張文瀟,項(xiàng)慧玲
·前沿進(jìn)展·
外來(lái)體對(duì)心臟保護(hù)作用的研究進(jìn)展
張文瀟,項(xiàng)慧玲
外來(lái)體多數(shù)是指心血管系統(tǒng)細(xì)胞釋放的微小脂質(zhì)雙分子囊泡結(jié)構(gòu),盡管目前外來(lái)體的純化方法仍存在一定技術(shù)挑戰(zhàn),但外來(lái)體已被證實(shí)具有心臟保護(hù)作用,如從血漿中純化的外來(lái)體可激活心臟保護(hù)途徑,而干細(xì)胞釋放的外來(lái)體有利于改善心血管功能。本文主要綜述了心血管系統(tǒng)細(xì)胞和干細(xì)胞釋放的外來(lái)體對(duì)心臟保護(hù)作用的研究進(jìn)展,以期為心血管疾病的治療提供新方向。
外來(lái)體;心血管系統(tǒng);心臟保護(hù);綜述
張文瀟,項(xiàng)慧玲.外來(lái)體對(duì)心臟保護(hù)作用的研究進(jìn)展[J].實(shí)用心腦肺血管病雜志,2017,25(7):1-6.[www.syxnf.net]
ZHANG W X,XIANG H L.Progress on cardiac protective effect of exosomes[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(7):1-6.
目前,臨床上將直徑為50~100 nm的顆粒稱為外來(lái)體,而將直徑為100 nm~1 μm的顆粒稱為微粒,不同顆粒的釋放機(jī)制不同,外來(lái)體主要通過(guò)內(nèi)體途徑釋放。外來(lái)體表面可攜帶細(xì)胞表面標(biāo)志物,與鄰近細(xì)胞表面受體相結(jié)合,也可與遠(yuǎn)處細(xì)胞相互作用。此外,外來(lái)體的水泡性質(zhì)意味著其能攜帶蛋白質(zhì)信使RNA(mRNA)和微小RNA(miRNA),并將mRNA和miRNA轉(zhuǎn)移到受體細(xì)胞,從而實(shí)現(xiàn)單元到單元的通信。臨床研究表明,多數(shù)心血管系統(tǒng)細(xì)胞可釋放外來(lái)體,且釋放的外來(lái)體均被證實(shí)具有心臟保護(hù)作用。本文主要綜述心血管系統(tǒng)細(xì)胞和干細(xì)胞釋放的外來(lái)體對(duì)心臟保護(hù)作用的研究進(jìn)展,為心血管疾病的治療提供新的方向。
1.1 概述 外來(lái)體一詞是于1981年首次提出并用來(lái)描述由細(xì)胞釋放的亞微小脂質(zhì)囊泡結(jié)構(gòu)[1],隨后外來(lái)體被具體指含有轉(zhuǎn)鐵蛋白受體的直徑約50 nm的囊泡(見(jiàn)圖1a)[2-3],幾年后外來(lái)體被認(rèn)為是細(xì)胞脫落的多余蛋白質(zhì),直到2007年才有研究發(fā)現(xiàn),外來(lái)體中含有可以在細(xì)胞間轉(zhuǎn)移的miRNA[4],故其作為生物標(biāo)志物和潛在的治療靶點(diǎn)開(kāi)始受到臨床極大關(guān)注。大多數(shù)由細(xì)胞釋放的外來(lái)體直徑為50~100 nm,該部分外來(lái)體最初通過(guò)細(xì)胞內(nèi)多泡體與細(xì)胞膜融合產(chǎn)生,并從細(xì)胞內(nèi)釋放,故外來(lái)體與通過(guò)質(zhì)膜脫落釋放的直徑為100 nm~1 μm的微泡不同。但目前的分離技術(shù)尚難獲得純外來(lái)體,臨床提供的外來(lái)體多為微泡和細(xì)胞外囊泡的混合物,如凋亡小體等[5-6]。因此,實(shí)驗(yàn)過(guò)程中使用的細(xì)胞囊泡分離物應(yīng)稱為細(xì)胞外囊泡(EVs)。
1.2 分離方法 將EVs與血液或組織培養(yǎng)基分離的常用方法包括超速離心法、沉淀、親和分離技術(shù)和分子排阻色譜法[7],但上述方法均可能導(dǎo)致分離的EVs中含有少量微泡[5-6]。密度梯度純化離心法從大分子蛋白質(zhì)中分離囊泡的純度較高,但耗時(shí)長(zhǎng)且產(chǎn)量低;此外,由于其他血液成分(如脂蛋白、蛋白質(zhì)大分子復(fù)合物和血漿蛋白質(zhì))與外來(lái)體體積甚至密度相似,故可在一定程度上污染分離的囊泡。因此,從培養(yǎng)的細(xì)胞中分離EVs時(shí)需使用無(wú)血清培養(yǎng)基或預(yù)先清除了血清的培養(yǎng)細(xì)胞,以減少其他血清成分的污染,但需要注意的是使用無(wú)血清培養(yǎng)基時(shí)細(xì)胞健康是關(guān)鍵因素,因經(jīng)歷細(xì)胞凋亡的細(xì)胞可分裂、釋放污染囊泡的凋亡小體,從而影響EVs純度[8]。
既往研究顯示,分離的EVs純度較高時(shí)產(chǎn)量一定不足,理論上直徑為100 nm的單個(gè)外來(lái)體含有約1 500個(gè)蛋白質(zhì),故1 ml血液中可以完全純化約1 010個(gè)外來(lái)體,預(yù)計(jì)最多產(chǎn)出1 μg蛋白質(zhì)[9-10],具體見(jiàn)表1。臨床研究表明,與運(yùn)輸有關(guān)的內(nèi)吞體分選轉(zhuǎn)運(yùn)復(fù)合物(ESCRT)與外來(lái)體釋放有關(guān),但抑制ESCRT蛋白質(zhì)的關(guān)鍵酶不能完全消除外來(lái)體。由于神經(jīng)酰胺富含外來(lái)體且參與其腔內(nèi)形成,故可采用中性鞘磷脂酶抑制劑抑制外來(lái)體釋放[11],但該抑制劑是否對(duì)外來(lái)體釋放具有特異性尚不能明確[12]。
采用流式細(xì)胞術(shù)檢測(cè)微泡是具有挑戰(zhàn)性的[13]。由于微泡比光的波長(zhǎng)小,故需要專門技術(shù)來(lái)量化和可視化外來(lái)體,特別是小體積外來(lái)體,必須使用動(dòng)態(tài)光散射或原子力顯微鏡確定外來(lái)體大小和濃度[7],透射電子顯微鏡或低溫電子顯微鏡可觀察顆粒泡狀本質(zhì)(見(jiàn)圖1b~d)[14],跨膜蛋白(CD9,CD63、CD81)和熱休克蛋白(Hsp70)可作為外來(lái)體的分子標(biāo)志物。臨床常通過(guò)膜標(biāo)記蛋白質(zhì)判斷外來(lái)體來(lái)源,但許多外來(lái)體具有相似的膜標(biāo)記蛋白質(zhì),故外來(lái)體的來(lái)源較難確定[13]。由于外來(lái)體內(nèi)容通常反映原始細(xì)胞內(nèi)容,故外來(lái)體成分可能有助于識(shí)別生物標(biāo)志物。
微泡和外來(lái)體均可在糖尿病、心血管疾病、內(nèi)皮細(xì)胞功能障礙、凝血功能障礙和多囊卵巢綜合征發(fā)生發(fā)展中扮演重要角色[7],如急性冠脈綜合征患者血液中內(nèi)皮細(xì)胞起源和具有凝血作用的循環(huán)微泡濃度升高[15],以微泡作為內(nèi)皮細(xì)胞功能障礙標(biāo)志物有助于識(shí)別冠心病高風(fēng)險(xiǎn)患者[16]。健康個(gè)體血液中含有大量EVs,血漿中約含有1 010個(gè)/ml囊泡[9-10],EVs和囊泡主要來(lái)自血小板和紅細(xì)胞,少量來(lái)自淋巴細(xì)胞、內(nèi)皮細(xì)胞和實(shí)質(zhì)細(xì)胞。ARRAUD等[13]使用冷凍電子顯微鏡觀察到血液中EVs的結(jié)構(gòu),并證實(shí)大多數(shù)EVs是直徑約200 nm的球形結(jié)構(gòu),同時(shí)他們還觀察到較大的未知來(lái)源的管狀結(jié)構(gòu)(見(jiàn)圖1 b、c),并估計(jì)在無(wú)血小板血漿中EVs數(shù)量達(dá)到5×107個(gè)/ml;通過(guò)檢查外來(lái)體表面膜標(biāo)記蛋白質(zhì)認(rèn)為相似數(shù)量的囊泡來(lái)自血小板和紅細(xì)胞。鑒于健康人血漿中EVs數(shù)量較多,故探究外來(lái)體的功能具有重要的臨床意義。筆者檢索、分析大量文獻(xiàn)總結(jié)出心血管系統(tǒng)細(xì)胞釋放的EVs的作用(見(jiàn)表2),并進(jìn)一步分析外來(lái)體的心臟保護(hù)作用。
2.1 血小板釋放的外來(lái)體的心臟保護(hù)作用 血小板釋放的外來(lái)體的作用機(jī)制尚未完全明確,其可能同時(shí)有害和有益[17]。血小板釋放的外來(lái)體通常是前血栓形成的,其可以在體外和體內(nèi)刺激血管生成[18-19]。將血小板釋放的微泡注入慢性心肌缺血大鼠的缺血心肌可增加功能性毛細(xì)血管數(shù)量;血管損傷后血小板局部活化、脫顆粒,進(jìn)而釋放包含外來(lái)體和微泡的EVs[20]。目前有研究已證實(shí),血小板釋放的EVs與血管生成早期生長(zhǎng)細(xì)胞相互作用改變了基質(zhì)細(xì)胞衍生因子1α(SDF-1α)/趨化因子受體4(CXCR4)信號(hào)傳導(dǎo),并刺激其成熟和再內(nèi)皮化[21]。因此,測(cè)量血漿微泡濃度具有重要診斷價(jià)值,如非冠狀動(dòng)脈疾病患者血小板和其他細(xì)胞釋放的微泡數(shù)量在壓力超聲心動(dòng)圖后立即增加,而冠狀動(dòng)脈疾病患者血小板和其他細(xì)胞釋放的微泡數(shù)量在壓力超聲心動(dòng)圖后無(wú)變化[22]。
2.2 心肌細(xì)胞釋放的外來(lái)體的心臟保護(hù)作用 心肌細(xì)胞在體外釋放外來(lái)體已得到臨床證實(shí)(見(jiàn)圖1e)[23-24],該外來(lái)體的蛋白質(zhì)和mRNA含量在不同培養(yǎng)條件和刺激(如氧化應(yīng)激)下均會(huì)發(fā)生改變[23,25]。臨床研究表明,在氧化應(yīng)激或葡萄糖剝奪條件下,新生兒心肌細(xì)胞和心臟樣H9c2細(xì)胞會(huì)釋放大量外來(lái)體;外來(lái)體與內(nèi)皮細(xì)胞共培養(yǎng)過(guò)程中可誘導(dǎo)內(nèi)皮細(xì)胞增殖、血管生成及增加受體細(xì)胞中葡萄糖攝取量和糖酵解活性[26-27]。但還有研究顯示,糖尿病大鼠心肌細(xì)胞釋放的外來(lái)體不僅抑制促血管生成能力,還抑制血管生成,分析其原因可能與miRNA-320轉(zhuǎn)移及其受體——心臟內(nèi)皮細(xì)胞中靶基因(IGF-1,Hsp20和Ets2)下調(diào)有關(guān)[28]。此外,糖尿病大鼠的循環(huán)微泡由于改變了miRNA-126的表達(dá)而對(duì)內(nèi)皮祖細(xì)胞功能產(chǎn)生負(fù)面影響[29]。因此,外來(lái)體功能喪失可能有助于心血管疾病的治療。
注:a為細(xì)胞內(nèi)體與綿羊網(wǎng)織紅細(xì)胞質(zhì)膜融合后通過(guò)胞吐釋放外來(lái)體(圖片來(lái)源于文獻(xiàn)[3]);b、c為純血漿冷凍電子顯微鏡圖,球形EVs嵌入無(wú)血小板血漿的薄膜中,b中EVs直徑為185 nm,c中EVs直徑分別為45 nm、60 nm,EVs外圍的脂質(zhì)雙層是兩條相距4 nm的暗線(箭頭指向處),背景顆粒狀部分與血漿蛋白質(zhì)含量高有關(guān),比例尺為100 nm(圖片來(lái)源于文獻(xiàn)[14]);d是采用差速超速離心法從大鼠血漿中分離外源體的透射電子顯微鏡圖,比例尺為100 nm;e為采用納米顆粒跟蹤分析技術(shù)確定的原代成年大鼠心肌細(xì)胞釋放外來(lái)體情況
圖1 外來(lái)體基本情況
Figure 1 General informationof alien body
2.3 血管平滑肌細(xì)胞釋放的外來(lái)體的心臟保護(hù)作用 血管鈣化與主要心臟不良事件有關(guān)。在礦化最早階段,血管平滑肌細(xì)胞釋放形成核心磷酸鈣晶體和促進(jìn)血管鈣化的外來(lái)體[30],表明調(diào)節(jié)血管平滑肌細(xì)胞釋放外來(lái)體的途徑可能是預(yù)防鈣化的新靶點(diǎn)。
2.4 內(nèi)皮細(xì)胞釋放的外來(lái)體的心臟保護(hù)作用 心臟細(xì)胞類型間的溝通機(jī)制及其是否可以用于治療越來(lái)越受到臨床關(guān)注,如一些藥物可以通過(guò)刺激內(nèi)皮細(xì)胞和心肌細(xì)胞間的心臟保護(hù)途徑而起作用[31]。外來(lái)體和微泡是細(xì)胞間的重要通信手段,特別是需要通過(guò)專門通信途徑,如免疫突觸[32-33]。目前,臨床正在積累外來(lái)體在心血管系統(tǒng)中的溝通作用[7,34],如原始內(nèi)皮細(xì)胞與激活的周細(xì)胞共同培養(yǎng),外來(lái)體通常包圍在體內(nèi)并與其連通,以外顯子依賴性方式刺激血管生成[35];內(nèi)皮細(xì)胞通過(guò)轉(zhuǎn)移富含miRNA-143/145的EVs來(lái)控制共培養(yǎng)平滑肌細(xì)胞中的靶基因表達(dá)及應(yīng)對(duì)剪切應(yīng)力[36];對(duì)載脂蛋白E(ApoE)(-/-)的動(dòng)脈粥樣硬化小鼠注射EVs后發(fā)現(xiàn)其主動(dòng)脈粥樣硬化病變緩解[37]。內(nèi)皮細(xì)胞釋放的外來(lái)體的另一作用是能刺激受體細(xì)胞的遷移和血管生成[7],該作用與miRNA-214表達(dá)有關(guān)[36]。
目前,大量臨床研究顯示干細(xì)胞釋放的外來(lái)體均具有心臟保護(hù)作用(見(jiàn)表3),如脂肪間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)、造血干細(xì)胞、胚胎干細(xì)胞(embryonic stem cells,ESCs)、心臟祖細(xì)胞(cardiac progenitor cells,CPCs)、心肌球樣細(xì)胞(cardiosphere-derived cells,CDCs)及心臟側(cè)群干細(xì)胞(cardiac side population cells,CSPCs)等。
3.1 MSCs釋放的外來(lái)體 MSCs釋放的外來(lái)體在體外可抑制血管平滑肌增殖、遷移,且給小鼠注射外來(lái)體20 d后可抑制靜脈移植物內(nèi)膜增生程度,炎性細(xì)胞因子如白介素6(IL-6)和單核細(xì)胞趨化蛋白1(MCP-1)水平也隨之降低[38]。靜脈輸送MSCs釋放的外來(lái)體還可通過(guò)抑制肺動(dòng)脈內(nèi)皮細(xì)胞STAT3信號(hào)傳導(dǎo)而抑制低氧誘導(dǎo)的肺動(dòng)脈高壓小鼠血管重塑和高血壓[39]。近期發(fā)表的一項(xiàng)研究結(jié)果顯示,MSCs釋放的外來(lái)體在逆轉(zhuǎn)小鼠肺動(dòng)脈高壓時(shí)潛力巨大,而源自野百合堿誘導(dǎo)的肺動(dòng)脈高壓小鼠外來(lái)體在注射到非患病動(dòng)物后可誘導(dǎo)其產(chǎn)生肺動(dòng)脈高壓[40],分析各研究間產(chǎn)生的差異可能與外來(lái)體不同miRNA表達(dá)譜有關(guān)。
3.3 ESCs釋放的外來(lái)體 將ESCs釋放的外來(lái)體注射到心肌梗死小鼠心臟中可增加血管重建和心肌細(xì)胞存活并減少心肌纖維化,分析其作用機(jī)制可能與心肌中miRNA-294和C-kik心臟祖細(xì)胞遞送有關(guān),且與ESCs相比,外來(lái)體的優(yōu)勢(shì)是無(wú)致癌的潛在威脅[45]。
3.4 CPCs釋放的外來(lái)體 CPCs釋放的外來(lái)體可從接受心臟瓣膜手術(shù)患者的心房外植體中獲得。臨床研究表明,心肌梗死大鼠植入CPCs釋放的外來(lái)體后可減少心肌細(xì)胞凋亡、增加新生血管形成、提高左心室射血分?jǐn)?shù)[46],但大多數(shù)細(xì)胞植入后不久因缺氧會(huì)發(fā)生凋亡或丟失。為了提高外來(lái)體抗缺氧能力,CPCs應(yīng)與攜帶HIF1的非病毒小環(huán)質(zhì)粒共同遞送,使內(nèi)皮細(xì)胞過(guò)度表達(dá)HIF1,產(chǎn)生含有高含量miRNA-126和miRNA-210的外來(lái)體,從而激活促蛋白激酶并誘導(dǎo)糖酵解轉(zhuǎn)換[47]。同時(shí),CPCs釋放的外來(lái)體也被證實(shí)能刺激內(nèi)皮細(xì)胞遷移[48]。
3.5 CDCs釋放的外來(lái)體 臨床研究表明,CDCs釋放的外來(lái)體能改善心肌梗死大鼠心臟功能、抑制細(xì)胞凋亡、促進(jìn)心肌細(xì)胞增殖及血管生成[49]。此外,CDCs釋放的外來(lái)體還能減少多柔比星誘導(dǎo)的擴(kuò)張型心肌病小鼠細(xì)胞凋亡和纖維化[50]。
3.6 CSPCs釋放的外來(lái)體 目前,CSPCs釋放的外來(lái)體已被用于體外建立成纖維細(xì)胞。臨床研究表明,CSPCs釋放的外來(lái)體可導(dǎo)致促血管生成因子、基質(zhì)細(xì)胞衍生因子1α(SDF-1α)和血管內(nèi)皮生長(zhǎng)因子分泌增加[51-52]。當(dāng)CSPCs釋放的外來(lái)體注射到慢性心肌梗死大鼠心臟時(shí),發(fā)現(xiàn)成纖維細(xì)胞可刺激重要血管生成并具有保護(hù)心臟作用[51]。
基于上述證據(jù)表明,干細(xì)胞釋放的外來(lái)體具有心臟保護(hù)作用,MSC釋放的外來(lái)體能縮小心肌缺血/再灌注損傷小鼠的梗死面積并促進(jìn)其恢復(fù),該機(jī)制似乎涉及AKT和GSK-3β信號(hào)通路[53-55]。從血液中純化的富含外來(lái)體的EVs在體內(nèi)或體外均可保護(hù)大鼠心臟和心肌細(xì)胞免受急性缺血和再灌注損傷,該機(jī)制與外源性Hsp70通過(guò)TLR4激活MAPK /ERK1/2信號(hào)通路有關(guān)[10]。
目前,外來(lái)體的研究仍存在很多困難,尤其是缺乏獲得純外來(lái)體的分離技術(shù)。在生物醫(yī)學(xué)方面,循環(huán)外來(lái)體的作用機(jī)制尚未完全明確;在治療方面,了解外來(lái)體藥動(dòng)學(xué)和藥效學(xué)至關(guān)重要。盡管存在諸多困難,但外來(lái)體在心血管疾病治療中的潛力已受到越來(lái)越多的關(guān)注,且已有臨床試驗(yàn)將外來(lái)體作為治療劑進(jìn)行研究[56]。未來(lái),還需要更多的研究進(jìn)一步明確外來(lái)體的心臟保護(hù)作用及其作用機(jī)制。
表1 典型外來(lái)體一般情況
注:a為真核細(xì)胞內(nèi)假定蛋白質(zhì)占外來(lái)體總質(zhì)量20%,平均蛋白質(zhì)質(zhì)量為52 kDa時(shí);b為蛋白質(zhì)數(shù)量計(jì)算公式,蛋白質(zhì)數(shù)量=蛋白質(zhì)質(zhì)量/52 000×阿伏伽德羅常量
表2 心血管系統(tǒng)細(xì)胞釋放的EVs的作用
注:TLR-4=Toll樣受體-4,VEGF=血管內(nèi)皮生長(zhǎng)因子,bFGF=堿性成纖維細(xì)胞生長(zhǎng)因子,PDGF=血小板衍化生長(zhǎng)因子,CXCR4=趨化因子受體4,GLUT1=葡萄糖轉(zhuǎn)運(yùn)蛋白1,GLUT4=葡萄糖轉(zhuǎn)運(yùn)蛋白4,miRNA=微小RNA,VEGFR-2=血管內(nèi)皮生長(zhǎng)因子受體2,HUVECs=人臍靜脈血內(nèi)皮細(xì)胞
表3 干細(xì)胞釋放的外來(lái)體的心臟保護(hù)作用
注:ESCs=胚胎干細(xì)胞,CPCs=心臟祖細(xì)胞,MI=心肌梗死,LVEF=左心室射血分?jǐn)?shù),CSPCs=心臟側(cè)群干細(xì)胞,SDF-1α=基質(zhì)細(xì)胞衍生因子1α,MSCs=間充質(zhì)干細(xì)胞
[1]TRAMS E G,LAUTER C J,SALEM N Jr,et al.Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J].Biochim Biophys Acta,1981,645(1):63-70.
[2]HARDING C,HEUSER J,STAHL P.Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes:demonstration of a pathway for receptor shedding[J].Eur J Cell Biol,1984,35(2):256-263.
[3]PAN B T,TENG K,WU C,et al.Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J].J Cell Biol,1985,101(3):942-948.
[4]VALADI H,EKSTR?M K,BOSSIOS A,et al.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659.
[5]KOWAL J,ARRAS G,COLOMBO M,et al.Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes[J].Proc Nat Acad Sci U S A,2016,113(8):E968-E677.DOI:10.1073/pnas.1521230113.
[7]LAWSON C,VICENCIO J M,YELLON D M,et al.Microvesicles and exosomes:new players in metabolic and cardiovascular disease[J].J Endocrinol,2016,228(2):R57-R71.DOI:10.1530/JOE-15-0201.
[9]DRAGOVIC R A,GARDINER C,BROOKS A S,et al.Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis[J].Nanomedicine,2011,7(6):780-788.DOI:10.1016/j.nano.2011.04.003.
[10]VICENCIO J M,YELLON D M,SIVARAMAN V,et al.Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J].J Am Coll Cardiol,2015,65(15):1525-1536.DOI:10.1016/j.jacc.2015.02.026.
[11]TRAJKOVIC K,HSU C,CHIANTIA S,et al.Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J].Science,2008,319(5867):1244-1247.DOI:10.1126/science.1153124.
[12]KOWAL J,TKACH M,THéRY C.Biogenesis and secretion of exosomes[J].Curr Opin Cell Biol,2014,29(1):116-125.DOI:10.1016/j.ceb.2014.05.004.
[13]ARRAUD N,LINARES R,TAN S,et al.Extracellular vesicles from blood plasma:determination of their morphology,size,phenotype and concentration[J].J Thromb Haemost,2014,12(5):614-627.DOI:10.1111/jth.12554.
[14]THéRY C,AMIGORENA S,RAPOSO G,et al.Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids[J].Curr Protoc Cell Biol,2006,Chapter 3:Unit 3.22.DOI:10.1002/0471143030.cb0322s30.
[15]MALLAT Z,BENAMER H,HUGEL B,et al.Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes[J].Circulation,2000,101(8):841-843.
[16]NOZAKI T,SUGIYAMA S,KOGA H,et al.Significance of a Multiple Biomarkers Strategy Including Endothelial Dysfunction to Improve Risk Stratification for Cardiovascular Events in Patients at High Risk for Coronary Heart Disease[J].J Am Coll Cardiol,2009,54(7):601-608.DOI:10.1016/j.jacc.2009.05.022.
[17]MARTINEZ M C,ANDRIANTSITOHAINA R.Microparticles in angiogenesis:therapeutic potential[J].Circ Res, 2011,109(1):110-119.DOI:10.1161/CIRCRESAHA.110.233049.
[18]KIM H K,SONG K S,CHUNG J H,et al.Platelet microparticles induce angiogenesis in vitro[J].Br J Haematol,2004,124(3):376-384.
[19]BRILL A,DASHEVSKY O,RIVO J,et al.Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization[J].Cardiovasc Res,2005,67(1):30-38.
[20]HEIJNEN H F,SCHIEL A E,F(xiàn)IJNHEER R,et al.Activated platelets release two types of membrane vesicles:Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules[J].Blood,1999,94(11):3791-3799.
[21]MAUSE S F,RITZEL E,LIEHN E A,et al.Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury[J].Circulation,2010,122(5):495-506.DOI:10.1161/CIRCULATIONAHA.109.909473.
[22]AUGUSTINE D,AYERS L V,LIMA E,et al.Dynamic release and clearance of circulating microparticles during cardiac stress[J].Circ Res,2014,114(1):109-113.DOI:10.1161/CIRCRESAHA.114.301904.
[23]MALIK Z A, KOTT K S, POE A J,et al.Cardiac myocyte exosomes:stability,HSP60,and proteomics[J].Am J Physiol Heart Circ Physiol,2013,304(7):H954-H965.DOI:10.1152/ajpheart.00835.
[24]GUPTAS,KNOWLTON A A.HSP60 trafficking in adult cardiac myocytes:role of the exosomal pathway[J].Am J Physiol Heart Circ Physiol,2007,292(6):H3052-H3056.
[26]GARCIA N A,MONCAYO-ARLANDI J,SEPULVEDA P,et al.Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes[J].Cardiovasc Res,2016,109(3):397-408.DOI:10.1093/cvr/cvv260.
[27]GARCIA N A,ONTORIAOVIEDO I,GONZLEZKING H,et al.Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells[J].PLoS One,2015,10(9):e0138849.DOI:10.1371/journal.pone.0138849.
[28]WANG X,HUANG W,LIU G,et al.Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells[J].J Mol Cell Cardiol,2014,74(9):139-150.DOI:10.1016/j.yjmcc.2014.05.001.
[29]WU K,YANG Y,ZHONG Y,et al.The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of miR-126/VEGFR2 pathway[J].Am J Physiol Endocrinol Metab, 2016,310(10):E828-837.DOI:10.1152/ajpendo.00056.2016.
[30]KAPUSTIN A N,CHATROU M L,DROZDOV I,et al.Vascular smooth muscle cell calcification is mediated by regulated exosome secretion[J].Circ Res,2015,116(8):1312-1323.DOI:10.1161/CIRCRESAHA.116.305012.
[31]RIQUELME J A,WESTERMEIER F,HALL A R,et al.Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism[J].Pharmacol Res,2016, 103:318-327.DOI:10.1016/j.phrs.2015.11.004.
[32]MITTELBRUNN M,VICENTE-MANZANARES M,SNCHEZ-MADRID F.Organizing Polarized Delivery of Exosomes at Synapses[J].Traffic,2015,16(4):327-337.DOI:10.1111/tra.12258.
[33]ZHANG L,WRANA J L.The emerging role of exosomes in Wnt secretion and transport[J].Curr Opin Genet Dev, 2014,27(2):14-19.DOI:10.1016/j.gde.2014.03.006.
[34]YELLON D M,DAVIDSON S M.Exosomes:nanoparticles involved incardioprotection?[J].Circ Res,2014, 114(2):325-332.DOI:10.1161/CIRCRESAHA.113.300636.
[35]MAYO J N,BEARDEN S E.Driving the Hypoxia Inducible Pathway in Human Pericytes Promotes Vascular Density in an Exosome Dependent Manner[J].Microcirculation,2016,22(8):711-723.DOI:10.1111/micc.12227.
[36]VAN BALKOM B W,DE JONG O G,SMITS M,et al.Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells[J].Blood,2013,121(19):3997-4006,S1-15.DOI:10.1182/blood-2013-02-478925.
[37]HERGENREIDER E,HEYDT S,TRéGUER K,et al.Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J].Nature Cell Biology,2012,14(3):249-256.DOI:10.1038/ncb2441.
[38]RONG L,HONG S,JIAN M,et al.Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia[J].Cardiovasc Drugs Ther,2016, 30(2):111-118.DOI:10.1007/s10557-015-6630-5.
[39]LEE C,MITSIALIS S A,ASLAM M,et al.Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension[J].Circulation,2012,126(22):2601-2611.DOI:10.1161/CIRCULATIONAHA.112.114173.
[40]ALIOTTA J M,PEREIRA M,WEN S,et al.Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice[J].Cardiovasc Rese,2016,110(3):319-330.
[41]MADONNA R,VAN LAAKE L W,DAVIDSON S M,et al.Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart:cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure[J].Eur Heart J,2016,37(23):1789-1798.DOI:10.1093/eurheartj/ehw113.
[42]KISHORE R,KHAN M.More Than Tiny Sacks:Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair[J].Cir Res,2016,118(2):330-343.DOI:10.1161/CIRCRESAHA.115.307654.
[45]KHAN M,NICKOLOFF E,ABRAMOVA T,et al.Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction[J].Cir Res,2015,117(1):52-64.DOI:10.1161/CIRCRESAHA.117.305990.
[46]BARILE L,LIONETTI V,CERVIO E,et al.Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J].Cardiovasc Res,2014, 103(4):530-541.DOI:10.1093/cvr/cvu167.
[47]ONG S G,LEE W H,HUANG M,et al.Cross talk of combined gene and cell therapy in ischemic heart disease role of exosomal microrna transfer[J].Circulation,2014,130(11 Suppl 1):S60-69.DOI:10.1161/CIRCULATIONAHA.113.007917.
[48]VRIJSEN K R,SLUIJTER J P,SCHUCHARDT M W V,et al.Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells[J].J Cell Mol Med,2010,14(5):1064-1070.DOI:10.1111/j.1582-4934.2010.01081.x.
[49]IBRAHIM A G,CHENG K,MARBN E.Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J].Stem Cell Reports,2014,2(5):606-619.DOI:10.1016/j.stemcr.2014.04.006.
[50]VANDERGRIFF A C,DE ANDRADE J B,TANG J,et al.Intravenous Cardiac Stem Cell-Derived Exosomes Ameliorate Cardiac Dysfunction in Doxorubicin Induced Dilated Cardiomyopathy[J].Stem Cell International,2015:960926.DOI:10.1155/2015/960926.
[51]TSELIOU E,F(xiàn)OUAD J,REICH H,et al.Fibroblasts Rendered Antifibrotic,Antiapoptotic,and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles[J].J Am Coll Cardiol,2015, 66(6):599-611.DOI:10.1016/j.jacc.2015.05.068.
[52]BROMAGE D I,DAVIDSON S M,YELLON D M.Stromal derived factor 1α:a chemokine that delivers a two-pronged defence of the myocardium[J].Pharmacol Ther,2014,143(3):305-315.DOI:10.1016/j.pharmthera.2014.03.009.
[53]LAI R C,ARSLAN F,LEE M M,et al.Exosomesecreted by MSC reduces myocardial ischemia/reperfusion injury[J].Stem Cell Res,2010,4(3):214-222.
[54]ARSLAN F,LAI R C,SMEETS M B,et al.Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J].Stem Cell Research,2013,10(3):301-312.DOI:10.1016/j.scr.2013.01.002.
[55]LAI R C,ARSLAN F,TAN S S,et al.Derivation and characterization of human fetal MSCs:an alternative cell source for large-scale production of cardioprotective microparticles[J].J Cell Cardiol,2010,48(6):1215-1224.DOI:10.1016/j.yjmcc.2009.12.021.
[56]LODISH H,BERK A,ZIPURSKY S L,et al.Molecular cell biology[M].4th edition.New York:W.H.Freeman,2000.
(本文編輯:謝武英)
Progress on Cardiac Protective Effect of Exosomes
ZHANGWen-xiao,XIANGHui-ling
DepartmentofCardiovascularMedicine,theCentralHospitalofEdongMedicalGroup,Huangshi435000,ChinaCorrespondingauthor:XIANGHui-ling,E-mail:paper66@163.com
Exosomes are minute lipid bi-molecular vesicle structures,mostly came from cardiovascular system,in spite of purified method of exosomes is still exist some technological challenges,many studies proved that exosomes had certain cardiac protective effect:exosomes purified from plasma can activate the cardiac protection pathway,stem cells-induced exosomes can improve the cardiovascular function.This paper reviewed cardiac protective effect of exosomes purified from plasma and stem cells,to provide new direction for cardiovascular disease.
Exosomes;Cardiovascular system;Cardioprotection;Review
項(xiàng)慧玲,E-mail:paper66@163.com
R 977.6
A
10.3969/j.issn.1008-5971.2017.07.001
2017-04-12;
2017-07-18)
435000湖北省黃石市,鄂東醫(yī)療集團(tuán)中心院區(qū)心血管內(nèi)科