• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    曰老女人黄片| 老熟妇乱子伦视频在线观看| 久久精品人妻少妇| 亚洲男人天堂网一区| 久久久久久久精品吃奶| 亚洲一区高清亚洲精品| 欧美 亚洲 国产 日韩一| 国产成人欧美| 久久天堂一区二区三区四区| 亚洲精华国产精华精| 特大巨黑吊av在线直播 | 欧美av亚洲av综合av国产av| 亚洲精品粉嫩美女一区| av福利片在线| 国产成人精品久久二区二区免费| 亚洲 国产 在线| 亚洲精品美女久久av网站| 日韩高清综合在线| 久久久久精品国产欧美久久久| 又黄又爽又免费观看的视频| 亚洲国产精品999在线| av有码第一页| 老司机午夜十八禁免费视频| 中文在线观看免费www的网站 | 男人舔女人的私密视频| 曰老女人黄片| 国产精品亚洲一级av第二区| 国产亚洲av高清不卡| 色哟哟哟哟哟哟| 欧美又色又爽又黄视频| 亚洲国产看品久久| 黄片小视频在线播放| 成人免费观看视频高清| 满18在线观看网站| 香蕉国产在线看| 桃色一区二区三区在线观看| 亚洲国产中文字幕在线视频| 91老司机精品| 国产亚洲精品av在线| 欧美精品亚洲一区二区| 18禁观看日本| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 宅男免费午夜| 成人亚洲精品一区在线观看| 日韩欧美免费精品| 久久精品国产亚洲av高清一级| 18美女黄网站色大片免费观看| 大香蕉久久成人网| 在线看三级毛片| 欧洲精品卡2卡3卡4卡5卡区| 黄色a级毛片大全视频| 亚洲国产日韩欧美精品在线观看 | 亚洲国产毛片av蜜桃av| 精品乱码久久久久久99久播| 久久人妻福利社区极品人妻图片| 亚洲色图 男人天堂 中文字幕| 法律面前人人平等表现在哪些方面| 久久国产亚洲av麻豆专区| 色哟哟哟哟哟哟| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 亚洲专区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 欧美黄色淫秽网站| 可以在线观看毛片的网站| 亚洲成人久久性| 哪里可以看免费的av片| 午夜激情福利司机影院| 一本综合久久免费| 草草在线视频免费看| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 天天躁夜夜躁狠狠躁躁| 18禁美女被吸乳视频| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 免费电影在线观看免费观看| 日本一区二区免费在线视频| 久久亚洲真实| 国产精品永久免费网站| 少妇粗大呻吟视频| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 国产精品98久久久久久宅男小说| 国产精品,欧美在线| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| 男女午夜视频在线观看| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品成人综合色| 亚洲国产中文字幕在线视频| 少妇 在线观看| 欧美激情 高清一区二区三区| 国产av又大| 久久 成人 亚洲| 嫩草影视91久久| 天天添夜夜摸| 伦理电影免费视频| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 亚洲国产精品久久男人天堂| 悠悠久久av| 亚洲av日韩精品久久久久久密| 国内精品久久久久久久电影| 白带黄色成豆腐渣| 99在线人妻在线中文字幕| av福利片在线| 欧美性长视频在线观看| 久久精品国产清高在天天线| 欧美乱妇无乱码| 久久 成人 亚洲| 欧美又色又爽又黄视频| 1024视频免费在线观看| 亚洲av中文字字幕乱码综合 | 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| 黄色视频不卡| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 嫩草影视91久久| 免费高清视频大片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品一区二区www| 国产成人欧美| 一二三四社区在线视频社区8| 成人手机av| 亚洲一区高清亚洲精品| 手机成人av网站| 久久天堂一区二区三区四区| 国产极品粉嫩免费观看在线| 亚洲av五月六月丁香网| 天堂√8在线中文| 精品无人区乱码1区二区| 亚洲自偷自拍图片 自拍| 国内揄拍国产精品人妻在线 | 激情在线观看视频在线高清| 在线天堂中文资源库| xxxwww97欧美| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 在线看三级毛片| 欧美激情久久久久久爽电影| 免费高清视频大片| 欧美黄色淫秽网站| 一区二区三区激情视频| 极品教师在线免费播放| 国产精品一区二区免费欧美| 久久久国产欧美日韩av| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 成人国产综合亚洲| 亚洲精品国产精品久久久不卡| 在线看三级毛片| 亚洲色图av天堂| 黄片小视频在线播放| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 亚洲av美国av| 成熟少妇高潮喷水视频| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 黑人欧美特级aaaaaa片| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 真人做人爱边吃奶动态| 午夜福利欧美成人| 99久久国产精品久久久| 久久香蕉精品热| 欧美性猛交黑人性爽| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 国产黄色小视频在线观看| 级片在线观看| 亚洲国产毛片av蜜桃av| 最近最新免费中文字幕在线| 亚洲av电影不卡..在线观看| 99国产精品一区二区三区| 村上凉子中文字幕在线| 91麻豆精品激情在线观看国产| 久久久久久大精品| 国产熟女午夜一区二区三区| 日韩欧美国产在线观看| 美女国产高潮福利片在线看| 色在线成人网| 国产一区二区激情短视频| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 亚洲专区国产一区二区| 国产一区在线观看成人免费| 久久中文字幕人妻熟女| 日本一区二区免费在线视频| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 韩国精品一区二区三区| 亚洲精品久久国产高清桃花| 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| 精品人妻1区二区| 久久精品91无色码中文字幕| 搞女人的毛片| 国产一区二区激情短视频| 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 九色国产91popny在线| 女人高潮潮喷娇喘18禁视频| 1024手机看黄色片| 亚洲欧美精品综合一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕久久专区| 亚洲激情在线av| 非洲黑人性xxxx精品又粗又长| 国产精品国产高清国产av| 啦啦啦 在线观看视频| 国产亚洲欧美精品永久| 国产精品久久久久久亚洲av鲁大| 亚洲成av人片免费观看| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 一夜夜www| 日韩大尺度精品在线看网址| 国产欧美日韩一区二区三| 国产日本99.免费观看| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 校园春色视频在线观看| 村上凉子中文字幕在线| bbb黄色大片| av免费在线观看网站| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 一本一本综合久久| 少妇 在线观看| 亚洲九九香蕉| 一级毛片精品| 99精品欧美一区二区三区四区| 可以免费在线观看a视频的电影网站| 亚洲中文字幕一区二区三区有码在线看 | 自线自在国产av| 色精品久久人妻99蜜桃| 好看av亚洲va欧美ⅴa在| 亚洲男人天堂网一区| 99久久综合精品五月天人人| 此物有八面人人有两片| 青草久久国产| 国产激情偷乱视频一区二区| 久久亚洲精品不卡| 中出人妻视频一区二区| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 欧美日韩黄片免| 久久亚洲真实| 成人国产综合亚洲| 亚洲av第一区精品v没综合| 成人欧美大片| 中文字幕人妻丝袜一区二区| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 窝窝影院91人妻| 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 日本熟妇午夜| 少妇裸体淫交视频免费看高清 | 久久久精品国产亚洲av高清涩受| 久久精品91无色码中文字幕| 男女之事视频高清在线观看| 精品久久久久久久久久久久久 | av在线播放免费不卡| 中亚洲国语对白在线视频| 波多野结衣巨乳人妻| 日韩欧美一区视频在线观看| 亚洲成av人片免费观看| 在线观看舔阴道视频| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 亚洲国产日韩欧美精品在线观看 | 日韩有码中文字幕| 一本综合久久免费| 欧美黄色片欧美黄色片| 成年免费大片在线观看| 亚洲熟女毛片儿| 国产伦人伦偷精品视频| 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 69av精品久久久久久| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 欧美乱妇无乱码| 成人国产综合亚洲| 亚洲av美国av| 日韩一卡2卡3卡4卡2021年| av免费在线观看网站| 国产欧美日韩精品亚洲av| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看 | 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 色综合站精品国产| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 制服人妻中文乱码| 免费电影在线观看免费观看| 九色国产91popny在线| 久热这里只有精品99| 亚洲第一欧美日韩一区二区三区| 波多野结衣av一区二区av| 99热6这里只有精品| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 777久久人妻少妇嫩草av网站| 国产黄色小视频在线观看| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 日本五十路高清| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 女同久久另类99精品国产91| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 欧美zozozo另类| 不卡av一区二区三区| 女生性感内裤真人,穿戴方法视频| 成人国语在线视频| 亚洲中文字幕日韩| 淫秽高清视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 午夜久久久在线观看| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利18| 国产亚洲欧美98| 精品人妻1区二区| 中文字幕精品亚洲无线码一区 | 男女之事视频高清在线观看| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 一本精品99久久精品77| 男女午夜视频在线观看| 国内精品久久久久久久电影| 国产野战对白在线观看| x7x7x7水蜜桃| 男人舔奶头视频| 国产极品粉嫩免费观看在线| 亚洲精品在线观看二区| 最新在线观看一区二区三区| 美女大奶头视频| 久久草成人影院| 老司机靠b影院| 极品教师在线免费播放| 欧美丝袜亚洲另类 | av福利片在线| www.自偷自拍.com| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 99热这里只有精品一区 | 国产黄片美女视频| 成人午夜高清在线视频 | 亚洲五月婷婷丁香| 欧美成人午夜精品| 两性夫妻黄色片| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 老汉色∧v一级毛片| 欧美乱妇无乱码| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 亚洲第一电影网av| 欧美亚洲日本最大视频资源| 久久久久久大精品| 精品久久久久久久久久久久久 | bbb黄色大片| 午夜福利高清视频| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 成熟少妇高潮喷水视频| 一进一出好大好爽视频| 级片在线观看| 午夜免费观看网址| 91大片在线观看| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 亚洲一码二码三码区别大吗| 日本成人三级电影网站| 禁无遮挡网站| 午夜福利高清视频| 久久久国产成人精品二区| 无遮挡黄片免费观看| 亚洲欧美精品综合久久99| 一区二区日韩欧美中文字幕| 国产片内射在线| 亚洲av美国av| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 嫩草影院精品99| www.熟女人妻精品国产| 搡老岳熟女国产| 中出人妻视频一区二区| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 视频区欧美日本亚洲| 色综合婷婷激情| 制服丝袜大香蕉在线| 亚洲一区中文字幕在线| 一个人观看的视频www高清免费观看 | 一a级毛片在线观看| 两性夫妻黄色片| 国产亚洲精品av在线| 久久狼人影院| 欧美另类亚洲清纯唯美| 免费电影在线观看免费观看| 脱女人内裤的视频| 亚洲国产看品久久| 黄色视频不卡| 欧美中文综合在线视频| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 国产精品久久电影中文字幕| 午夜视频精品福利| 国产成人精品无人区| 看黄色毛片网站| 精品国产美女av久久久久小说| 久久久国产成人精品二区| 久久精品人妻少妇| 真人一进一出gif抽搐免费| 侵犯人妻中文字幕一二三四区| 欧美成人性av电影在线观看| 欧美日本视频| 亚洲精品粉嫩美女一区| 亚洲精品国产一区二区精华液| 黄色 视频免费看| av超薄肉色丝袜交足视频| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 久久九九热精品免费| 男男h啪啪无遮挡| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品色激情综合| 亚洲精品国产一区二区精华液| 亚洲欧美日韩无卡精品| 女警被强在线播放| 日本成人三级电影网站| 欧美日韩乱码在线| 中文字幕久久专区| av欧美777| 成年免费大片在线观看| 成人av一区二区三区在线看| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 亚洲无线在线观看| 中文字幕高清在线视频| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 18禁美女被吸乳视频| 欧美 亚洲 国产 日韩一| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 久久99热这里只有精品18| 国产国语露脸激情在线看| 中文亚洲av片在线观看爽| 大型av网站在线播放| 国产亚洲精品一区二区www| 91成年电影在线观看| 精品高清国产在线一区| 亚洲精品国产精品久久久不卡| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 我的亚洲天堂| 国产亚洲精品久久久久5区| 国产视频一区二区在线看| 人成视频在线观看免费观看| 熟妇人妻久久中文字幕3abv| 国产一区二区激情短视频| 国产片内射在线| 国产在线观看jvid| 欧美中文日本在线观看视频| 男女下面进入的视频免费午夜 | 亚洲成人精品中文字幕电影| 亚洲天堂国产精品一区在线| 视频区欧美日本亚洲| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 日韩欧美在线二视频| www.999成人在线观看| 韩国av一区二区三区四区| 免费女性裸体啪啪无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久毛片微露脸| 亚洲一区二区三区不卡视频| 国产成人影院久久av| 99国产极品粉嫩在线观看| 色av中文字幕| 国产一区二区在线av高清观看| 日本熟妇午夜| 亚洲成av人片免费观看| 美女大奶头视频| 观看免费一级毛片| 久久中文字幕一级| 熟女电影av网| 黄色片一级片一级黄色片| 亚洲成人精品中文字幕电影| 国产精品亚洲av一区麻豆| 欧美又色又爽又黄视频| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 亚洲精品粉嫩美女一区| 欧美性长视频在线观看| 真人一进一出gif抽搐免费| 亚洲第一av免费看| 黄片播放在线免费| 国产黄色小视频在线观看| 国产精品1区2区在线观看.| 国产精品久久久久久人妻精品电影| 国产激情偷乱视频一区二区| 天堂√8在线中文| 精品国产乱子伦一区二区三区| 免费在线观看完整版高清| 欧美国产日韩亚洲一区| 男女做爰动态图高潮gif福利片| 欧美大码av| 亚洲av电影在线进入| 日本成人三级电影网站| 久久久久久亚洲精品国产蜜桃av| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| 男女视频在线观看网站免费 | 在线天堂中文资源库| 国内精品久久久久精免费| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 免费观看精品视频网站| www.999成人在线观看| 亚洲人成网站高清观看| 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 亚洲av美国av| 真人做人爱边吃奶动态| 亚洲精品久久国产高清桃花| 国产精品影院久久| 最新美女视频免费是黄的| 性色av乱码一区二区三区2| 亚洲一区二区三区色噜噜| 一卡2卡三卡四卡精品乱码亚洲| АⅤ资源中文在线天堂| 欧美日韩精品网址| 人人妻人人澡人人看| 日韩欧美一区视频在线观看| 成人欧美大片| 国产精品自产拍在线观看55亚洲| 欧美乱码精品一区二区三区| 欧美激情高清一区二区三区| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 久久久久久亚洲精品国产蜜桃av| 久久精品影院6| 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 欧美激情 高清一区二区三区| 成人永久免费在线观看视频| 别揉我奶头~嗯~啊~动态视频| 久久狼人影院| 亚洲av成人一区二区三| 成年人黄色毛片网站| 国产又爽黄色视频| 热re99久久国产66热| 欧美黑人巨大hd| 麻豆久久精品国产亚洲av| av福利片在线| 此物有八面人人有两片| 免费在线观看成人毛片| 亚洲精品一区av在线观看| 国产单亲对白刺激| av在线播放免费不卡| 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 亚洲人成网站高清观看| 男女视频在线观看网站免费 |