14.0。為提高仿真運(yùn)行速度及精度,對車架幾何模型進(jìn)行簡化處理,忽略部分安裝孔及凸臺,將倒角、圓角簡化為直角,并不考慮焊接工藝對車架材料組織特性影響。設(shè)定車架材料為45號鋼,彈性模量為210 GPa,屈服強(qiáng)度為355 MPa,泊松比為0.3,密度為7 850 kg/m3。采用ANSYS MESH模塊進(jìn)行網(wǎng)格劃分[26],通過Sizing 尺寸控制網(wǎng)格質(zhì)量,根據(jù)實(shí)體模型大小和網(wǎng)格規(guī)模,在結(jié)構(gòu)較簡單實(shí)體區(qū)域,網(wǎng)格劃分較稀疏(網(wǎng)格平均尺寸為0.743 mm),在裝配結(jié)合區(qū)域,劃分網(wǎng)格密度較大(網(wǎng)格平均尺寸為0.266 mm),整個模型共劃分22 879個實(shí)體單元,節(jié)點(diǎn)數(shù)為45 507個。
圖3 多功能動力底盤車架總體結(jié)構(gòu)圖Fig.3 Overall structure diagram of carframe of multifunctional chassis with power train
由于水田作業(yè)環(huán)境的多樣性與復(fù)雜性,對車架整體剛度及強(qiáng)度要求較高,為檢驗(yàn)其在滿載靜態(tài)狀態(tài)下實(shí)用性能(即勻速時車架彎曲和懸空時車架扭轉(zhuǎn)2種工況),添加動力底盤配置部件及承載等全部載荷,車架自身質(zhì)量通過定義重力加速度施加,發(fā)動機(jī)、變速箱、液壓油箱等部件根據(jù)其在底盤實(shí)際位置以集中載荷形式施加相應(yīng)節(jié)點(diǎn),貨箱承載質(zhì)量以均布載荷形式施加于左右縱梁[27],模擬所需載荷類型與加載形式如表3所示。
表3 有限元分析中載荷類型與加載形式Table 3 Load type and apply form in finite element analysis
對勻速行駛過程中車架滿載狀態(tài)下的結(jié)構(gòu)強(qiáng)度及剛度進(jìn)行校核,模擬其應(yīng)力分布和變形情況,選取滿載彎曲載荷系數(shù)為2.5[28]。在滿載彎曲工況下,應(yīng)力分布如圖4a所示,其整體所受應(yīng)力較小且多在35 MPa以內(nèi),在施加載荷的位置應(yīng)力稍大,但遠(yuǎn)小于材料的屈服極限強(qiáng)度355 MPa。車架所受最大應(yīng)力發(fā)生在平衡裝置搖擺軸處為130.70 MPa。在滿載情況下車架各處的應(yīng)力皆小于許用應(yīng)力142 MPa(355/2.5),因而車架設(shè)計(jì)滿足力學(xué)性能要求。位移分布如圖4b所示,后車架前端區(qū)域與鉸接裝置發(fā)生位移較大,最大位移發(fā)生在后車架發(fā)動機(jī)安裝梁處為1.56 mm,主要由于后車架前端承受貨箱載荷的同時仍需支撐發(fā)動機(jī)等部件質(zhì)量,此區(qū)域承受質(zhì)量大于車架其他區(qū)域。由于左右縱梁相同區(qū)域變形量相等說明車架具有較好的載荷配比。
圖4 滿載工況下車架等效應(yīng)力與軸向位移分布圖Fig.4 Distribution diagram of equivalent stress and axial displacement of carframe in full load condition
動力底盤在田間作業(yè)或行走時,由于路面凹凸不平常導(dǎo)致輪胎無法同時著地致使車架受力不對稱,形成對車架的扭矩作用,選取滿載扭轉(zhuǎn)載荷系數(shù)為1.3[29]。結(jié)合水田運(yùn)輸路面實(shí)際狀態(tài),設(shè)定分析各行走輪懸空扭轉(zhuǎn)工況下應(yīng)力及變形情況,可知在承載質(zhì)量800 kg,右后輪懸空時所受應(yīng)力及變形最大,即在滿載扭轉(zhuǎn)工況下,應(yīng)力分布如圖4c所示,車架所受最大應(yīng)力發(fā)生在右后懸架與縱梁連接處為255.44 MPa,主要由于右后懸架自由度被完全約束且與縱梁剛性焊接連接,車架發(fā)生扭轉(zhuǎn)時該區(qū)域抗扭剛度阻礙抗扭變形而導(dǎo)致應(yīng)力集中。車架整體所受應(yīng)力基本保持在40 MPa以下,遠(yuǎn)小于許用應(yīng)力273 MPa(355/1.3),設(shè)計(jì)符合強(qiáng)度要求。位移分布如圖4d所示,最大位移發(fā)生在車架左縱梁與后橫梁連接處為1.62 mm。
基于有限元分析模擬結(jié)果,得到了在滿載工況下車架載荷分布和薄弱部位。在后續(xù)研究中應(yīng)根據(jù)優(yōu)化設(shè)計(jì)理論[30-31]重點(diǎn)開展車架薄弱區(qū)域的改進(jìn)與輕量化設(shè)計(jì)研究工作,即以質(zhì)量最輕為優(yōu)化目標(biāo),車架結(jié)構(gòu)中各梁截面尺寸為設(shè)計(jì)變量,車架固有頻率、材料屬性、結(jié)構(gòu)位移量及應(yīng)變值為狀態(tài)變量。
4.1 轉(zhuǎn)向性能分析
圖5為多功能動力底盤在水平地面上穩(wěn)定轉(zhuǎn)向示意圖,轉(zhuǎn)向時通過轉(zhuǎn)向油缸的伸縮運(yùn)動使前后車架發(fā)生偏轉(zhuǎn),前車架繞轉(zhuǎn)向鉸接點(diǎn)轉(zhuǎn)過一定角度,而后行走架整體并未發(fā)生偏轉(zhuǎn),前后行走輪的軸線交匯于一點(diǎn),兩側(cè)車輪各軸上轉(zhuǎn)動平面始終保持平行。
圖5 多功能動力底盤折腰轉(zhuǎn)向原理圖Fig.5 Schematic diagram of articulated steering of multifunctional power chassis
由幾何分析可知,前行走輪外側(cè)車輪最小轉(zhuǎn)彎半徑為
動力底盤整體轉(zhuǎn)彎半徑與轉(zhuǎn)向鉸接點(diǎn)配置比例方位有關(guān),即k<0.5時,R1>R2,動力底盤整體最小轉(zhuǎn)彎半徑為前行走輪外側(cè)車輪最小轉(zhuǎn)彎半徑R1;k=0.5時,R1=R2,動力底盤整體最小轉(zhuǎn)彎半徑為前行走輪外側(cè)車輪最小轉(zhuǎn)彎半徑R1或后行走輪外側(cè)車輪最小轉(zhuǎn)彎半徑R2;k>0.5時,R1 4.2 穩(wěn)定性能分析 本研究重點(diǎn)對動力底盤縱向極限翻傾狀態(tài)進(jìn)行分析,當(dāng)動力底盤行駛或停止在縱向坡地時,抵抗沿縱向前后翻傾或滑移的能力,選取極限翻傾角進(jìn)行評價[33]。當(dāng)動力底盤勻速在上坡行駛時,由于上坡速度較小,可忽略空氣阻力,其近似于靜止停放在坡道上,如圖6a所示,忽略輪胎彈性變形,建立其力學(xué)平衡方程 圖6 多功能動力底盤縱向極限翻傾狀態(tài)分析Fig.6 Analysis of longitudinal limit tilting state of multifunctional power chassis 當(dāng)動力底盤處于上坡極限翻傾臨界狀態(tài)時,土壤對前行走輪切向反作用力FT1=0,此時由式(7)分析可知,動力底盤縱向極限翻傾角與重心位置有關(guān),上坡過程中當(dāng)重力線位于后輪著地點(diǎn)前時,多功能底盤即避免向后翻傾。同理下坡極限翻傾臨界狀態(tài)分析如圖6b所示,此時動力底盤下坡極限翻傾角為 通過上述分析可知,動力底盤重心越低,穩(wěn)定性越好,抗翻傾能力越強(qiáng),在保證高地隙的前提下盡量降低底盤重心,同時合理配置底盤重心位置,運(yùn)用有限元分析軟件ANSYS Workbench 14.0對動力底盤重心位置進(jìn)行測定,得到動力底盤后軸至重心距離B為1 150 mm,動力底盤重心至地面垂直高度h為848 mm,將上述參數(shù)代入式(7)和(8)中,可得其上下坡極限翻傾角αlim和limα′分別為53.6°和49.8°。 4.3 越埂性能分析 田間作業(yè)時動力底盤須翻越田埂,開展各項(xiàng)水田管理作業(yè),越埂性能是評價底盤通過性的重要指標(biāo),當(dāng)?shù)妆P越埂時其作業(yè)速度較低,可簡化為靜力學(xué)問題進(jìn)行研究[34],重點(diǎn)對前后行走輪越埂狀態(tài)分析,以推導(dǎo)出動力底盤結(jié)構(gòu)參數(shù)與越埂性能關(guān)系。對前行走輪越埂狀態(tài)進(jìn)行力學(xué)分析,如圖7a所示,忽略輪胎彈性變形,建立其力學(xué)平衡方程 根據(jù)水田土壤實(shí)際作業(yè)狀態(tài),選取土壤附著系數(shù)Ψ為0.5,將動力底盤相關(guān)結(jié)構(gòu)參數(shù)代入式(12)中,可得前行走輪越埂高度S1為543 mm。 圖7 多功能動力底盤前后行走輪越埂狀態(tài)分析Fig.7 Analysis of climbing ridge state of front and rear wheels of multifunctional power chassis 在此基礎(chǔ)上,對后行走輪越埂狀態(tài)進(jìn)行分析,如圖7b所示,建立其力學(xué)平衡方程 其中sinβ=S2L 將動力底盤相關(guān)結(jié)構(gòu)參數(shù)代入式(14)中,可得后行走輪越埂高度S2為596 mm。分析可知,動力底盤前軸至重心距離A與動力底盤軸距L比值較小時,后行走輪越埂能力優(yōu)于前行走輪。在實(shí)際作業(yè)過程中綜合前后行走輪越埂能力,以前行走輪越埂高度作為整機(jī)越埂能力指標(biāo)[35],在實(shí)際生產(chǎn)過程中水田田埂高度一般為250~300 mm,水田與田地坡高為400~500 mm,因此所設(shè)計(jì)的動力底盤可滿足水田越埂要求。 為檢驗(yàn)所設(shè)計(jì)的水田多功能動力底盤作業(yè)性能,研究機(jī)具各項(xiàng)技術(shù)參數(shù)可靠性,結(jié)合理論分析與仿真模擬進(jìn)行樣機(jī)底盤的試制,并配置貨箱及承載質(zhì)量800 kg。于2016年5月—6月插秧時期在黑龍江省綏化市慶安縣稻田試驗(yàn)基地進(jìn)行田間性能試驗(yàn),如圖8所示。水田環(huán)境為黑壤土泥腳深度150 mm,水層深度40 mm,環(huán)境溫度19~22 ℃。測試工具為機(jī)械秒表(0~15 min,精度±0.1s)、鋼卷尺(0~10 m,精度±1 mm)、鋼板尺(0~300 mm,精度±1 mm),角度儀(0~360o,精度±0.1o)、SL-TYA型土壤堅(jiān)實(shí)度測試儀(精度±0.1 kPa)、TZS-5X型土壤水分測試儀(精度±0.1%)和鐵鍬等。 圖8 田間試驗(yàn)Fig.8 Field experiment 按照GB/T5667-2008《農(nóng)業(yè)機(jī)械生產(chǎn)試驗(yàn)方法》[36]對多功能動力底盤樣機(jī)行駛速度、轉(zhuǎn)彎半徑及越埂坡度3項(xiàng)指標(biāo)進(jìn)行檢測,其具體測試方法如下。 1)行駛速度:為滿足底盤樣機(jī)完成田間作業(yè)與道路運(yùn)輸不同要求,分別選取長度大于100 m水田和平坦路面,將作業(yè)區(qū)域劃分為啟動調(diào)整區(qū)、有效試驗(yàn)區(qū)及停止緩沖區(qū),前后啟動區(qū)和停止區(qū)分別為5 m,在油門全開工況下測量各個擋位通過測試區(qū)所需時間,檢驗(yàn)樣機(jī)行駛速度范圍。 2)轉(zhuǎn)彎半徑:在水田環(huán)境內(nèi)底盤樣機(jī)以最低前進(jìn)擋平穩(wěn)行駛,轉(zhuǎn)向盤處于左轉(zhuǎn)或右轉(zhuǎn)的極限位置時保持不變,待平穩(wěn)行駛360o后駛出測試區(qū),在垂直方向利用鋼卷尺測量地面所留車轍軌跡圓半徑,當(dāng)左右轉(zhuǎn)向誤差小于100 mm即認(rèn)定其平均值為有效數(shù)據(jù)。 3)越埂坡度:結(jié)合實(shí)際環(huán)境對水田與田間道路、各田埂間埂坡角度、高度及堅(jiān)實(shí)度進(jìn)行測量(埂坡角度為20o~60o),使底盤樣機(jī)以最低前進(jìn)擋行駛平穩(wěn)翻越田埂,同時觀察底盤滑移及翻傾現(xiàn)象,保證安全作業(yè)。 在各工況條件下對每項(xiàng)指標(biāo)進(jìn)行重復(fù)3次檢測,人工處理取平均值,以評價機(jī)具作業(yè)性能,相關(guān)數(shù)據(jù)結(jié)果如表4所示。 表4 行駛速度、轉(zhuǎn)彎半徑、最大越埂角及越埂高度試驗(yàn)結(jié)果Table 4 Experimental results of driving speed, turning radius, maximum climbing ridge angle and climbing ridge height 田間試驗(yàn)結(jié)果表明,所設(shè)計(jì)的多功能動力底盤在田間道路行駛速度范圍為1~14 km/h,水田行駛速度范圍為1~6 km/h,水田行駛最小離地間隙560 mm,可滿足田間道路行駛及水田田間的各類作業(yè)要求。測定其水田行駛最小轉(zhuǎn)彎半徑為3 200 mm,適于中小地塊水田作業(yè)要求(小于要求半徑3 500 mm),驗(yàn)證了折腰轉(zhuǎn)向應(yīng)用于動力底盤的可能性和優(yōu)越性,且與理論分析的轉(zhuǎn)彎半徑3 043 mm近似,產(chǎn)生誤差的原因可能主要由于理論分析忽略水田土壤下陷及滑移問題,造成實(shí)際測定大于理論最小轉(zhuǎn)彎半徑。在此試驗(yàn)區(qū)域內(nèi)樣機(jī)作業(yè)最大爬坡角為56o,最大越埂高度為533 mm,且隨越埂坡度及高度增加,樣機(jī)滑移現(xiàn)象逐漸明顯,行駛效率較低,無法保證安全有效行駛作業(yè)。由于水田作業(yè)環(huán)境復(fù)雜多樣,地表高低起伏,土壤物理及機(jī)械性能不同,在實(shí)際過程中田埂及坡地高度動態(tài)變化,所測試性能指標(biāo)而非定值,根據(jù)不同作業(yè)條件將產(chǎn)生一定變化,但皆滿足水田田間管理技術(shù)要求。 1)結(jié)合東北地區(qū)水稻種植模式和農(nóng)藝要求,研究設(shè)計(jì)了一種高地隙折腰式水田多功能動力底盤,闡述分析了底盤整體結(jié)構(gòu)、傳動系統(tǒng)與工作原理。整機(jī)工作速度1~14 km/h,最小離地間隙560 mm,滿足作業(yè)過程中高地隙、順利越埂、轉(zhuǎn)彎半徑小和操作靈活等要求,為水田管理作業(yè)的實(shí)施提供了綜合應(yīng)用平臺,同時避免了水田作業(yè)機(jī)械配套不同底盤結(jié)構(gòu)而帶來的設(shè)計(jì)與制造方面的浪費(fèi)。 2)在靜態(tài)彎曲和扭轉(zhuǎn)工況下進(jìn)行了有限元分析,得到了滿載量化狀態(tài)下車架載荷分布和薄弱部位,有限元分析表明:在滿載彎曲工況下,車架所受最大應(yīng)力發(fā)生在平衡裝置搖擺軸處為130.70 MPa,最大位移發(fā)生在后車架發(fā)動機(jī)安裝梁處為1.56 mm;在滿載扭轉(zhuǎn)工況下,車架所受最大應(yīng)力發(fā)生在右后懸架與縱梁連接處為255.44 MPa,最大位移發(fā)生在車架左縱梁與后橫梁連接處為9.44 mm,為后續(xù)以優(yōu)化設(shè)計(jì)理論為方法開展車架薄弱區(qū)域的改進(jìn)與輕量化設(shè)計(jì)提供重要依據(jù)。 3)對動力底盤的轉(zhuǎn)向性能、行駛性能和越埂性能進(jìn)行了理論分析,以行駛速度、最小轉(zhuǎn)彎半徑、最大爬坡角和最大越埂高度為試驗(yàn)指標(biāo),進(jìn)行了田間性能試驗(yàn)。試驗(yàn)結(jié)果表明:多功能動力底盤田間道路行駛速度范圍為1~14 km/h,水田行駛速度范圍為1~6 km/h,水田行駛最小轉(zhuǎn)彎半徑為3 200 mm,最大爬坡角為56o,最大越埂高度為533 mm,與各項(xiàng)技術(shù)指標(biāo)要求(行駛速度范圍為1~14 km/h,最小轉(zhuǎn)彎半徑小于3 500 mm,最大爬坡角大于30o,最大越埂高度大于500 mm),整機(jī)工作性能滿足水田田間管理作業(yè)要求。 高地隙折腰式水田多功能動力底盤的設(shè)計(jì)研究可提高水田綜合作業(yè)的高效性和適用性,減輕作業(yè)勞動強(qiáng)度,為水田田間管理作業(yè)的創(chuàng)新研究和優(yōu)化提供技術(shù)參考,促進(jìn)中國水稻全程生產(chǎn)規(guī)?;⒓s化發(fā)展。 [1] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(1):1-11. Luo Xiwen, Liao Juan, Hu Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract) [2] 馬旭,李澤華,梁仲維,等.我國水稻栽植機(jī)械化研究現(xiàn)狀與發(fā)展趨勢[J].現(xiàn)代農(nóng)業(yè)裝備,2014(1):30-36. Ma Xu, Li Zehua, Liang Zhongwei, et al. Current situation and trend of development of rice planting mechanization research in China[J]. Modern Agricultural Equipment, 2014(1): 30-36. (in Chinese with English abstract) [3] 李耀明,徐立章,向忠平,等. 日本水稻種植機(jī)械化技術(shù)的最新研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(11):182-185. Li Yaoming, Xu Lizhang, Xiang Zhongping, et al. Research advances of rice planting mechanization in Japan[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(11): 182-185. (in Chinese with English abstract) [4] 馬旭,齊龍,梁柏,等. 水田田間機(jī)械除草裝備與技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(6):162-168. Ma Xu, Qi Long, Liang Bai, et al. Present status and prospects of mechanical weeding equipment and technology in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 162-168. (in Chinese with English abstract) [5] 張傳斌,余泳昌,吳亞萍. 高通過性四輪自走式煙草田間作業(yè)機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(11):37-41.Zhang Chuanbin, Yu Yongchang, Wu Yaping. Design of high traffic ability four wheel self-propelled field machine for tobacco[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 37-41. (in Chinese with English abstract) [6] 楊剛,申屠留芳,孫星釗,等. 稻田管理機(jī)通用底盤的研制[J]. 農(nóng)機(jī)化研究,2013,35(1):107-110. Yang Gang, Shentu Liufang, Sun Xingzhao, et al. The development of a versatile chassis for paddy land management machine[J]. Journal of Agricultural Mechanization Research, 2013,35(1): 107-110. (in Chinese with English abstract) [7] 劉美麗,楊福增,張季琴. 一種小型多功能田間管理機(jī)的設(shè)計(jì)[J]. 拖拉機(jī)與農(nóng)用運(yùn)輸車,2011,38(3):82-84. Liu Meili, Yang Fuzeng, Zhang Jiqin. Design of small-sized and multi-purpose field management machinery[J]. Tractor and Farm Transporter, 2011, 38(3): 82-84. (in Chinese with English abstract) [8] 范國強(qiáng),張曉輝,王金星. 四輪菱形布置農(nóng)用高地隙作業(yè)機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(2):84-89. Fang Guoqiang, Zhang Xiaohui, Wang Jinxing. Design and test of high clearance agricultural machine with four-wheel diamond arrangement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 84-89. (in Chinese with English abstract) [9] 胡紅,李洪文,李傳友,等. 稻茬田小麥寬幅精量少耕播種機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(4):24-32. Hu Hong, Li Hongwen, Li Chuanyou, et al. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 24-32. (in Chinese with English abstract) [10] 左興建,武廣偉,付衛(wèi)強(qiáng),等. 風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報,2016,32(3):14-21.Zuo Xingjian, Wu Guangwei, Fu Weiqiang, et al. Design and experiment on air-blast rice side deep precision fertilization device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 14-21. (in Chinese with English abstract) [11] 齊興源,周志艷,楊程,等. 稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報,2016,32(6):20-26.Qi Xingyuan, Zhou Zhiyan, Yang Cheng, et al. Design and experiment of key parts of pneumatic variable-rate applicator rice production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 20-26. (in Chinese with English abstract) [12] 王金武,唐漢,王金峰,等. 1DSZ-350型型懸掛式水田單側(cè)旋耕鎮(zhèn)壓修筑埂機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(1):25-37. Wang Jinwu, Tang Han, Wang Jinfeng, et al. Design and experiment on 1DSZ-350 type hanging unilateral rotary tillage compacting ridger for paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 25-37. (in Chinese with English abstract) [13] Zhang T, Petrov G. Finite element approximation for the three dimensional well model[J]. Journal of Computational and Applied Mathematics, 2015 (277): 47-56. [14] 劉宏新,鄭利雙,徐高偉,等. 標(biāo)準(zhǔn)四驅(qū)水田自走底盤轉(zhuǎn)向驅(qū)動橋設(shè)計(jì)與工程結(jié)構(gòu)分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(8):54-60. Liu Hongxin, Zheng Lishuang, Xu Gaowei, et al. Design and engineering structure analysis on paddy-field chassis steering drive axle with standard all-wheel-drive[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 54-60. (in Chinese with English abstract) [15] 趙映,張瑞宏,肖蘇偉,等. 2ZG-6DK高速插秧機(jī)底盤車架結(jié)構(gòu)分析與優(yōu)化[J]. 中國農(nóng)機(jī)化,2012(6):96-100. Zhao Ying, Zhang Ruihong, Xiao Suwei, et al. 2ZG-6DK high-speed transplanted chassis frame structure analysis and optimization[J]. Chinese Agricultural Mechanization, 2012(6): 96-100. (in Chinese with English abstract) [16] 邱威,丁為民,申寶營. 3WZ-700型果園噴霧機(jī)通過性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2012,43(6):63-67. Qiu Wei, Ding Weimin, Shen Baoying. Analysis on traffic ability of 3WZ-700 orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 63-67. (in Chinese with English abstract) [17] 張華,鄭加強(qiáng). 4WD型農(nóng)藥噴霧機(jī)液壓四驅(qū)底盤直行同步控制方法比較及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):43-50. Zhang Hua, Zheng Jiaqiang. Comparison of straight line driving synchronous control methods and validation of 4WD sprayer chassis with hydraulic power[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 43-50. (in Chinese with English abstract) [18] 陳書法,張石平,孫星釗. 水田高地隙自走式變量撒肥機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(11):16-21. Chen Shufa, Zhang Shiping, Sun Xingzhao. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 16-21. (in Chinese with English abstract) [19] 王光明,張曉輝,朱思洪,等. 拖拉機(jī)液壓機(jī)械無無級變速箱換段過程液壓故障診斷[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(6):25-34. Wang Guangming, Zhang Xiaohui, Zhu Sihong, et al. Hydraulic failure diagnosis of tractor hydro-mechanical continuously variable transmission in shifting process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 25-34. (in Chinese with English abstract) [20] 王寶山,王萬章,王淼森. 全液壓驅(qū)動高地隙履帶作業(yè)車設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(增刊1):471-476. Wang Baoshan, Wang Wanzhang, Wang Miaosen. Design and experiment of full hydraulic drive high clearance tracked vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1): 471-476. (in Chinese with English abstract) [21] Wines T, Burton R, Schounau G, et al. Dynamic and steady-state analysis of an auto-regulator in a flow divider and /or combiner value[J]. Transaction of the ASME, 1992, 114(6): 306-313. [22] 王光明,朱思洪,史立新,等. 拖拉機(jī)液壓機(jī)械無級變速箱換段控制優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):51-59. Wang Guangming, Zhu Sihong, Shi Lixin, et al. Experimental optimization on shift control of hydraulic mechanical continuously variable transmission for tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 51-59. (in Chinese with English abstract) [23] 吳偉斌,廖勁威,洪添勝. 山地果園運(yùn)輸機(jī)車架結(jié)構(gòu)分析與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):39-47.Wu Weibin, Liao Jinwei, Hong Tiansheng. Analysis and optimization of frame structure for wheeled transporter in hill orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 39-47. (in Chinese with English abstract) [24] 張娜娜,趙勻,劉宏新. 高速水稻插秧機(jī)車架的輕量化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(3):55-59. Zhang Nana, Zhao Yun, Liu Hongxin. Light design of frame for self-propelled chassis rice transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(3): 55-59. (in Chinese with English abstract) [25] 陳雨,陳隨英,杜岳峰,等. 基于摩擦阻尼的高地隙農(nóng)機(jī)底盤懸架減振特性[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(7):51-57. Chen Yu, Chen Suiying, Du Yuefeng, et al. Damping characteristics of chassis suspension system of high clearance agricultural machinery based on friction damper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 51-57. (in Chinese with English abstract) [26] 邱白晶,何耀杰,盛云輝. 噴霧機(jī)噴桿有限元模態(tài)分析與結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(8):112-116,105.Qiu Baijing, He Yaojie, Sheng Yunhui. Finite element model analysis and structure optimization of spray boom[J]. Transactions of the Chinese Society for AgriculturalMachinery, 2014, 45(8): 112-116, 105. (in Chinese with English abstract) [27] 蔣亞軍,廖宜濤,秦川,等. 4SY-2.9型油菜割曬機(jī)機(jī)架振動分析及改進(jìn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):53-60.Jiang Yajun, Liao Yitao, Qin Chuan, et al. Vibration analysis and improvement for improvement for frame of 4SY-2.9 typed rape windrower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 53-60. (in Chinese with English abstract) [28] Sambin V S, Wadhwa D S, Grewal P S. Development of a rotary blade using three-dimensional computer graphics[J]. Biosystems Engineering, 2004, 89(1): 47-58. [29] Little J P, Adam C J. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(6): 676-688. [30] 楊方飛,閆光,郝云霄,等. 基于剛?cè)狁詈戏抡婺P偷母叩叵秶婌F機(jī)轉(zhuǎn)向機(jī)構(gòu)特性[J]. 吉林大學(xué)學(xué)報:工學(xué)版,2015,45(3):857-863. Yang Fangfei, Yan Guang, Hao Yunxiao, et al. Study on the characteristics of steering system for high clearance sprayer based on rigid-flexible coupling simulation model[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45(3): 857-863. (in Chinese with English abstract) [31] Yang Zhuanzhao, Liu Daoxin, Zhang Xiaohua. Finite element method analysis of the stress for line pipe with corrode groove during outdoor storage[J]. Acta Metallurgica Sincia, 2013, 26(2): 188-198. [32] 中國農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊:1版[M].北京:機(jī)械工業(yè)出版社,1988. [33] 陳志,周林,趙博,等. 玉米收獲機(jī)底盤車架疲勞壽命研究[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(10):19-25. Chen Zhi, Zhou Lin, Zhao Bo, et al. Study on fatigue life of frame for corn combine chassis machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 19-25. (in Chinese with English abstract) [34] 郭浩亮,穆希輝,楊小勇,等. 四橡膠履帶輪式車輛轉(zhuǎn)向力學(xué)性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):79-86. Guo Haoliang, Mu Xihui, Yang Xiaoyong, et al. Mechanics properties analysis and test of four rubber tracked assembly vehicle steering system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 79-86. (in Chinese with English abstract) [35] 胡書鵬,尚業(yè)華,劉卉,等. 拖拉機(jī)轉(zhuǎn)向輪轉(zhuǎn)角位移式和四連桿式間接測量方法對比試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):76-82. Hu Shupeng, Shang Yehua, Liu Hui, et al. Comparative test between displacement and four-bar indirect measurement methods for tractor guide wheel angle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 76-82. (in Chinese with English abstract) [36] 全國農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會. 農(nóng)業(yè)機(jī)械生產(chǎn)試驗(yàn)方法:GB/T5667-2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2008. Design and experiment of high clearance roll-waist multifunctional power chassis for paddy field Wang Jinwu, Tang Han, Shen Hongguang, Bai Haichao, Na Mingjun Rice is the most important crop in China, which has the largest plant area, the highest per area yieldand the most total output. The production scale of rice has important significance to the development of grain production safety. The field management of paddy field is important guarantee for rice growth and the construction of standardized farmland. At present, some regions in China are still in manual labor to manage paddy field, and the comprehensive mechanization has low level, poor quality, long operation period, and high labor intensity. Some Chinese scientific research institutes and agricultural machinery enterprises have focused on high clearance chassis technology, and developed a variety of related supporting work equipment. Most equipment are improved through transplanter chassis or four-wheel tractor, which have low ground clearance, high center of gravity, low working efficiency, and large turning radius, and cannot meet the requirements for paddy field management operations. In this case, a high-clearance roll-waist multifunctional power chassis for paddy field was designed, in view of meeting the agronomic requirements of rice planting in the northeast region of China. The overall structure, transmission scheme and working principle of the multifunctional chassis with power train were illustrated and analyzed. The three-dimensional model was used for its parametric modeling, and the model was imported to FEA (finite element analysis) software ANSYS Workbench 14.0 to analyze the carframe. Different experimental conditions were simulated to calculate stress and deformation of the frame, and the stress of the main deformed part was measured, which provided the basis for the weak area improvement and lightweight design of the following frame. The finite element analysis results showed that: Under the full load bending condition, the maximum stress experienced was 130.7 MPa at the roll of the balance device, and the maximum displacement was 1.56 mm at the rear carframe; under the full load condition, the maximum stress occurring was 255.44 MPa at the junction of the right rear suspension and the stringer, and the maximum displacement was 9.44 mm at the junction of the left and right beams of the carframe. On the basis, the steering performance, running performance and climbing ridge performance of the multifunctional chassis with power train were analyzed theoretically. The field performance experiment was carried out with the driving speed, the minimum turning radius, the maximum climbing ridge angle and height as response indices. The test results showed that: The driving speed in field road was 1-14 km/h, the driving speed in paddy field was 1-6 km/h, the minimum turning radius was 3 200 mm, and the maximum climbing angle and height were 56oand 533 mm, respectively. The high clearance articulated multifunctional chassis with power train can meet the requirements for paddy field management operations, which has the characteristics of high ground clearance, small turning radius and flexible operation. The research results in this paper can provide the comprehensive application basis and technical support for the effective implementation of paddy field management. agricultural machinery; design; experiment; paddy field; chassis with power train; high clearance; roll-waist 10.11975/j.issn.1002-6819.2017.16.005 S219.8 A 1002-6819(2017)-16-0032-09 王金武,唐 漢,沈紅光,白海超,那明君. 高地隙折腰式水田多功能動力底盤設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(16):32-40. 10.11975/j.issn.1002-6819.2017.16.005 http://www.tcsae.org Wang Jinwu, Tang Han, Shen Hongguang, Bai Haichao, Na Mingjun. Design and experiment of high clearance roll-waist multifunctional power chassis for paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 32-40. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.005 http://www.tcsae.org 2017-01-25 2017-07-20 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金資助(CARS-01);國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0701305) 王金武,男,黑龍江慶安人,教授,博士生導(dǎo)師,主要從事田間機(jī)械和機(jī)械可靠性領(lǐng)域研究。哈爾濱 東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:jinwuw@163.com5 田間性能試驗(yàn)
6 結(jié) 論
(College of Engineering, Northeast Agricultural University, Harbin 150030, China)