• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Travelling Wave Solution in a Diffusive Predator-prey System

    2017-09-06 05:22:21SONGYongliXUZhou
    關(guān)鍵詞:理學(xué)院永利食餌

    SONG Yongli ,XU Zhou

    (1.School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2. Department of Mathematics, Tongji University, Shanghai 200092, China)

    Periodic Travelling Wave Solution in a Diffusive Predator-prey System

    SONG Yongli1,XU Zhou2

    (1.School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2. Department of Mathematics, Tongji University, Shanghai 200092, China)

    In this paper, the existence of the periodic travelling wave solution for a general diffusive predator-prey system is investigated. The condition for the occurrence of Hopf bifurcation in wave equations is provided firstly. Then, taking the diffusion coefficient as the bifurcation parameter, the critical value for the occurrence of periodic travelling wave solution is derived. Finally, the obtained theoretical results are applied to deal with a diffusive predator-prey system with herd behavior and the conditions for the occurrence of the periodic travelling wave solution are obtained. The numerical simulations are also employed to illustrate the theoretical results.

    predator-prey system; periodic travelling wave solution; Hopf bifurcation

    1 Introduction

    Predator-prey model is one of important mathematical models in the eology of populations, which is used to describe the interactions in which one species consumes all or part of another. Periodic activity generated by the predator-prey model is often observed in the nature and the distribution of populations in space is not uniform. This phenomenon is closely related to a periodic travelling wave solution in mathematics, which is a periodic function of one-dimensional space that moves with constant speed in time.

    Periodic travelling wave solution of reaction-diffusion equations were extensively studied for the so-calledλ-ωsystem (see, e.g. the review article [1]). For the predator-prey model, there are plenty of works on the travelling wave solution (see [2-4] and references therein), but there are only a few works on periodic travelling wave solution. Recenly, the existence of periodic travelling wave solution for the following predator-prey model with modified Leslie-Gower and Holling type II schemes

    (1)

    has been studied by Yafia and Aziz-Alaoui[5].

    In this paper, we study the existence of periodic travelling wave solution for a general diffusive predator-prey model as follows

    (2)

    whereu(x,t) andv(x,t) are the prey and predator populations at positionxand at timet,d1>0 andd2>0 are the diffusive coefficients of the prey and predator populations,FandGcan be chosen as different forms depending on the interaction of the prey and predator, and the species.

    Setting

    and dropping the tilde for simplification of notation, we have

    (3)

    The rest of this paper is organized as follows: In Section 2, the sufficient condition of the existence of periodic travelling wave solution for system (3) is derived. In Section 3, we apply the theoretical result obtained in Section 2 to study a predator-prey model with herd behavior in the prey species and give some numerical simulationsto illustrate the theoretical results. Finally, the paper ends by a conclusion section.

    2 Existence of Periodic Travelling Wave Solution

    (4)

    wheresis called a traveling coordinate and ′denotes the differentiation with respect tos. If system (4) has a periodic solution, then this periodic solution is called the periodic traveling wave solution of system (3) . In the following, we seek the existence of periodic solution of system (4) by Hopf bifurcation theory.

    Settingφ(s)=u′(s),ψ(s)=v′(s), system (4) can be written as a system of first order ordinary differential equation in R4

    (5)

    System (5) has a positive equilibriumE*(u*,v*,0,0). LettingU=(u,v,φ,ψ)T, then the linearized system of system (5) at the positive equilibriumE*(u*,v*,0,0) is

    (6)

    where

    The characteristic equation of (6) is

    (7)

    where

    (8)

    For the distribution of roots of Eq.(7), we have the following results.

    (9)

    with -

    (10)

    (11)

    (12)

    Lemma 2 Assume that the conditions in Lemma 1 are satisfied andd0is defined by (9). Then we have the following:

    (i) whend=d0, Eq.(7) has a pair of purely imaginary roots ±iω0, where

    (13)

    (ii) ifλ(d) is a root of Eq.(7) satisfyingλ(d0)=iω0, then (Reλ(d))′d=d0>0.

    Proof Assume thatλ=iω(ω>0) is a root of Eq.(7). Then we haveQ(iω,d)=0, i.e.,

    Separating the real and imaginary parts, we obtain

    (14)

    and

    (15)

    From (15), we have

    (16)

    Substituting (16) into Eq.(14), we obtain thatD(1+d)=0. This imples that whend=d0andω=ω0, (14) and (15) hold. Therefore, whend=d0, Eq.(7) has a pair of purely imaginary roots ±iω0.

    Now we verify the transversality condition. Assume thatλ(d) is a root of Eq.(7) satisfyingλ(d0)=iω0. From Eq.(7), we have

    Therefore

    ByLemmas1and2,wehavethefollowingresultsonthestabilityandHopfbifurcationforsystem(5).

    Theorem1AssumethattheconditionsinLemma1aresatisfiedandd0isdefinedby(9).Thenwehavethefollowing:

    (i)thepositiveequilibriumE*ofsystem(5)isasymptoticallystablefor0d0;

    (ii)system(5)undergoesaHopfbifurcationatd=d0.

    Thefollowingresultfollowsimmediatelyfromtherelationofsolutionsbetweensystem(3)andsystem(5) .

    Theorem2AssumethattheconditionsinLemma1aresatisfiedandd0isdefinedby(9) .TheniftheHopfbifurcationofsystem(5)atd=d0issupercritical,thensystem(3)hasstableperiodictravellingwavesolutionsford>d0andsufficientlyclosetod0.

    3 Application to a Predator-prey Model with Herd Behavior

    Inthissection,weconsiderthefollowingpredator-preymodelwithherdbehaviorinthepreyspeciesundertheunboundeddomainx∈(-,+)

    (17)

    Based on the assumption that the prey exhibits herd behavior and the predator interacts with the prey along the outer corridor of the herd of prey, Braza first proposed the predator-prey model with square root functional responses[6]. Considering the spatial diffusion of populations, the model proposed by Braza[6]was extended a system with diffusion in [7], i.e., system (17). The pattern formation of system (17) has been studied in [7]. Under the bounded domain and considering Neumann boundary condition, the stability and Hopf bifurcation of system (17) has been investigated in [8]. In the following, we investigated the existence of periodic travelling wave solution induced by the diffusion for system (17) under the unbounded domainx∈(-,+)

    For biological meaning, in what follows we assume 0

    From the condition (C), we have

    (18)

    It follows from (18) that

    anda11+a22>0 iff

    Therefore, in terms of Lemma 1 and Theorem 2 , the following theorem follows immediately.

    Define the following two curves in them-θplane by

    and the curveL2is determined by the following implicit function

    In fact, the curveL2is also a Hopf bifurcation curve for the corresponding ordinary differential system of system (17) . The positive constant equilibrium (u*,v*) of the corresponding ordinary differential system of system (17) is stable in regionD1above the curveL1and unstable in the region between the curvesL0andL1.

    Fig.1 Bifurcation diagram of system (17)

    In the following, we numerically illustrate the above results. Taking (m,θ)=(0.5,0.6)∈D2and then choosingc=2, it follows from (9) that

    d0=3.6717, ω=0.0991.

    The corresponding wave system of system (17) is

    (19)

    Left: the evolution of solution of system (19) for d=3.5

    To determine the properities of the Hopf bifurcation, we have to calculate the corresponding normal form associated this Hopf bifurcation.

    In the following, we use the method developed in [9] to calculate the normal form associated the Hopf bifurcation of system (19) atd=d0=3.6717, and we use the same notations as in [9] . Whend=d0=3.6717, the characteristic values areλ1=iωwithω=0.0991,λ2=-iω,

    and

    The eigenvector associated with the characteristic valuesλ1,λ3,λ4are, respectively,

    DefineP=(Re(v1),-Im(v1),Re(v3),Re(v4)), and denote the right side of system (19) by

    Then performing the change of variables

    (20)

    At this moment, we can follow the procedure in Chapter 2 of [9] to obtain

    g11=0.3120+0.0570i,g02=0.4811+0.0078i,g20=0.2284+0.4229i,g21=-0.3158-0.1501i,

    w11=(-0.6876,-0.0010)T,w20=(-0.8295-0.0958i)T

    and

    μ2=257.9456, β2=-1.7787, τ2=6.9041.

    Thus, by the Hopf bifurcation theory in [9], we have the following results on system (19) with (m,θ)=(0.5,0.6)∈D2,c=2 andd0=3.6717 : (i) the Hopf bifurcation is supercritical and bifurcating periodic solutions exist ford>d0; (ii) the Hopf bifurcating periodic solution is orbitally stable; the period of bifurcating periodic solutions increases with the increasing ofd. Fig.3 illustrates these results ford=3.8>d0.

    Left: the evolution of solution of system (19) for d=3.8>d0; Right: the phase diagram in theu-v plane.Fig. 3 The equilibrium of system (19) is unstable for d>d0 and the Hopf bifurcating periodic solution is orbitally stable

    Ford=3.8, we can obtain

    It follows from [9] that the family of approximate periodic solution of system (19) withd=3.8 bifurcating from Hopf bifurcation can be represented by

    (21)

    where

    and

    This approximate periodic solution (21) can be used for the simulation of periodic travelling wave solution of system (17). Fig.4 shows the approximate periodic solution from (21) and the stable periodic solution simulated in Fig.3. These two periodic orbits are sufficiently close.

    Fig.4 Comparison of the approximate periodic solution of system (19) represented by (21) with the stable periodic solution simulated in Fig.3 for d=0.38

    It follows from Theorems 2 and 3 that if the wave system (19) has Hopf bifurcating periodic solution, then the original system (17) has periodic travelling wave solution. By the above discussion, for (m,θ)=(0.5,0.6)∈D2,c=2 andd=3.8>d0, the wave system (19) has a stable Hopf bifurcating periodic solution as shown in Fig.3. Thus, for (m,θ)=(0.5,0.6)∈D2andd=3.8>d0, the original system (17) has a periodic travelling wave solution with the wave speedc=2. Taking the initial valuesu(x,0) andv(x,0) as defined by (21) and using the periodic boundary condition, Fig.5 illustrates the existence of the periodic travelling wave solution with respect to the time and space variables.

    4 Conclusions

    In this paper, the sufficient condition for occurrence of periodic travelling wave solution is derived for the general diffusive predator-prey system. Applying the Hopf bifurcation method to the corresponding wave system and in terms of the relationship between the periodic solution of the corresponding wave system and the periodic travelling wave solution of the original diffusive system, we obtain the critical value of diffusion-induced periodic travelling wave solution, which depends on other parameters of the system.

    Then we consider the diffusive predator-prey system with herd behavior. The dynamics of the system is investigated in the parameter plane ofmandθ. Them-θplane can be divided into three regionsD1,D2andD3. There exist diffusion-induced periodic travelling wave solutions in regionsD2andD3. In regionD2, there exists periodic travelling wave solution or any given wave speedc>0. But for regionD3, there exists periodic travelling wave solution only for the wave speed large enough beyond some critical valuec0. The critical valued0of diffusion coefficient for periodic travelling wave bifurcation is determined by the other system parameters. Numerical simulations are employed to illustrate the existence of diffusion-induced periodic travelling wave solution in the diffusive predator-prey system with herd behavior.

    (A)the solution for u(x,t); (B) the projector of the solution u(x,t) on the x-t plane; (C)the solution for v(x,t); (D) the projector of the solution v(x,t) on the x-t plane. Fig.5 Periodic travelling wave solution of system (17) with (m,θ)=(0.5,0.6)∈D2 and d=3.8

    [1] SHERRATT J A, SMITH M J.Periodic travelling waves in cyclic populations: field studies and reactiondiffusion models[J]. Journal of The Royal Society Interface, 2008, 5(22): 483-505.

    [2] LI W T, WU S L. Traveling waves in a diffusive predatorprey model with Holling type-III functional response[J]. Chaos Solitons & Fractals, 2008, 37(2): 476-486.

    [3] ZHANG T, JIN Y. Traveling waves for a reaction-diffusion-advection predator-prey model[J]. Nonlinear Analysis Real World Applications, 2017, 36:203-232.

    [4] DING W, HUANG W Z. Traveling wave solutions for some classes of diffusive predator-prey models[J]. Journal of Dynamics and Differential Equations, 2016, 28(3/4): 1293-1308.

    [5] YAFIA R, AZIZ-ALAOUI M A. Existence of periodic travelling waves solutions in predator prey model with diffusion[J]. Applied Mathematical Modelling, 2013, 37(6): 3635-3644.

    [6] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Analysis Real World Applications, 2012, 13(4):1837-1843.

    [7] YUAN S L, XU C Q, ZHANG T H. Spatial dynamics in a predator-prey model with herd behavior[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2013, 23(3): 033102.

    [8] XU Z, SONG Y L. Bifurcation analysis of a diffusive predatorprey system with a herd behavior and quadratic mortality[J]. Mathematical Methods in the Applied Sciences, 2015, 38(14): 2994-3006.

    [9] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation [M]. New York: Cambridge University Press, 1981.

    擴(kuò)散捕食-食餌系統(tǒng)的周期行波解

    宋永利1,徐 周2

    (1.杭州師范大學(xué)理學(xué)院,浙江 杭州 310036; 2.同濟(jì)大學(xué)數(shù)學(xué)系,上海 200092)

    研究一般的擴(kuò)散捕食-食餌系統(tǒng)中周期行波解的存在性.首先,給出了波方程組中Hopf分支發(fā)生的條件;然后,以擴(kuò)散系數(shù)為分支參數(shù),推導(dǎo)出了周期行波解發(fā)生的臨界值;最后,應(yīng)用所得的理論結(jié)果研究了一個(gè)具有群體效應(yīng)的捕食-食餌系統(tǒng),獲得了周期行波解存在的條件, 并利用數(shù)值模擬例證了所得的理論結(jié)果.

    捕食-食餌系統(tǒng);周期行波解;Hopf分支

    date:2017-06-04

    Supported by the National Natural Science Foundation of China (11571257) and the Scientific Research Start-up Foundation of Hangzhou Normal University (201603).

    SONG Yongli (1971—), male, Professor, majored in differential equations and dynamical system. E-mail: syl.mail@163.com

    10.3969/j.issn.1674-232X.2017.04.005

    O19; O29 MSC2010: 35K57; 37G15; 92B05 Article character: A

    1674-232X(2017)04-0368-10

    猜你喜歡
    理學(xué)院永利食餌
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    一類具有修正的Leslie-Gower項(xiàng)的捕食-食餌模型的正解
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    具有兩個(gè)食餌趨化項(xiàng)的一個(gè)Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    畢永利教授簡(jiǎn)介
    一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    日韩三级视频一区二区三区| a 毛片基地| 中国美女看黄片| 黄片小视频在线播放| 亚洲精品国产区一区二| 在线观看免费高清a一片| av片东京热男人的天堂| 电影成人av| 午夜福利,免费看| 国产无遮挡羞羞视频在线观看| 国产av国产精品国产| 青草久久国产| 国产欧美亚洲国产| 亚洲伊人色综图| 免费在线观看视频国产中文字幕亚洲 | av网站在线播放免费| 91麻豆av在线| 夜夜骑夜夜射夜夜干| 99热网站在线观看| 男女免费视频国产| 亚洲成av片中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 欧美国产精品va在线观看不卡| 大片电影免费在线观看免费| 久久久国产成人免费| 精品久久久久久久毛片微露脸 | 深夜精品福利| 国产野战对白在线观看| 国产日韩欧美视频二区| 国产亚洲精品一区二区www | 女人高潮潮喷娇喘18禁视频| 国产男女超爽视频在线观看| 亚洲一区中文字幕在线| 精品国产乱子伦一区二区三区 | 侵犯人妻中文字幕一二三四区| 丁香六月欧美| av网站在线播放免费| 精品久久久久久电影网| 一区福利在线观看| 在线观看www视频免费| 狂野欧美激情性bbbbbb| 18禁黄网站禁片午夜丰满| 亚洲av欧美aⅴ国产| 人人妻人人澡人人爽人人夜夜| 欧美av亚洲av综合av国产av| 老司机靠b影院| 亚洲一区中文字幕在线| 天堂8中文在线网| 首页视频小说图片口味搜索| 欧美人与性动交α欧美精品济南到| 国产伦人伦偷精品视频| 亚洲国产日韩一区二区| 精品一品国产午夜福利视频| 狠狠精品人妻久久久久久综合| 久久人人爽人人片av| 色播在线永久视频| 久久热在线av| 狂野欧美激情性xxxx| 中亚洲国语对白在线视频| 天天添夜夜摸| 高清视频免费观看一区二区| 亚洲欧美色中文字幕在线| 嫩草影视91久久| 天天躁日日躁夜夜躁夜夜| 亚洲精品国产一区二区精华液| 夜夜夜夜夜久久久久| 亚洲天堂av无毛| 国产男女超爽视频在线观看| 热99久久久久精品小说推荐| 成年动漫av网址| 欧美变态另类bdsm刘玥| 精品人妻1区二区| 秋霞在线观看毛片| 亚洲国产欧美网| 制服人妻中文乱码| 午夜激情久久久久久久| 精品国产一区二区久久| 久久精品成人免费网站| 中文字幕另类日韩欧美亚洲嫩草| 国产精品.久久久| 人人妻人人爽人人添夜夜欢视频| 日韩视频在线欧美| 亚洲国产成人一精品久久久| 日韩中文字幕欧美一区二区| 亚洲专区国产一区二区| 中文字幕精品免费在线观看视频| 亚洲情色 制服丝袜| 熟女少妇亚洲综合色aaa.| 老司机午夜十八禁免费视频| 18禁黄网站禁片午夜丰满| 如日韩欧美国产精品一区二区三区| 日韩大码丰满熟妇| 国产成人精品久久二区二区91| 香蕉丝袜av| 性色av乱码一区二区三区2| 国产亚洲精品久久久久5区| 国产男女超爽视频在线观看| 99re6热这里在线精品视频| 久久中文看片网| 久久亚洲精品不卡| 欧美97在线视频| 在线观看一区二区三区激情| 波多野结衣av一区二区av| 涩涩av久久男人的天堂| 久久久久久人人人人人| 午夜两性在线视频| a 毛片基地| 狂野欧美激情性bbbbbb| 在线 av 中文字幕| 99国产精品一区二区三区| 丰满少妇做爰视频| 亚洲精品久久午夜乱码| 国产精品一区二区在线不卡| 久久久国产一区二区| 成人国产av品久久久| 久久天堂一区二区三区四区| 中文字幕人妻丝袜一区二区| 国产精品久久久人人做人人爽| 成年动漫av网址| 免费少妇av软件| 日韩视频在线欧美| 午夜影院在线不卡| 国产精品久久久av美女十八| 欧美精品高潮呻吟av久久| 亚洲第一av免费看| 日本欧美视频一区| 亚洲国产看品久久| 亚洲成人免费av在线播放| 亚洲成人免费av在线播放| 久久国产精品男人的天堂亚洲| 免费黄频网站在线观看国产| 亚洲国产毛片av蜜桃av| 免费少妇av软件| 午夜福利视频在线观看免费| av在线app专区| 自线自在国产av| 极品少妇高潮喷水抽搐| 韩国精品一区二区三区| 精品人妻1区二区| 新久久久久国产一级毛片| 97在线人人人人妻| 女人高潮潮喷娇喘18禁视频| av在线老鸭窝| videos熟女内射| 男女午夜视频在线观看| 12—13女人毛片做爰片一| 久久久久久久大尺度免费视频| 老汉色∧v一级毛片| 久久久久久久国产电影| 久久久久久久大尺度免费视频| 欧美 日韩 精品 国产| 国产亚洲一区二区精品| 久久人人爽人人片av| 美女视频免费永久观看网站| 亚洲精品在线美女| 亚洲三区欧美一区| 动漫黄色视频在线观看| 久久久久久免费高清国产稀缺| 亚洲精品成人av观看孕妇| 亚洲专区国产一区二区| 亚洲精品中文字幕在线视频| 国产成人欧美| 精品亚洲乱码少妇综合久久| 亚洲国产看品久久| 亚洲精品一二三| 少妇被粗大的猛进出69影院| 日韩,欧美,国产一区二区三区| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频| 亚洲一码二码三码区别大吗| 亚洲精品日韩在线中文字幕| 又大又爽又粗| 国产成人影院久久av| 黄色视频,在线免费观看| 啦啦啦 在线观看视频| 黄片小视频在线播放| 老汉色av国产亚洲站长工具| 十八禁网站网址无遮挡| 国产男女超爽视频在线观看| 午夜福利在线免费观看网站| 国产成人精品在线电影| 91av网站免费观看| 又大又爽又粗| 视频区图区小说| 欧美一级毛片孕妇| 欧美国产精品一级二级三级| 免费久久久久久久精品成人欧美视频| 久久人人爽av亚洲精品天堂| 精品少妇久久久久久888优播| 国产亚洲精品一区二区www | 超碰97精品在线观看| 亚洲精品在线美女| 国产日韩欧美亚洲二区| 国产真人三级小视频在线观看| 精品乱码久久久久久99久播| 久久国产精品大桥未久av| 久久精品国产亚洲av高清一级| 91国产中文字幕| 亚洲第一欧美日韩一区二区三区 | 99国产综合亚洲精品| 精品免费久久久久久久清纯 | netflix在线观看网站| 黄色视频在线播放观看不卡| 亚洲欧美激情在线| 999久久久国产精品视频| 久久狼人影院| 高清视频免费观看一区二区| 亚洲九九香蕉| 国产成人精品久久二区二区91| 欧美日韩视频精品一区| 国产成人一区二区三区免费视频网站| 久久久久国产一级毛片高清牌| 欧美久久黑人一区二区| 91精品伊人久久大香线蕉| 9热在线视频观看99| 免费在线观看影片大全网站| 啦啦啦免费观看视频1| 午夜福利,免费看| 亚洲性夜色夜夜综合| 久久九九热精品免费| 免费不卡黄色视频| 男女国产视频网站| 王馨瑶露胸无遮挡在线观看| 一级a爱视频在线免费观看| 悠悠久久av| 一个人免费看片子| 国产真人三级小视频在线观看| 丝袜脚勾引网站| 老司机深夜福利视频在线观看 | 久久精品人人爽人人爽视色| 精品一区二区三区av网在线观看 | 成年美女黄网站色视频大全免费| 在线看a的网站| 18在线观看网站| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区黑人| 亚洲第一青青草原| 视频区欧美日本亚洲| 中国美女看黄片| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 久久 成人 亚洲| 午夜91福利影院| 少妇 在线观看| 精品人妻1区二区| 欧美老熟妇乱子伦牲交| 日韩欧美免费精品| 18在线观看网站| bbb黄色大片| 日韩中文字幕视频在线看片| 伦理电影免费视频| 精品卡一卡二卡四卡免费| 一边摸一边抽搐一进一出视频| 丰满饥渴人妻一区二区三| 99久久人妻综合| 久久精品熟女亚洲av麻豆精品| 19禁男女啪啪无遮挡网站| 亚洲九九香蕉| 两性夫妻黄色片| 在线av久久热| 淫妇啪啪啪对白视频 | 国产无遮挡羞羞视频在线观看| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | www.精华液| 丝袜美足系列| 动漫黄色视频在线观看| 男女无遮挡免费网站观看| 久久精品人人爽人人爽视色| 国产成人影院久久av| 色综合欧美亚洲国产小说| 午夜免费鲁丝| 午夜激情av网站| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区 | 女性生殖器流出的白浆| 国产黄色免费在线视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产中文字幕在线视频| 亚洲av成人一区二区三| 99热全是精品| 精品一区二区三卡| 天天添夜夜摸| 一区在线观看完整版| svipshipincom国产片| 日本av手机在线免费观看| 老司机亚洲免费影院| www.自偷自拍.com| 欧美午夜高清在线| 国产三级黄色录像| 亚洲五月婷婷丁香| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 亚洲欧美精品综合一区二区三区| 波多野结衣av一区二区av| 国产精品九九99| 亚洲精品久久久久久婷婷小说| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 天天躁日日躁夜夜躁夜夜| 亚洲三区欧美一区| 日韩视频在线欧美| 国产三级黄色录像| 最近最新免费中文字幕在线| 在线av久久热| 啦啦啦在线免费观看视频4| 黄网站色视频无遮挡免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品乱码久久久久久99久播| 久久99一区二区三区| 久久久国产成人免费| 日韩中文字幕视频在线看片| 久久久久久久精品精品| 一本久久精品| 9热在线视频观看99| 国产欧美日韩一区二区三区在线| 99久久人妻综合| 亚洲精品久久成人aⅴ小说| 亚洲九九香蕉| 桃红色精品国产亚洲av| av又黄又爽大尺度在线免费看| 国产一区二区 视频在线| 国产亚洲精品一区二区www | 黄色视频不卡| 中亚洲国语对白在线视频| 色婷婷av一区二区三区视频| 91麻豆av在线| 精品国内亚洲2022精品成人 | 午夜影院在线不卡| 亚洲久久久国产精品| 中亚洲国语对白在线视频| 成人国产av品久久久| 久久久久精品人妻al黑| 日本a在线网址| 亚洲伊人久久精品综合| netflix在线观看网站| 国产亚洲一区二区精品| 91麻豆精品激情在线观看国产 | 人人妻人人爽人人添夜夜欢视频| 51午夜福利影视在线观看| 欧美精品一区二区大全| 精品久久蜜臀av无| 女人爽到高潮嗷嗷叫在线视频| 欧美 日韩 精品 国产| 人妻一区二区av| 日韩人妻精品一区2区三区| 午夜激情久久久久久久| 9191精品国产免费久久| 欧美日韩黄片免| 亚洲第一青青草原| 国产精品偷伦视频观看了| 老司机福利观看| 搡老熟女国产l中国老女人| 日本五十路高清| 天堂中文最新版在线下载| 桃花免费在线播放| 日韩免费高清中文字幕av| 午夜福利视频在线观看免费| 亚洲九九香蕉| 十分钟在线观看高清视频www| 在线观看舔阴道视频| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人爽人人夜夜| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 精品国产超薄肉色丝袜足j| 80岁老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 国产人伦9x9x在线观看| 国产精品免费视频内射| 天天影视国产精品| 天天操日日干夜夜撸| 黄片播放在线免费| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 日日爽夜夜爽网站| 中文字幕制服av| 亚洲av日韩精品久久久久久密| 亚洲人成电影免费在线| 王馨瑶露胸无遮挡在线观看| av天堂在线播放| 日韩欧美免费精品| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 在线观看人妻少妇| 性色av乱码一区二区三区2| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 国产av一区二区精品久久| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 老司机在亚洲福利影院| 久久毛片免费看一区二区三区| 啪啪无遮挡十八禁网站| 青春草亚洲视频在线观看| 久久久久久久国产电影| 欧美日韩亚洲综合一区二区三区_| 久久精品久久久久久噜噜老黄| 一级毛片女人18水好多| 男人舔女人的私密视频| videosex国产| 亚洲国产av新网站| 99九九在线精品视频| 乱人伦中国视频| 啦啦啦 在线观看视频| 免费观看a级毛片全部| 淫妇啪啪啪对白视频 | 男女午夜视频在线观看| 亚洲国产日韩一区二区| 国产av又大| 国产av国产精品国产| 久久人人97超碰香蕉20202| 俄罗斯特黄特色一大片| 亚洲综合色网址| 777久久人妻少妇嫩草av网站| 在线永久观看黄色视频| 久久精品成人免费网站| 欧美国产精品一级二级三级| 激情视频va一区二区三区| 国产在线免费精品| 亚洲免费av在线视频| 日韩免费高清中文字幕av| 日本五十路高清| 成年美女黄网站色视频大全免费| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 中文字幕人妻丝袜一区二区| 99久久国产精品久久久| 成年人午夜在线观看视频| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 热re99久久国产66热| 久久久精品免费免费高清| 精品熟女少妇八av免费久了| 欧美性长视频在线观看| 人妻 亚洲 视频| 波多野结衣一区麻豆| 国产成人免费无遮挡视频| 一区福利在线观看| 成人黄色视频免费在线看| 高清欧美精品videossex| 久久中文看片网| 亚洲免费av在线视频| 丰满饥渴人妻一区二区三| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲一码二码三码区别大吗| 男女高潮啪啪啪动态图| 伊人久久大香线蕉亚洲五| 久久久久久久久久久久大奶| 大香蕉久久成人网| 一级毛片女人18水好多| 少妇精品久久久久久久| 国产色视频综合| 我要看黄色一级片免费的| 另类亚洲欧美激情| 欧美日韩福利视频一区二区| 下体分泌物呈黄色| 捣出白浆h1v1| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 亚洲精品国产精品久久久不卡| 一级片'在线观看视频| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美网| 欧美精品高潮呻吟av久久| 久久性视频一级片| 人妻人人澡人人爽人人| 国产不卡av网站在线观看| 午夜老司机福利片| 九色亚洲精品在线播放| 黄色视频不卡| 一级毛片电影观看| 亚洲伊人色综图| 桃红色精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 丝袜美足系列| 亚洲,欧美精品.| av又黄又爽大尺度在线免费看| 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| e午夜精品久久久久久久| 国产精品一二三区在线看| 精品国产乱码久久久久久男人| 国产高清videossex| av视频免费观看在线观看| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 男女之事视频高清在线观看| 丁香六月欧美| 国产精品国产av在线观看| 最黄视频免费看| 免费在线观看视频国产中文字幕亚洲 | 在线观看人妻少妇| 欧美激情极品国产一区二区三区| 桃红色精品国产亚洲av| 最新在线观看一区二区三区| 亚洲人成电影免费在线| 人妻一区二区av| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 另类亚洲欧美激情| 在线av久久热| 黄色 视频免费看| 交换朋友夫妻互换小说| 午夜91福利影院| 老汉色av国产亚洲站长工具| 国产亚洲午夜精品一区二区久久| 好男人电影高清在线观看| 在线观看免费日韩欧美大片| 色老头精品视频在线观看| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 搡老岳熟女国产| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品古装| 国产伦人伦偷精品视频| 国产av国产精品国产| 亚洲精品一二三| 午夜成年电影在线免费观看| 国产一区有黄有色的免费视频| 精品一区二区三区四区五区乱码| 性色av一级| 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 91精品三级在线观看| 男女高潮啪啪啪动态图| 一个人免费看片子| bbb黄色大片| 日韩一区二区三区影片| 51午夜福利影视在线观看| 99九九在线精品视频| 99精品欧美一区二区三区四区| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 成人三级做爰电影| 久久久国产欧美日韩av| 99久久国产精品久久久| 欧美日韩亚洲高清精品| 中文欧美无线码| 麻豆乱淫一区二区| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| av免费在线观看网站| 人成视频在线观看免费观看| 黑人操中国人逼视频| 人人妻人人澡人人爽人人夜夜| 免费一级毛片在线播放高清视频 | 精品国产乱子伦一区二区三区 | 欧美另类亚洲清纯唯美| 久久久国产欧美日韩av| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 欧美激情高清一区二区三区| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 91九色精品人成在线观看| 亚洲av电影在线进入| 少妇猛男粗大的猛烈进出视频| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| av在线播放精品| 国产在线视频一区二区| 免费在线观看日本一区| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 国产精品国产av在线观看| 中文字幕最新亚洲高清| 久久av网站| 精品少妇久久久久久888优播| 亚洲精品美女久久av网站| 看免费av毛片| 黄色视频不卡| 99国产精品99久久久久| 一二三四社区在线视频社区8| 久久青草综合色| 国产精品.久久久| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区久久久樱花| 国产亚洲精品一区二区www | 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 精品第一国产精品| 人妻 亚洲 视频| 国产高清videossex| 亚洲,欧美精品.| 日日夜夜操网爽| 日韩熟女老妇一区二区性免费视频| 99国产精品99久久久久| 久久国产精品大桥未久av| 高清欧美精品videossex| 大型av网站在线播放| 精品福利观看| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 国产成人精品在线电影| 亚洲专区字幕在线| 日本a在线网址|