• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    2017-09-06 11:30:05何夢嬌閆康平王貴欣孫羽涵鐘宜霏羅春暉
    無機化學學報 2017年2期
    關鍵詞:伏安電位電化學

    何夢嬌 閆康平 王貴欣 孫羽涵 鐘宜霏 羅春暉

    (四川大學化學工程學院,成都610065)

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    何夢嬌 閆康平*王貴欣 孫羽涵 鐘宜霏 羅春暉*

    (四川大學化學工程學院,成都610065)

    分別采用循環(huán)伏安改性法和恒電位氧化法對石墨氈進行改性處理,并采用循環(huán)伏安法對其電化學性能進行研究,實驗結果表明,恒電位氧化改性較循環(huán)伏安改性的石墨氈有較好的氧還原活性。通過XRD、FTIR、接觸角和CV針對恒電位氧化處理石墨氈進行了進一步的測試。測試結果顯示,隨恒電位氧化時間的增加,石墨氈表面親水性含氧官能團增加,潤濕性增強。恒電位氧化改性處理25 min的石墨氈氧還原峰電位及電流密度分別為~-0.43 V和~0.003 4 mA·cm-2,顯示出很好的電化學催化性能?;谝陨辖Y果,恒電位氧化法改性處理能夠極大提高石墨氈的氧陰極活性。

    氧陰極;石墨氈;改性;恒電位氧化;循環(huán)伏安

    0 Introduction

    Lithium-oxygen(Li-O2)batteries occupy a leading position in the electric vehicle power competition,in which the substance O2involved in the positive reaction comes from the air outside instead of storing an oxidizer internally with the notable features of high energy density and no pollution[1-4].The battery shows a theoretical specific energy of 1.1×104Wh·kg-1, which is 5~10 times[1-6]more than that of the state-of-the-art Li-ion batteries.However,Li-O2batteries are plaguedbymanyproblems,especiallythelittle catalyticeffectsofthecathodematerialused currently,which limit its rapid development to a great extent[7-9].

    Graphite felt has the advantages of high corrosion resistance,largespecificsurfacearea,excellent conductivity and good thermal stability,which is suitable for applying as the electrode material of Li-O2batteries.However,the electrode prepared directly with graphite felt exhibits a poor electrochemical performance due to the low surface energy of graphite fiber and the existence of large amount of hydrophobic groups[10].

    Itwasreportedthatthesurfaceenergyof graphitefeltcouldbeenhancedbydifferent modifications.Guan et al.[11]investigated the effects of the heat treatment on different carbon materials,and concluded that the electrochemical properties of the treated carbon were improved significantly.Zhong[12], Sun et al.[13-14]foundthattheacidand heat treatment on graphite felt could greatly improve the surface activity of carbonLiu et al.[15]used the modifiedgraphitefeltsastheelectrodeofthe vanadiumbatteries,andfoundthattheelectrochemical performances of the graphite felts modified by electrochemical oxidation were better than that by acid and heat treatments.

    Presently,most of the researches are focused on the effects of the current density on the generation of surfacefunctionalgroupsandoftheelectrolyte concentration on the anodic oxidation degree in the method of galvonostatic or potentiostatic oxidation[16-18]. In this work,the graphite felts were respectively modified by cyclic voltammetry and potentiostatic oxidation,and the electrochemical performances of the modified materials in aqueous solution were studied. The influences of the potentiostatic oxidation duration on wettability,functional groups and the electrochemical properties were investigated.It was shown that the electrocatalytic performance of the graphite felt treated by potentiostatic oxidation was improved obviously,andtheoptimaloxidationtimewas determined.

    1 Experimental

    The Graphite felts obtained by polyacrylonitrile graphitization with the carbon purity of≥99.5%were cut into 5 cm×6 cm wafers with the thickness of 2 mm,further ultrasonic cleaned with anhydrous ethanol and distillated water,and finally dried at 70℃for 24 h in an electric thermostatic drying oven.

    Then the graphite felt wafers were respectively modified at room temperature by cyclic voltammetry (CV)in the potential range of 2.0~-0.01 V with the scan rate of 10 mV·s-1and potentiostatic oxidation (PO)at 2.0 V on a PAR273A Potentiostat/Galvanostat and a 5210 lock-in amplifier controlled by Powersuite software(Princeton Applied Research,USA),in which the as-prepared graphite felt wafer,the graphite electrode,the saturated calomel electrode(SCE)and 1 mol·L-1H2SO4solution were used as the working electrode(WE),thecounter electrode(CE),the reference electrode(RE),and the electrolyte,respectively.

    The crystalline structures of the graphite felts were examined by X-ray diffraction(XRD on a Philips X′Pertpro MPD)with Cu Kα radiation(λ=0.154 06 nm,U=40 kV,I=40 mA)ranging from 10°to 70°at a scan rate of 0.04°·s-1.The functional groups on the surface of the graphite felts were evaluated by Fourier transform infrared spectroscopy(FTIR)on a thermo Nicolet Magna IR 560 spectrometer in the range of 900~3 800 cm-1.The hydrophilicity of the graphite felts was analyzed by sessile drop contact angle measurementusingacontactanglemeasuring apparatus(JC2000C1,Shanghai Zhongchen digital technic apparatus Co.,Ltd).

    The electrochemical performances of the graphite felt materials were examined by cyclic voltammetric (CV)measurements using the same apparatus for the modification introduced above,except that the counter electrode was replaced by a platinum net.The CV measurements of the pristine graphite felts and the CV modified samples were carried out in the potential range of-0.8 and+0.6 V,and the graphite felts modified by PO were carried out in the potentialrange of-0.9 and+0.4 V,which were performed at room temperature with a scan rate of 10 mV·s-1.

    The graphite felts involved in CV measurements were partly sealed with wax to remain an effective area of 1 cm×0.5 cm exposed.All electrodes were mounted in an airtight container[11],and dipped in the electrolyte of 0.1 mol·L-1LiOH solution,which was saturated by oxygen flushing for 30 min before CV measurements.

    2 Results and discussion

    2.1 XRD characterization of the raw graphite felt

    The XRD pattern of the pristine graphite felt is shown in Fig.1,which exhibits a sharp diffraction peak at~26°,and two weak peaks at~43°and~53°, corresponding respectively to(002),(100)and(004) faces of the hexagonal structure[19-20],consisting well with the diffraction pattern of graphite(JPCDS:No.65-6212).

    Fig.1X-ray diffraction pattern of the pristine graphite felt

    2.2 Modification of the graphite felts

    2.2.1 Determination of the modification methods

    The cyclic voltammetric curves of the graphite felts with and without modification are given in Fig.2.

    The CV curves of both modified samples exhibit obvious reduction peaks compared to that of the untreated graphite felt,implying that the electrochemical reaction activity is improved by modification,which was also confirmed by Georgioua et al.[21]and Shao et al.[17].

    Fig.2Cyclic Voltammetric curves of graphite felts with different treatment(a)without modification; (b)mmodified by CV;(c)modified by PO for 25 min

    The reduction peak potentials and the reduction peak current densities of the CV modified sample along with the PO modified sample are~-0.39 V and~0.000 6 mA·cm-2along with~-0.43 V and~0.003 4 mA·cm-2,respectively.Apparently,the reduction peak potentials of the two modified samples are of the same order of the magnitude,whereas the reduction peak current density of the PO modified sample is~4.7 times higher than that of the CV modified.Theoretically,the reduction peak potential refers to the oxygen reduction reaction(ORR)activity,while the reduction peakcurrentdensitytotheamountofreduced oxygen[10-11].Higher current density implies more oxygen consumption,namely the PO modification is more effective.Therefore,potentiostaticoxidationwas determined as the modification method to perform the further investigations in this work.

    2.2.2 PO modification of the graphite felts

    The change of the current intensity with the potentiostatic oxidation time is shown in Fig.3.

    The current intensity descends sharply due to polarization within the beginning 61 s followed by a slight increase,and maintains nearly stable after 200 s.The area under the curve represents the electric consumption during oxidation process,which could be determined by integrating the equation of dQ=dt×dI. Apparently,with the increase of the modification time, the electric consumption increases correspondently,implying that the oxidation degree of graphite felt materials increases simultaneously.The mechanism is discussed in detail below in this article.

    Fig.3Current-time relationship curve during PO modification

    2.3 FTIR characterization of the graphite felt

    The dispersibility,conductivity and wettability of the graphite-felt electrode have remarkable effects on theelectrochemicalperformances,whichresults eventually from the surface functional groups on graphite felts[22-24].The effects of potentiostatic oxidation modifications on the surface functional groups werecharacterizedbyFouriertransforminfrared spectroscope in this work.The typical FTIR spectra of the graphite felts with and without potentiostatic oxidation(PO)treatment are shown in Fig.4.

    The FTIR spectrum of the pristine graphite felt exhibits two broad peaks at around 701 and 1 142 cm-1,which correspond to the out-of-plane C-H bending vibration and the C-O stretching vibration in COOH[25],respectively.All as-oxidized samples present extra five spectral peaks compared with the pristine graphite felt.The peaks at around 2 900 and 1 650 cm-1correspond to the existence of CH&CH2and stretching of C=C,respectively.The peak at around 1 480 cm-1is attributed to the stretching vibrations of asymmetric OH or COOH.The peaks ranging from 1 180 to 1 049 cm-1are the absorbing of C-O[24-28]. Apparently,some hydrophilic functional groups such as OH and COOH[27,29]are generated by modification, which was also confirmed by Yue et al.[30].A schematic description of the formation mechanism of the functional groups is given in Fig.5[31].It is reasonable to suggest that potentiostatic oxidation is an effective method to improve the wettability of the graphite felts.

    Fig.4FTIR spectra of the graphite felts modified by PO for(a)0 min;(b)15 min;(c)20 min;(d)25 min; (e)30 min

    The FTIR spectra of all treated samples show the similar absorption peaks wavenumbers as mentioned above,indicatingthatthetypesofthesurface functional groups of the modified graphite felts are also similar.However,the absorption peak intensities differ from each other of different oxidation times.The functional groups such as OH,CH and CH2exhibit small intensity variation,while the peak intensities of the C-O stretching and the stretching vibrations of asymmetricCOOHincreasedistinctlywiththe oxidation time increasing,implying that the amount of the corresponding hydrophilic functional groups suchas COOH increases.That means,the hydrophilicity of the graphite felts should also increase with the oxidation time increasing,which is further discussed below in this article.

    2.4 Contact angle characterization of the graphite felt surface

    The effects of the potentiostatic oxidation on the wettability of graphite felts were investigated by observing the contact angle,which is illustrated in Fig.6.It is shown that the contact angles of the untreatedandthemodifiedsamplesarequite different.The absorption capacity of the untreated graphite felt is relative low,whereas the graphite felt modified for 30 min absorbs the water completely. The effect of the oxidation time on the contact angle is summarized in Fig.7.

    Fig.6Contact angle characterization of graphite felts modified by PO for(a)0 min;(b)25 min;(c)30 min

    Fig.7Contact angle of graphite felts at different PO time

    The contact angle of the pristine sample as shown in Fig.7 is 146°,which exhibits the strong hydrophobic property,that agrees with the results reported by Sun et al.[13].The contact angles of the modifiedsamplesaresmallerthanthatofthe untreated sample.With the extension of oxidation time from 15 to 30 min,the contact angles reduced gradually.The graphite felt modified for 30 min shows the strongest hydrophilic property with the contact angle 0°.The change tendency of the contact angle withtheoxidationtimeindicatesthatthe hydrophilicity is improved by PO modification,and the hydrophilic degree ascends with the modification timeincreasing.ReferringtotheFTIRresults obtained above,it could be concluded thatthe extended modification time intensifies the oxidation degree,which results in the increase of the wettability and the number of the hydrophilic functional groups on the surface of graphite felt.

    2.5 Electrochemical behavior

    Tofurtherevaluatetheelectrochemical performances of the modified graphite felts,the cyclic voltammetrymeasurementswereperformed.The cyclic voltammetric curves of the samples with and without potentiostatic oxidation are shown in Fig.8. The oxygen reduction potentials and the corresponding current densities of the reduction peaks for the graphite felts modified by potentiostatically oxidizingfor 15,20,25,30 min respectively are presented in Fig.9.

    Fig.8Cyclic Voltammetric curves of graphite felts modified by PO for(a)0 min,(b)15 min, (c)20 min,(d)25 min and(e)30 min

    Fig.9Change of the reduction peak potentials and the current densities with PO time

    No oxygen reduction peaks appear on the cyclic voltammetriccurveofthepristinegraphitefelt, implying that the ORR activity of the untreated sample is relative poor due to its strong hydrophobicity as discussed above.All cyclic voltammetric curves of the modified graphite felts exhibit the reduction peaks,but the corresponding reduction peak potentials and current densities are relative different. The reduction peak potential and the current density of the graphite felt modified for 15 min are the lowest. With the modification time increasing from 15 to 25 min,the oxygen reduction peak potentials change from~-0.49 to~-0.43 V representing the reducing of polarization,and then the current densities increase from~0.002 4 to~0.003 4 mA·cm-2gradually, indicating that the electrochemical performances of the modified graphite felts are improved with the modification time increasing.However,both oxygen reduction peak potential and current density of the material modified for 30 min exhibit the contrary change tendency,suggesting that the ORR activity of thegraphitefeltisdegradedforthelongtime oxidation.

    Not only the amount but also the type of the oxygen-containing functional groups on the surface of thegraphitefeltsincreaseafterpotentiostatic oxidation.Furthermore,with the modification time increasing,the amount of the hydrophilic functional groups increases correspondingly and the hydrophilicity of the graphite felt is accordingly improved[16].The hydrophilic oxygen-containing groups are redox-active, which are able to directly participate in the electrochemical reaction.Therefore,the modified graphite felts exhibit the oxygen reduction reaction activity, which was confirmed by the existence of the reduction peaks on CV curves[32].However,with the oxidation time increasing over 25 min,the ORR activity decreases,indicating that excessive hydrophilic functional groups have negative effects on the electrochemical performances.An interpretation of the phenomenon is schematically described in Fig.10.The surface of the unmodified graphite felts is mostly covered by oxygen due to its low wettability as shown in Fig.10(a),which ORR activity is very poor.The hydrophilic functional groups on the surface obtained by PO modification make the graphite felts to possess the electrochemical reaction activity.At the same time,oxygen as the reactant takes also part in the reaction,where the oxygen channels must be provided to ensure the contact between oxygen and the graphite felts as illustrated in Fig.10(b).Over high wettability resulted from the longtime oxidation causes that most area of the surface is surrounded by water,which blocks the contactofoxygenwiththegraphitefelts,andaccordingly hinders the electrochemical reactions[33]as shown in Fig.10(c).Consequently,the optimal potentiostatic oxidation is supposed to not only increase the amount of the hydrophilic functional groups on the surface but also remain the enough space for oxygen to pass through the water layer and contact with the electrode materials.The graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the preferable electrochemical performance in this work,which is determined as the optimal PO modification conditions.

    Fig.10Schematic description of the solid-liquid interfaces(a)hydrophobic surface; (b)partially hydrophilic surface;(c)hydrophilic surface

    3 Conclusions

    Theoptimalmodificationconditionsforthe graphite felts as the electrode of Li-O2batteries were determined in this work.Both potentiostatic oxidation modification and cyclic voltammetric treatment are able to improve the electrochemical performances of graphite felts.The graphite felts modified by potentiostatic oxidation are more electrochemical active than that treated by cyclic voltammetry.The improvement of the oxygen reduction reaction activity for the PO modified graphite felts is attributed to the increase of the hydrophilicity,owing to the formation of the hydrophilic oxygen-containing functional groups on the surface.Furthermore,the amount of the hydrophilicfunctionalgroupsincreaseswiththePO modification time increasing.However,over high wettability from long time oxidation results in the contact difficulty between oxygen and the graphite felt electrode,and accordingly hinders the electrochemical reactions.As a result,the graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the optimal electrochemical performances.

    [1]Abraham K M,Jiang Z.J.Electrochem.Soc.,1996,143(1):1-5

    [2]Girishkumar G,Mccloskey B,Luntz A C,et al.J.Phys. Chem.Lett.,2010,1(14):2193-2203

    [3]Kraytsberg A,Ein-Eli Y.J.Power Sources,2011,196(3):886-893

    [4]Liu T,Leskes M,Yu W,et al.Science,2015,350(6260):530-533

    [5]Kuboki T,Okuyama T,Ohsaki T,et al.J.Power Sources, 2005,146(1/2):766-769

    [6]Cheng F,Chen J.Chem.Soc.Rev.,2012,41(6):2172-92

    [7]Yuasa M,Matsuyoshi T,Kida T,et al.J.Power Sources, 2013,242(35):216-221

    [8]Débart A,Bao J,Armstrong G,et al.J.Power Sources,2007, 174(2):1177-1182

    [9]Rychcik M,Skyllas-Kazacos M.J.Power Sources,1988,22 (1):59-67

    [10]Lu Y,Li W,Sun F,et al.Carbon,2010,48(11):3079-3090

    [11]Guan P,Wang G,Luo C,et al.Electrochim.Acta,2014,129 (16):318-326

    [12]Zhong S,Padeste C,Kazacos M,et al.J.Power Sources, 1993,45(1):29-41

    [13]Sun B,Skyllas-kazacos M.Electrochim.Acta,1992,37(7): 1253-1260

    [14]Sun B,Skyllas-kazacos M.Cheminform,1992,23(49):18

    [15]LIU Di(劉迪),TAN Ning(譚寧),HUANG Ke-Long(黃可龍), et al.Chinese J.Power Sources(電源技術),2006,30(3):224-223

    [16]Ishifune M,Suzuki R,Mima Y,et al.Electrochim.Acta, 2005,51(1):14-22

    [17]Shao Y,Yin G,Zhang J,et al.Electrochim.Acta,2006,51 (26):5853-5857

    [18]Noel M,Santhanam R.J.Power Sources,1998,72(1):53-65

    [19]Lee G W,Kim J,Yoon J,et al.Thin Solid Films,2008,516 (17):5781-5784

    [20]CHEN Teng-Yuan(陳騰遠),ZHANG Chen-Jun(陳晨軍),LI Zai-Jun(李在均),et al.Chinese J.Inorg.Chem.(無機化學學報),2014,30(12):2691-2698

    [21]Georgiou P,Walton J,Simitzis J.Electrochim.Acta,2010, 55(3):1207-1216

    [22]Seredych M,Hulicova-Jurcakova D,Gao Q L,et al.Carbon, 2008,46(11):1475-1488

    [23]Qiao W,Korai Y,Mochida I,et al.Carbon,2002,40(3):351-358

    [24]Nian Y R,Teng H.J.Electroanal.Chem.,2003,540(2):119-127

    [25]Mawhinney D B,Naumenko V,Kuznetsova A,et al.J.Am. Chem.Soc.,2000,122(10):2383-2384

    [26]El-Hendawy A N A.J.Anal.Appl.Pyrolysis,2006,75(2): 159-166

    [27]Szabó T,Berkesi O,Forgó P,et al.Chem.Mater.,2006,18 (11):2740-2749

    [28]Szabó T,Tombácz E,Illés E,et al.Carbon,2004,44(3):537-545

    [29]Li L,Quinlivan P A,Knappe D R U.Carbon,2002,40(12): 2085-2100

    [30]Yue Z R,Jiang W,Wang L,et al.Carbon,1999,37(11):1785-1796

    [31]HUANG Qiao(黃橋),SUN Hong-Juan(孫紅娟),YANG Yong -Hui(楊勇輝).Chinese J.Inorg.Chem.(無機化學學報), 2011,27(9):1721-1726

    [32]Frackowiak E,Béguin F.Carbon,2001,39(6):937-950

    [33]Moreira J,Ocampo A L,Sebastian P J,et al.Int.J.Hydrogen Energy,2003,28(6):625-627

    Electrochemical Performance of Graphite Felts Modified by Potentiostatic Oxidization for Oxygen Reduction Cathode

    HE Meng-JiaoYAN Kang-Ping*WANG Gui-XinSUN Yu-HanZHONG Yi-YeiLUO Chun-Hui*
    (College of Chemical Engineering,Sichuan University,Chengdu 610065,China)

    The graphite felts were respectively modified by cyclic voltammetry(CV)and potentiostatic oxidation (PO),which electrochemical performances were evaluated by cyclic voltammetric experiments.As a result,PO modification is more effective on improving the oxygen reduction reaction(ORR)activity of the graphite felts than CV treatment.The PO modified graphite felts were further investigated by XRD,FTIR,Contact angle and CV.It is found that the wettability of the graphite felts increases with the increase of potentiostatic oxidation time,due to the increase of the hydrophilic oxygen-containing functional groups on surface.The graphite felt modified by PO for 25 min in this work exhibits the preferable electrochemical performances with the reduction potential~-0.43 V and the current density~0.003 4 mA·cm-2of the reduction peak on CV curve.Consequently,potentiostatic oxidation is an effective and feasible treatment for improving the electrochemical properties of the graphite felts as the electrode material of Li-O2batteries.

    oxygen cathode;graphite felts;modification;potentiostatic oxidation;cyclic voltammetry

    O613.71

    A

    1001-4861(2017)02-0315-08

    10.11862/CJIC.2017.018

    2016-05-18。收修改稿日期:2016-10-27。

    *通信聯(lián)系人。E-mail:cyankp@scu.edu.cn,luochunhui@scu.edu.cn

    猜你喜歡
    伏安電位電化學
    用伏安法測電阻
    電位滴定法在食品安全檢測中的應用
    電化學中的防護墻——離子交換膜
    關于量子電化學
    電化學在廢水處理中的應用
    Na摻雜Li3V2(PO4)3/C的合成及電化學性能
    電鍍廢水處理中的氧化還原電位控制
    淺談等電位聯(lián)結
    基于LABVIEW的光電池伏安特性研究
    電子制作(2016年23期)2016-05-17 03:53:41
    通過伏安特性理解半導體器件的開關特性
    人人妻人人澡人人爽人人夜夜| 成人手机av| 十八禁网站网址无遮挡| 在线观看免费日韩欧美大片 | a级毛色黄片| 国产在视频线精品| 国产亚洲av片在线观看秒播厂| 久久久久国产网址| 观看av在线不卡| 看十八女毛片水多多多| 美女国产高潮福利片在线看| 美女内射精品一级片tv| 99九九线精品视频在线观看视频| 2022亚洲国产成人精品| 亚洲av中文av极速乱| av播播在线观看一区| 亚洲色图 男人天堂 中文字幕 | av国产久精品久网站免费入址| 国精品久久久久久国模美| 黑人高潮一二区| 国产精品欧美亚洲77777| 又粗又硬又长又爽又黄的视频| 亚洲怡红院男人天堂| √禁漫天堂资源中文www| 美女福利国产在线| 狠狠精品人妻久久久久久综合| 久久毛片免费看一区二区三区| 国产欧美亚洲国产| 少妇被粗大的猛进出69影院 | 色哟哟·www| 国产探花极品一区二区| 久久这里有精品视频免费| av专区在线播放| 国产精品一区www在线观看| 亚洲精品第二区| 美女视频免费永久观看网站| 国产日韩欧美在线精品| 精品久久久噜噜| 日本黄色日本黄色录像| 性高湖久久久久久久久免费观看| 国产乱人偷精品视频| 另类亚洲欧美激情| 你懂的网址亚洲精品在线观看| 亚洲精品,欧美精品| 中国三级夫妇交换| 久久午夜综合久久蜜桃| 中文字幕av电影在线播放| 精品久久久精品久久久| 97精品久久久久久久久久精品| 妹子高潮喷水视频| 丝瓜视频免费看黄片| 亚洲国产毛片av蜜桃av| 一个人看视频在线观看www免费| 欧美激情国产日韩精品一区| 欧美日韩一区二区视频在线观看视频在线| 制服丝袜香蕉在线| 永久免费av网站大全| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 街头女战士在线观看网站| 我的女老师完整版在线观看| 免费久久久久久久精品成人欧美视频 | 少妇人妻 视频| 最黄视频免费看| 精品国产乱码久久久久久小说| 国产伦精品一区二区三区视频9| 男女高潮啪啪啪动态图| 中文字幕最新亚洲高清| av在线播放精品| 一本大道久久a久久精品| 久热久热在线精品观看| av视频免费观看在线观看| 久久久久久久久久久免费av| 18在线观看网站| 亚洲av.av天堂| 久久人人爽人人爽人人片va| 亚洲欧洲国产日韩| 最黄视频免费看| 久久久精品94久久精品| 亚洲四区av| 亚洲精品国产av成人精品| 久久人人爽人人片av| 99久久人妻综合| 亚洲欧美一区二区三区国产| 国语对白做爰xxxⅹ性视频网站| 成年av动漫网址| 老女人水多毛片| 蜜桃在线观看..| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 男女边吃奶边做爰视频| xxxhd国产人妻xxx| 国产在视频线精品| 国产精品久久久久久久久免| 精品一品国产午夜福利视频| 成人免费观看视频高清| 满18在线观看网站| 少妇丰满av| 国产精品国产三级国产av玫瑰| 国产综合精华液| 日本欧美国产在线视频| 丝袜在线中文字幕| 成人综合一区亚洲| 看十八女毛片水多多多| 亚洲精品,欧美精品| 亚洲av福利一区| 国产成人av激情在线播放 | 久久久国产欧美日韩av| 亚洲色图综合在线观看| 一本一本综合久久| 国产无遮挡羞羞视频在线观看| 国产色爽女视频免费观看| 日本欧美视频一区| 成人午夜精彩视频在线观看| 亚洲人成77777在线视频| 永久网站在线| 狠狠婷婷综合久久久久久88av| 我的老师免费观看完整版| 超色免费av| a级毛片免费高清观看在线播放| 婷婷色综合www| 亚洲国产成人一精品久久久| 欧美+日韩+精品| 久久青草综合色| 中国国产av一级| 久久午夜福利片| 中文字幕亚洲精品专区| 一区二区日韩欧美中文字幕 | 精品亚洲成国产av| 三上悠亚av全集在线观看| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱| 夜夜看夜夜爽夜夜摸| 搡女人真爽免费视频火全软件| 免费av中文字幕在线| 美女国产高潮福利片在线看| 日本欧美视频一区| 边亲边吃奶的免费视频| 看非洲黑人一级黄片| 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 亚洲国产精品成人久久小说| 在线观看人妻少妇| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 蜜桃国产av成人99| 亚洲不卡免费看| 精品一品国产午夜福利视频| 亚洲无线观看免费| 亚洲av二区三区四区| 在线观看免费日韩欧美大片 | 99热6这里只有精品| 亚洲精品国产av蜜桃| 国产一级毛片在线| 午夜影院在线不卡| 夜夜爽夜夜爽视频| 欧美+日韩+精品| 亚洲欧美成人精品一区二区| 成年女人在线观看亚洲视频| 黄色欧美视频在线观看| 中文字幕久久专区| 国产淫语在线视频| 两个人免费观看高清视频| 高清午夜精品一区二区三区| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 少妇人妻精品综合一区二区| 久久婷婷青草| 熟女电影av网| 又大又黄又爽视频免费| 青春草亚洲视频在线观看| 99热6这里只有精品| 久久这里有精品视频免费| 国产女主播在线喷水免费视频网站| 亚洲综合色惰| 能在线免费看毛片的网站| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲精品第一综合不卡 | av女优亚洲男人天堂| 精品国产国语对白av| 亚洲精品av麻豆狂野| 99久国产av精品国产电影| 亚洲国产成人一精品久久久| 亚洲中文av在线| 日韩伦理黄色片| 国产一区二区在线观看日韩| 久久久久久久久大av| 午夜激情久久久久久久| 日本色播在线视频| 成人手机av| 欧美精品一区二区大全| 国产精品偷伦视频观看了| 十分钟在线观看高清视频www| 91在线精品国自产拍蜜月| 国产乱来视频区| 赤兔流量卡办理| 高清黄色对白视频在线免费看| 亚洲一级一片aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲国产成人一精品久久久| 人妻制服诱惑在线中文字幕| 亚洲色图 男人天堂 中文字幕 | 美女主播在线视频| 青青草视频在线视频观看| 久久精品夜色国产| 伊人久久国产一区二区| 日韩电影二区| 岛国毛片在线播放| 色94色欧美一区二区| 日本-黄色视频高清免费观看| 熟女电影av网| 满18在线观看网站| av在线观看视频网站免费| 欧美日韩视频精品一区| 精品久久久久久电影网| 欧美精品国产亚洲| 国产高清国产精品国产三级| 日韩免费高清中文字幕av| 亚洲国产精品成人久久小说| 麻豆乱淫一区二区| 国产精品麻豆人妻色哟哟久久| 九九在线视频观看精品| 99热网站在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 亚洲国产av新网站| 久久午夜福利片| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 女人精品久久久久毛片| 亚洲四区av| 久久久久久久精品精品| 亚洲av免费高清在线观看| 国产一级毛片在线| 97在线人人人人妻| 丝袜喷水一区| 日韩视频在线欧美| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 国产免费福利视频在线观看| 哪个播放器可以免费观看大片| 精品国产一区二区久久| 激情五月婷婷亚洲| 精品少妇内射三级| 中文乱码字字幕精品一区二区三区| 九九爱精品视频在线观看| 久久精品人人爽人人爽视色| 亚洲精品久久午夜乱码| 在线播放无遮挡| 日韩中文字幕视频在线看片| av线在线观看网站| 99热国产这里只有精品6| 午夜激情av网站| 在线精品无人区一区二区三| 亚洲精品,欧美精品| 一级毛片电影观看| 日本欧美国产在线视频| 亚洲图色成人| 两个人的视频大全免费| 中文精品一卡2卡3卡4更新| 日本爱情动作片www.在线观看| 超碰97精品在线观看| 考比视频在线观看| 国产极品天堂在线| 黑人欧美特级aaaaaa片| 亚洲美女搞黄在线观看| 久久99一区二区三区| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 99久久人妻综合| 日本av免费视频播放| 水蜜桃什么品种好| 亚洲精品aⅴ在线观看| 热re99久久国产66热| 欧美+日韩+精品| 国国产精品蜜臀av免费| 欧美97在线视频| 日日撸夜夜添| 老熟女久久久| 一区二区av电影网| 晚上一个人看的免费电影| 国产黄色免费在线视频| 久久精品夜色国产| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 亚洲成色77777| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 国产精品三级大全| 夜夜爽夜夜爽视频| 国产男人的电影天堂91| 91成人精品电影| 观看av在线不卡| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 搡老乐熟女国产| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 免费人妻精品一区二区三区视频| 秋霞在线观看毛片| 国产极品天堂在线| 日韩 亚洲 欧美在线| 亚洲国产精品一区二区三区在线| 亚洲欧美清纯卡通| 免费观看在线日韩| 一本大道久久a久久精品| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 欧美人与善性xxx| 黑人猛操日本美女一级片| 免费少妇av软件| 国产成人91sexporn| 欧美 日韩 精品 国产| 日本与韩国留学比较| 午夜激情av网站| 亚洲av日韩在线播放| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 伦理电影免费视频| 乱人伦中国视频| 久久青草综合色| 99久久人妻综合| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 久热久热在线精品观看| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 美女主播在线视频| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久亚洲| 简卡轻食公司| 最近中文字幕2019免费版| 9色porny在线观看| 欧美3d第一页| 在线看a的网站| 18禁在线无遮挡免费观看视频| 久久久欧美国产精品| 七月丁香在线播放| 另类精品久久| 日韩人妻高清精品专区| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 如何舔出高潮| 欧美精品人与动牲交sv欧美| 天美传媒精品一区二区| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 少妇 在线观看| 免费av不卡在线播放| 精品一区在线观看国产| 久久精品国产鲁丝片午夜精品| 日本av免费视频播放| 亚洲国产色片| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 久久久久久久久久久丰满| 蜜臀久久99精品久久宅男| 欧美 亚洲 国产 日韩一| 久久久久久久久久成人| 我的女老师完整版在线观看| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 一区二区日韩欧美中文字幕 | 午夜av观看不卡| 久久久国产一区二区| 在线免费观看不下载黄p国产| 中国美白少妇内射xxxbb| 22中文网久久字幕| 久久久久久久精品精品| 涩涩av久久男人的天堂| 在线看a的网站| 日本av手机在线免费观看| tube8黄色片| 国产熟女午夜一区二区三区 | 欧美激情国产日韩精品一区| 爱豆传媒免费全集在线观看| 三级国产精品片| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 我的老师免费观看完整版| 简卡轻食公司| 只有这里有精品99| 精品一区二区三区视频在线| 亚洲人成77777在线视频| 欧美另类一区| av电影中文网址| 热re99久久国产66热| 亚洲高清免费不卡视频| 亚洲不卡免费看| 亚洲精品aⅴ在线观看| 亚洲欧洲日产国产| 亚洲国产成人一精品久久久| av.在线天堂| 中文字幕最新亚洲高清| 国产精品蜜桃在线观看| 高清午夜精品一区二区三区| 成人影院久久| 国产在线一区二区三区精| 久久久午夜欧美精品| 午夜老司机福利剧场| 欧美精品高潮呻吟av久久| 精品亚洲成a人片在线观看| 这个男人来自地球电影免费观看 | 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 亚洲久久久国产精品| 十分钟在线观看高清视频www| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| av线在线观看网站| 日本av免费视频播放| 午夜激情av网站| 日本免费在线观看一区| 中文字幕av电影在线播放| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 丝瓜视频免费看黄片| 国产av码专区亚洲av| av有码第一页| 精品久久蜜臀av无| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 大码成人一级视频| 亚洲av不卡在线观看| 亚洲国产精品一区二区三区在线| 精品久久久久久久久亚洲| 99久国产av精品国产电影| 亚洲性久久影院| 桃花免费在线播放| 秋霞在线观看毛片| 免费av不卡在线播放| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 在线看a的网站| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 超色免费av| 美女cb高潮喷水在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 如日韩欧美国产精品一区二区三区 | 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 秋霞伦理黄片| 精品久久久久久电影网| 久久久精品区二区三区| av.在线天堂| 黄色怎么调成土黄色| 午夜影院在线不卡| 亚洲天堂av无毛| 我要看黄色一级片免费的| 中国美白少妇内射xxxbb| 有码 亚洲区| 精品99又大又爽又粗少妇毛片| 永久免费av网站大全| 热re99久久国产66热| 久久久欧美国产精品| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 国产女主播在线喷水免费视频网站| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 亚洲人与动物交配视频| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 国产日韩欧美亚洲二区| 久久99蜜桃精品久久| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| 男女高潮啪啪啪动态图| av线在线观看网站| 国产精品偷伦视频观看了| 简卡轻食公司| 日本91视频免费播放| 欧美bdsm另类| 另类精品久久| 大香蕉久久成人网| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| 久久狼人影院| 欧美精品一区二区大全| 美女cb高潮喷水在线观看| 国产有黄有色有爽视频| 能在线免费看毛片的网站| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 国产av精品麻豆| 插阴视频在线观看视频| 插逼视频在线观看| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 国精品久久久久久国模美| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 美女主播在线视频| 国产精品99久久99久久久不卡 | 亚洲美女搞黄在线观看| 满18在线观看网站| 在线观看三级黄色| 成人免费观看视频高清| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 国国产精品蜜臀av免费| 人妻 亚洲 视频| 国产视频首页在线观看| 人妻 亚洲 视频| √禁漫天堂资源中文www| 精品一区二区三卡| 国产成人91sexporn| 亚洲中文av在线| av一本久久久久| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 久久婷婷青草| 国产精品欧美亚洲77777| 亚洲精华国产精华液的使用体验| 99九九线精品视频在线观看视频| 国产日韩欧美在线精品| 国产精品一区二区三区四区免费观看| 嫩草影院入口| 日本-黄色视频高清免费观看| 九色亚洲精品在线播放| 91精品一卡2卡3卡4卡| 中国国产av一级| av有码第一页| 中文字幕精品免费在线观看视频 | 成人亚洲精品一区在线观看| 精品久久久精品久久久| 国产有黄有色有爽视频| 免费日韩欧美在线观看| 美女大奶头黄色视频| 亚洲五月色婷婷综合| 亚洲熟女精品中文字幕| 亚洲精品乱码久久久v下载方式| 我的女老师完整版在线观看| 亚洲三级黄色毛片| 高清av免费在线| 色5月婷婷丁香| 91久久精品国产一区二区成人| 国产有黄有色有爽视频| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 人妻系列 视频| 看非洲黑人一级黄片| av在线app专区| 午夜激情久久久久久久| 热99久久久久精品小说推荐| 免费大片18禁| 少妇高潮的动态图| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 一级毛片我不卡| 纵有疾风起免费观看全集完整版| 熟女人妻精品中文字幕| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 一区二区av电影网| 又黄又爽又刺激的免费视频.| 夫妻午夜视频| 精品少妇黑人巨大在线播放| 卡戴珊不雅视频在线播放| 国产精品久久久久久久电影| a 毛片基地| 91aial.com中文字幕在线观看| 国产爽快片一区二区三区| 女人精品久久久久毛片| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 国产成人freesex在线| 99久久综合免费| 亚洲欧美一区二区三区黑人 | 街头女战士在线观看网站| 中文字幕免费在线视频6| 成人国产麻豆网| 亚洲三级黄色毛片| 人人妻人人添人人爽欧美一区卜| 久久久国产精品麻豆| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 一级黄片播放器| 欧美日韩在线观看h| 高清毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 久久这里有精品视频免费| 少妇的逼好多水| 国产淫语在线视频| 黑人欧美特级aaaaaa片| 精品酒店卫生间| 最后的刺客免费高清国语| 亚洲av日韩在线播放| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 999精品在线视频| 美女国产视频在线观看| 久久狼人影院| 99九九线精品视频在线观看视频| 国产欧美亚洲国产| 99九九在线精品视频|