• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    2017-08-30 08:26:04WenBinWu武文斌HaiTaoRen任海濤ShiXiangPeng彭士香YuanXu徐源JiaMeiWen溫佳美JiangSun孫江AiLinZhang張艾霖TaoZhang張?zhí)?/span>JingFengZhang張景豐andJiaErChen陳佳洱
    Chinese Physics B 2017年9期
    關(guān)鍵詞:佳美海濤

    Wen-Bin Wu(武文斌),Hai-Tao Ren(任海濤),?,Shi-Xiang Peng(彭士香), Yuan Xu(徐源),Jia-Mei Wen(溫佳美),Jiang Sun(孫江),Ai-Lin Zhang(張艾霖),2 Tao Zhang(張?zhí)?,Jing-Feng Zhang(張景豐),and Jia-Er Chen(陳佳洱),2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    Wen-Bin Wu(武文斌)1,Hai-Tao Ren(任海濤)1,?,Shi-Xiang Peng(彭士香)1, Yuan Xu(徐源)1,Jia-Mei Wen(溫佳美)1,Jiang Sun(孫江)1,Ai-Lin Zhang(張艾霖)1,2Tao Zhang(張?zhí)?1,Jing-Feng Zhang(張景豐)1,and Jia-Er Chen(陳佳洱)1,2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Optical emission spectroscopy(OES),as a simple in situ method without disturbing the plasma,has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR)ion source at Peking University(PKU).A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance (ECR)ion source[Patent Number:ZL 201110026605.4]and experiments were carried out recently.The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas.Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results.What is more,the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen.Details will be presented in this paper.

    electron cyclotron resonance(ECR)ion source,hydrogen plasma,plasma diagnosis,optical emission spectroscopy

    1.Introduction

    The 2.45 GHz electron cyclotron resonance(ECR)ion source has been widely used in many plasma processing applications and particle accelerators since its invention 30 years ago because of its advantages of high current density,compact structure,long lifetime,and high reliability.In the 1980s, Peking University(PKU)began to carry out relevant research on 2.45 GHz high current ECR ion source.[1]Since then,several 2.45 GHz ECR ion sources have been developed for different applications.[2–5]Although they have been widely used and exhibited excellent performance,the physical processes and plasma characteristics inside the ECR plasma chamber are still not very clear because of the difficulties on the comprehensive studies of the ion source plasma.Fortunately,the study of the behavior of the electrons is helpful to understand the internal plasma mechanisms.For example,the reaction rate coefficient taking into account the energy dependent cross sections is affected by the electron temperature.The plasma density,which usually means the electron density for plasma containing multiply charged ions,is an important parameter. Therefore,it is significant for us to obtain the information of electrons inside the discharge chamber.

    There are several methods to make measurements on plasma,such as Langmuir probe,Thomson scattering and optical emission spectroscopy(OES).The Langmuir probe is a common method to diagnose ECR plasma by immersion into the plasma.This probe will then affect the plasma,so we cannot obtain the actual information inside the discharge chamber.In addition,the strong RF power and magnetic field are sometimes limitations for the Langmuir probe.[6]Thomson scattering is usually used as a diagnostic method for the high-temperature and high-density plasma and is developed to use for the ECR plasma.But the Brewster window and baffles as necessary parts for Thomson scattering measurements should be taken into account in the design of the ECR ion source.[7,8]Compared with the above methods,OES has its unique advantages.First,it is a non-invasive technique which measures the line radiation in the visible spectral range.Second,the experimental set-up is very simple.Third,it is a passive and very convenient method which can provide a variety of plasma parameters.However,to achieve the OES measurements,an ECR ion source with special construction and a simplified model for the spectroscopic data analysis are very necessary.At PKU,a specially designed 2.45 GHz PMECR ion source with a quartz chamber has been developed with a patent(Patent Number:ZL 201110026605.4).There are also several ECR ion sources operating with quartz plasma chambers in other laboratories.[9–11]The plasma diagnostic measurements inside our quartz chamber ion source may provide some references to these ion sources.In our previous work,the spectrum measurement platform was set up and relevant experiments were performed using this quartz-chamber ECR ion source.The collisional radiative(CR)model was selected tosolve the complex problem on spectroscopic data analysis.As presented in Ref.[12],the electron temperature under different gas pressure and magnitude of electron density was measured.However,the dependencies of the electron temperature and electron density on the pressure and the input RF power have not been studied systematically.More relevant experiments are required to comprehend the plasma characteristics inside the plasma chamber,which are presented in this paper.

    This paper is organized as follows.The diagnostic methods including the CR model,the methods of line intensity ratio of noble gas and line intensity ratio of hydrogen are described in Section 2.The experimental arrangements are displayed in Section 3.The results and discussion on the electron temperature,electron density,and hydrogen plasma processes are presented in Section 4.At the end of this paper,a conclusion and prospect are presented.

    2.Diagnostic method

    2.1.Line intensity ratio of noble gas

    For low-pressure and low-temperature plasma inside the 2.45 GHz ECR ion source,the CR model which balances the collisional and radiative processes is used.More details of the model have been given in Ref.[13]and we only give a brief introduction here.The population density of state p called n(p) is given by

    where Rn(p)and Ri(p)are the collisional-radiative coupling coefficients describing the ground state and the ionic population process,respectively.

    In a spectral measurement,the line intensity Ipkis given by

    where Apkis the transition probability from level p to level k. The line intensity we measured only depends on the population density of state p.

    Combining formulas(1)and(2),we can obtain the correlation between the results of the CR model and the measured line intensity as follows:

    with

    The effective emission rate coefficientis the convolution of the cross section for the electron impact excitation process with the Maxwellian electron energy distribution function(EEDF),and is a function of electron temperature Teand electron density ne.The atomic data and analysis structure (ADAS)database provides reliable effective emission rate coefficients of all kinds of elements.

    The electron temperature and electron density can be measured by emission spectroscopy using the diagnostic gas on the basis of formula(3).However,an absolutely calibrated system can be easily affected by the density of the particles, the absolute intensity of the line,the detection efficiency of the spectrometer,etc.We can use the line ratio method as below to eliminate these influences:

    In our experiment,He with Eth≈23 eV and Ar with Eth≈13 eV are used as auxiliary diagnostic gases for the determination of electron temperature Teand electron density ne.To simplify the calculation,the ratio of particle density is 1:1. The ratio of line intensity can be measured with the spectrometer.Therefore,the ratio of effective emission rate coefficient which depends on Teand necan be identified.It is noteworthy that the lines we used are the radiation of atomic He and Ar.

    Fig.1.(color online)The ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of the electron temperature.

    Fig.2.(color online)The electron density as a function of the electron temperature and ratio of emission rate coefficients for He line at 587.56 nm to 706.52 nm.

    Figure 1 shows the ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of Te.Relevant research indicates that the ratio is sensitive to Teand less sensitive to ne,[14]therefore Tecan be determined from formula(4)by measuring the ratio of these two line intensities.The line ratio of He line at 587.56 nm to 706.52 nm is sensitive to neand it is recommended.[15]Figure 2 shows neas a function of Teand the ratio of emission rate coefficients for the two He lines.

    2.2.Line intensity ratio of hydrogen

    For plasma on the state of local thermal equilibrium,electron temperature Tecan be determined by the ratio of two line intensities of the same atom.[16]The line intensity ratio can be given as

    Formula(5)can be written as follows for the evaluation of the electron temperature:

    where A,g,I,λ,and E are the transition coefficient,the statistical weight,the emission intensity,the wavelength,and the energy of the upper level of the emission line(in units of eV), respectively.For Balmer series of hydrogen,these constants are precisely available and are recommended for electron temperature diagnosis.Table 1 presents the spectral line data of hydrogen Balmer series.

    In our measurements,Hαand Hβare used for the determination of the electron temperature.Figure 3 shows the line intensity ratio of Hαto Hβas a function of Te.

    Fig.3.(color online)The line intensity ratio of Hαto Hβas a function of the electron temperature.

    3.Experimental arrangements

    Figure 4 is a cut view of the quartz-chamber ECR ion source at PKU.The main parts of the ion source consist of an RF matching section(microwave window),a 90 mm×90 mm quadrate source body,and a three-electrode extraction system. It can produce 84 mA hydrogen ion beam working at pulsed model(10%duty factor)and its rms normalized emittance is smaller than 0.2 π·mm·mrad.The magnetic field of the ion source is provided by three NdFeB rings which are separated by non-magnetic metal gaskets.What deserves to be mentioned is that the discharge chamber is made of high trans-missivity quartz,and the plasma spectrum can pass though the quartz and gaps between the magnetic rings.Therefore, plasma diagnosis can be performed for this specially designed ion source.Figure 5 is a schematic illustration of the experimental set-up for plasma diagnosing at PKU.The test platform is composed of the ECR ion source,a gas control system,and a diagnostic system.In order to simplify the calculation of spectrum,mixed He and Ar are used as diagnostic gases from one gas cylinder with He and Ar mixed at the ratio of 1:1.Therefore,a two-channel gas control system with calibrated flow meters is needed to mix the noble gases and hydrogen at specified fractions(He Ar:H2=1:5 or 1:10) instead of the three-channel gas control system we used before.With this improvement,the accuracy of the experimental results can be significantly improved for the precise ratio of particle density.The diagnostic system consists of an opticfiber,a high-resolution spectrometer(AvaSpec-USL3648)in the spectral range of 410 nm to 920 nm,and a computer for data analysis.

    Fig.4.A cut view of the quartz-chamber ECR ion source at PKU.

    4.Results and discussion

    Fig.5.(color online)Schematic illustration of the experimental set-up.

    This section presents the results of electron temperature Teand electron density neas functions of the gas pressure and the input RF power.What is more,the measurements with different ratios of the mixed noble gases to hydrogen(1:5 or1:10) are also performed in our research.Finally,a comparison is made between the methods of line intensity ratio of hydrogen and line intensity ratio of noble gas.There are two things that should be kept in mind.Firstly,the gas pressure is the pressure of the vacuum chamber,which does not reflect the actual pressure of the discharge chamber.It should be lower than the pressure of the discharge chamber for the high gas resistance of the extraction system.Secondly,the RF power we mentioned is the peak RF power generated by the microwave generator(10%duty factor).In addition,each plotted point of the results is the average of three separate measurements.

    4.1.Electron temperature

    Figure 6 shows the dependence of the electron temperature on the gas pressure.We can notice that the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.[8,17]This phenomenon can be attributed to the change of mean free path of the electrons.The increasing gas pressure means higher collision frequency and more energy loss,thus the electron temperature goes down.This has been confirmed by the achievement of 2.45 GHz PMECR ion source at PKU.It can produce more than 100 mA hydrogen ion beam working at pulsed mode,and more than 20 mA(43.2%)and 40 mA H+2(47.7%)have been obtained with suitable parameters.[18]The cross sections of plasma processes are affected by the electron energy and will have an effect on the composition of the extracted currents.Therefore,the dependence of species fraction on the gas pressure of this ion source is presented for the comprehension of how the electron energy influences the behavior of different ions.As shown in Fig.7,the fractions of the extractedandbeams are sensitive to the gas pressure and have opposite trends,the extractedbeam decreases andbeam increases as the gas pressure rises.This is understandable by analyzing the hydrogen plasma processes inside the discharge chamber shown in Fig.8.Firstly,ions inside plasma are created by direct ionization of H2,the cross section of H2direct ionization firstly increases as the energy increases then decreases with an optimal energy of 70 eV.For 2.45 GHz ECR ion source,the electron energy is usually below 20 eV.Therefore,theproduction cross section will decrease as the pressure rises.Secondly,ions are produced by the dissociative attachment ofwith a threshold energy of 0 eV.This reaction rate increases as the pressure rises.Therefore,the generation ofdecreases and the production ofincreases as the pressure rises for the diminution of the electron energy.

    Fig.6.(color online)Dependence of the electron temperature on the gas pressure.

    Fig.7.(color online)Dependence of the extracted species fraction on the gas pressure for hydrogen molecular ion source at PKU.

    Fig.8.(color online)Cross sections of some physical process inside the hydrogen ion source.[19]

    Fig.9.(color online)Dependence of the electron temperature on the RF power.

    In some papers,[8,20]the electron temperature is considered to be nearly constant over the whole RF power range since the electron temperature is primarily influenced by the gas pressure as shown in Fig.6.This behavior is basically in accordance with our results in Fig.9 except for a slight growth of electron temperature with increasing RF power.This is also understandable since the electric field amplitude of the propagating wave is proportional to the square root of the RF power. Therefore,the electrons can gain more energy from the electric field and the electron temperature will increase.Our results are reasonable from this point of view.

    4.2.Electron density

    Figure 10 presents the dependence of the electron density on the gas pressure.The electron density goes up at first,and then decreases as the gas pressure increases.Two probable interpretations are provided for comprehension of this behavior.Firstly,the RF power is sufficient at the beginning,and the electron density increases as the pressure rises because of more ionization of hydrogen molecular.However,the electron density will reach a limitation according to the law of energy conservation for a certain RF power level.In contrast, the higher gas pressure means lower electron energy,which means that the cross section of dissociative recombination ofand other process such as recombination of H+will increase and more electrons will be consumed during these processes.This could be a reasonable explanation for the trend observed in Fig.10.Secondly,we can also interpret this trend from Paschen’s law.The breakdown voltage is high at both low and high pressures,which means that the formation of the plasma is difficult in these cases.As a consequence,there must be a vertex of electron density as the gas pressure changes. More relevant research is needed for confirming these speculations.Moreover,the maximum in the electron density curves shifts to higher pressure when the input RF power increases. Therefore,it is crucial to match the gas pressure with the input RF power for higher electron density.This phenomenon of the electron density is also confirmed by the experimental results of the high current hydrogen molecular ion source at PKU.As we know,the extracted current is a space-chargelimited current for the ECR ion source,and the current density is proportional to the plasma density inside the discharge chamber.Therefore the intensity of the extracted current can be reflected by the plasma density inside the ECR chamber. Figure 11 shows the extracted current(positive correlation of electron density)as a function of the gas pressure.The behavior is in accordance with the measurements in Fig.10.What is more,the electron temperature and electron density measured at upstream and downstream are very close as shown in Figs.6 and 10 because of the similar magnetic field of these two positions.

    Not only the gas pressure but also the RF power have an impact on the electron density.It can be noticed in Fig.12 that the electron density increases rapidly as the RF power increases.This trend is easy to understand,as the RF power rises,a large number of particles are ionized with more electrons generated.It should be pointed out that the increase trend is much more significant than that in Ref.[6]because of more sufficient microwave coupling in our measurement.As shown in Fig.4,a specially designed alumina dielectric microwave window is used for the microwave coupling between the rectangle waveguide and the plasma chamber.Therefore,the electron density varying with the RF power is in fact a reflection of microwave coupling efficiency.What is more,the electron density also has an influence on the species fraction of the final extraction beam.For example,has a large dissociative recombination cross section with electrons as shown in Fig.8, thus low RF power is beneficial to fraction ofaccording to Fig.12.What is more,a moderate RF power is recommended to the improvement offraction.Firstly,a low electron density is insufficient since theions are created by direct ionization of hydrogen molecules with electrons.Secondly,a high electron density will consume theions since the dissociative recombination ofwith electron also has a large cross section as shown in Fig.8.These laws have been proved by the results of cluster ECR ion source at PKU.[18]

    Fig.10.(color online)Dependence of the electron density on the gas pressure.

    Fig.11.(color online)The current as a function of the gas pressure for hydrogen molecular ion source at PKU with Φ30 mm discharge chamber.

    Fig.12.(color online)Dependence of the electron density on the RF power.

    4.3.Proportion of mixed noble gases

    Generally speaking,a small percentage of mixed noble gases are added to the discharge chamber just for diagnostic purpose,the results should not be affected a lot by the ratio of the mixed noble gases to hydrogen.However,it can be noticed in Figs.13 and 14 that the electron temperature decreases and the electron density increases as the proportion of mixed noble gases increases.In other words,the electron temperature we measured is lower and the electron density is higher than the results for pure hydrogen.It seems that the method of line intensity ratio of noble gas will bring some problems.However,this phenomenon is also reasonable for the distinction of ionization energy of different gas.The ionization energy of hydrogen atom is lower than Ar and He in which situation electrons can gain more energy from the RF power.Therefore, the electron temperature of pure hydrogen is higher than the gas mixture.As mentioned in Section 2,the diagnosis of the electron density is based on the electron temperature,the decrease of the electron temperature will lead to the increase of the electron density for a certain line ratio as shown in Fig.2. What is more,the proportion of the mixed noble gases makes no difference to the trend we observed as shown in Figs.13 and 14.From this point of view,the method of line intensity ratio of noble gas is still a very powerful tool that we can use for plasma diagnosis.

    Fig.14.(color online)Dependence of the electron density on the RF power for different ratios of mixed noble gases to hydrogen.

    4.4.Comparison with other methods

    Some research indicated that the electron temperature can be determined using the line intensity ratio of hydrogen.[21,22]This method is also used in our work by measuring the line intensities of Hαand Hβfor the determination of the electron temperature.Figure 15 presents the results for pure hydrogen and hydrogen with noble gas(gas mixture).It is obvious that the electron temperature is higher for pure hydrogen which is in accordance with the conclusion in Subsection 4.3.As mentioned in Subsection 4.1,the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.Thus this law should be a typical result and should not be different for different methods.However,the hydrogen method cannot reflect this law as shown in Fig.16 because this method is based on the assumption of local thermal equilibrium(LTE).For plasma inside ECR ion source,the LTE assumption is not valid.The line intensity ratio of noble gas is without the limitation of LTE assumption and is reliable for electron temperature diagnosis.Based on these facts,more improvements are needed for the use of line intensity ratio of hydrogen inside ECR chamber,and the line intensity ratio of noble gas is recommended.But this does not mean the line intensity ratio of hydrogen is useless.On the contrary,this method can play an important role in the diagnosis for degree of dissociation,etc.More relevant work about hydrogen spectrum will be performed in the future.

    Fig.15.(color online)Dependence of the electron temperature on the gas pressure obtained by the method of line intensity ratio of hydrogen.

    Fig.16.(color online)Comparison of line intensity ratio of hydrogen and line intensity ratio of noble gas.

    5.Conclusion and prospects

    The electron temperature and electron density are measured for plasma inside 2.45 GHz ECRIS at PKU with OES method.The results show that the electron temperature decreases significantly as the gas pressure increases and nearly unaffects input RF power.The electron density increases rapidly with increasing RF power.And it is crucial to match the gas pressure with the input RF power for higher electron density.What is more,the species fraction and extraction beam current are mainly determined by the electron energy and electron density,respectively.All of the details and explanations are presented in this paper.In addition,we illustrate the influence of the noble gas on the diagnostic results and show the feasibility of the line intensity ratio method for plasma diagnosis.At last,the superiority of line intensity ratio of noble gas is indicated with a comparison to the line intensity ratio of hydrogen.

    A new 2.45 GHz microwave driven H?ion source with a quart window is designed for plasma diagnosis,more relevant work such as atomic and molecular spectroscopy for hydrogen plasma will be performed in the future.

    [1]Peng S X,Song Z Z,Yu J X,Ren H T,Zhang M,Yuan Z X,Lu P N, Zhao J,Chen J E,Guo Z Y and Lu Y R 2010 Proceedings of ECRIS10 August 23–26,2010,Grenoble,France,p.102

    [2]Song Z Z,Jiang D and Yu J X 1996 Rev.Sci.Instrum.67 1003

    [3]Peng S X,Zhang M,Song Z Z,Xu R,Zhao J,Yuan Z X,Yu J X,Chen J and Guo Z Y 2008 Rev.Sci.Instrum.79 02B706

    [4]Ren H T,Peng S X,Zhang M,Zhou Q F,Song Z Z,Xu Y,Lu P N, Xu R,Zhao J,Yu J X,Lu Y R,Guo Z Y and Chen J E 2010 Rev.Sci. Instrum.81 02B714

    [5]Peng S X,Zhang T,Ren H T,Zhang A L,Xu Y,Zhang J F,Guo Z Y and Chen J E 2016 Rev.Sci.Instrum.87 02B125

    [6]Gobin R,Benmeziane K,Delferrière O,Ferdinand R,Girard A and Harrault 2005 AIP Conference Proceedings 763 289

    [7]Sakoda T,Momii S,Uchino K,Muraoka K,Bowden M,Maeda M, Manabe Y,Kitagawa M and Kimura T 1991 Jpn.J.Appl.Phys.30 L1425

    [8]Bowden M D,Okamoto T,Kimura F,Muta H,Uchino K,Muraoka K, Sakoda T,Maeda M,Manabe Y,Kitagawa and Kimura T 1993 J.Appl. Phys.73 2732

    [9]Schmitt C,Bowers M,Collon P,Robertson D,Henderson D,Jiang C L,Pardo R C,Rehm E,Scott R,Vondrasek R,Calaprice F,Haas E D and Galbiati C 2008 Proceedings of ECRIS08,September 15–18,2008, Chicago,Illinois,USA,p.46

    [10]Button D and Hotchkis M A C 2008 Proceedings of ECRIS08,September 15–18,2008,Chicago,Illinois,USA,p.53

    [11]Thuillier T 2013 Proceedings of Cyclotrons2013,September 16–20, 2013 Vancouver,BC,Canada,p.130

    [12]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang T,Zhang J F,Guo Z Y and Chen J E 2014 Proceedings of ECRIS2014 August 24–28,2014, Nizhny Novgorod,Russia,p.20

    [13]Fantz U 2006 Plasma Sources Sci.Technol.15 S137

    [14]Fantz U,Falter H,Franzen P,Wünderlich D,Berger M,Lorenz A, Kraus W,McNeely P,Riedl R and Speth E 2006 Nuclear.Fusion 46 S297

    [15]Fantz U 2004 Contrib.Plasma Phys.44 508

    [16]Qayyum A,Zeb S,Naveed M A,Ghauri S A,Zakaullah M and Waheed A 2005 J.Appl.Phys.98 103303

    [17]Oomori T,Tuda M,Ootera H and Ono K 1991 J.Vac.Sci.Technol.A 9 722

    [18]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang A L,Zhang T,Guo Z Y and Chen J E 2014 Rev.Sci.Instrum.85 02A943

    [19]Jones E M 1977 Atomic Collision Processes in Plasma Physics Experiments II,Report CLM-R 175 UKAEA

    [20]Suzuki T,Sawado Y,Lida T and Fujii Y 2004 Rev.Sci.Instrum.75 1520

    [21]Lawrie S R,Faircloth D C and Philippe K 2012 Rev.Sci.Instrum.83 02A704

    [22]Jin D Z,Yang Z H,Tang P Y,Xiao K X and Dai J Y 2009 Vacuum.83 451

    24 February 2017;revised manuscript

    19 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/095204

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11175009 and 11575013).

    ?Corresponding author.E-mail:htren@pku.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    佳美海濤
    Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
    羅海濤作品
    國畫家(2022年3期)2022-06-16 05:30:06
    基于“脾胃內(nèi)傷”辨治隱源性機(jī)化性肺炎
    圓圓的世界
    感受肌理
    通過反思尋求最優(yōu)解
    風(fēng)雨嘀嗒正跑馬
    景年知意暖
    花火B(yǎng)(2015年23期)2015-10-26 03:41:59
    噻苯隆、金滿田、鈣佳美
    八筆描繪夏墊佳美的夢想
    大话2 男鬼变身卡| 国产淫片久久久久久久久| 99热这里只有精品一区| 欧美+日韩+精品| 久久久午夜欧美精品| 在线观看三级黄色| 国内精品宾馆在线| 亚洲不卡免费看| 伦精品一区二区三区| 免费观看av网站的网址| 国产精品av视频在线免费观看| 精品一区二区免费观看| 只有这里有精品99| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区 | 久久韩国三级中文字幕| 国产91av在线免费观看| 伦理电影大哥的女人| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 丝瓜视频免费看黄片| 在线观看一区二区三区激情| 男男h啪啪无遮挡| 黄色日韩在线| 精品久久久久久久人妻蜜臀av| 亚洲av不卡在线观看| 午夜精品国产一区二区电影 | 免费观看a级毛片全部| 久久影院123| 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 亚洲人与动物交配视频| 久久久精品免费免费高清| 日本黄大片高清| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 尤物成人国产欧美一区二区三区| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| 久久午夜福利片| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 高清日韩中文字幕在线| 好男人在线观看高清免费视频| av在线老鸭窝| 99视频精品全部免费 在线| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 干丝袜人妻中文字幕| 真实男女啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频 | 一本一本综合久久| 99热这里只有是精品在线观看| 亚洲av在线观看美女高潮| 91精品一卡2卡3卡4卡| 国产黄片美女视频| 天天躁夜夜躁狠狠久久av| 麻豆成人av视频| 晚上一个人看的免费电影| 大又大粗又爽又黄少妇毛片口| 亚洲成色77777| 亚洲av日韩在线播放| 欧美精品人与动牲交sv欧美| 男的添女的下面高潮视频| 亚洲熟女精品中文字幕| 一级a做视频免费观看| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 日本黄大片高清| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说| 波多野结衣巨乳人妻| 成人毛片60女人毛片免费| 在线观看三级黄色| 国产精品熟女久久久久浪| 观看免费一级毛片| 久久热精品热| 偷拍熟女少妇极品色| 久久99热6这里只有精品| 免费看不卡的av| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类| 黄色一级大片看看| av免费在线看不卡| 熟女人妻精品中文字幕| 色5月婷婷丁香| 91aial.com中文字幕在线观看| 一级二级三级毛片免费看| a级毛色黄片| 日韩在线高清观看一区二区三区| 黄片wwwwww| av在线播放精品| 欧美成人精品欧美一级黄| 国产成人freesex在线| 深夜a级毛片| av国产精品久久久久影院| 国产精品久久久久久久久免| 夫妻性生交免费视频一级片| 大码成人一级视频| 狂野欧美激情性bbbbbb| 亚洲欧美成人精品一区二区| 少妇被粗大猛烈的视频| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| 免费av不卡在线播放| 久久久成人免费电影| videossex国产| 国产综合懂色| 天堂中文最新版在线下载 | 亚洲精品日本国产第一区| 欧美97在线视频| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 国产精品精品国产色婷婷| 美女高潮的动态| 欧美激情国产日韩精品一区| 国产爱豆传媒在线观看| 激情 狠狠 欧美| 色视频在线一区二区三区| 色视频www国产| 尤物成人国产欧美一区二区三区| 在线看a的网站| 久久人人爽人人爽人人片va| 色视频www国产| 久久久久国产网址| 国产精品秋霞免费鲁丝片| 国产亚洲精品久久久com| 成人美女网站在线观看视频| 国产黄频视频在线观看| 最后的刺客免费高清国语| 国产高清三级在线| 街头女战士在线观看网站| 观看美女的网站| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 美女内射精品一级片tv| 成年人午夜在线观看视频| 亚洲图色成人| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| 大片免费播放器 马上看| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 久久精品国产a三级三级三级| 在线天堂最新版资源| 自拍欧美九色日韩亚洲蝌蚪91 | 丰满少妇做爰视频| 亚洲av成人精品一区久久| 边亲边吃奶的免费视频| 一二三四中文在线观看免费高清| 天堂网av新在线| 男女边摸边吃奶| 日本爱情动作片www.在线观看| 蜜桃久久精品国产亚洲av| 国产有黄有色有爽视频| 中国国产av一级| 国产一级毛片在线| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 国产亚洲一区二区精品| 亚洲色图av天堂| 中国三级夫妇交换| 国产亚洲一区二区精品| 国产男女超爽视频在线观看| 久久久久久久午夜电影| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 少妇人妻精品综合一区二区| 国产精品99久久久久久久久| 国产成人免费观看mmmm| 99热全是精品| 99精国产麻豆久久婷婷| 深爱激情五月婷婷| 真实男女啪啪啪动态图| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| freevideosex欧美| 一级毛片我不卡| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 在线 av 中文字幕| 看免费成人av毛片| 欧美少妇被猛烈插入视频| 男人狂女人下面高潮的视频| 插逼视频在线观看| 午夜亚洲福利在线播放| 老女人水多毛片| 日韩人妻高清精品专区| 69人妻影院| 国产大屁股一区二区在线视频| 亚洲精品aⅴ在线观看| av在线天堂中文字幕| 国产爽快片一区二区三区| 国产免费福利视频在线观看| 欧美zozozo另类| 国产探花在线观看一区二区| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 大陆偷拍与自拍| 午夜激情久久久久久久| 18禁动态无遮挡网站| 国产老妇女一区| 日本猛色少妇xxxxx猛交久久| 亚洲成人一二三区av| 人体艺术视频欧美日本| 视频中文字幕在线观看| 欧美潮喷喷水| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 免费大片黄手机在线观看| 亚洲av免费在线观看| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人 | 日韩强制内射视频| 国产日韩欧美亚洲二区| 精华霜和精华液先用哪个| 毛片女人毛片| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 国产高清不卡午夜福利| 精品一区在线观看国产| 国产日韩欧美亚洲二区| 亚洲天堂av无毛| 久久久色成人| 少妇高潮的动态图| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 国产极品天堂在线| av国产久精品久网站免费入址| 免费看不卡的av| 亚洲美女视频黄频| 晚上一个人看的免费电影| 我的老师免费观看完整版| 男女边吃奶边做爰视频| tube8黄色片| kizo精华| 成人亚洲精品一区在线观看 | 国产一区亚洲一区在线观看| 国产精品三级大全| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 久久99热6这里只有精品| www.av在线官网国产| 国产成人91sexporn| 丝袜美腿在线中文| 国产人妻一区二区三区在| 狠狠精品人妻久久久久久综合| 国产伦理片在线播放av一区| 中文天堂在线官网| 久久久久久久久大av| 嫩草影院新地址| 亚洲精品视频女| 九色成人免费人妻av| 亚洲aⅴ乱码一区二区在线播放| av在线app专区| 久久久久久久久久久免费av| 日本黄大片高清| 亚洲一级一片aⅴ在线观看| 国产视频首页在线观看| 在现免费观看毛片| 国产精品蜜桃在线观看| kizo精华| 麻豆久久精品国产亚洲av| 国产一区二区三区av在线| 国产一区二区亚洲精品在线观看| 国产精品熟女久久久久浪| 18禁动态无遮挡网站| 男女无遮挡免费网站观看| .国产精品久久| 18+在线观看网站| av在线蜜桃| 色哟哟·www| 少妇熟女欧美另类| 亚洲国产精品999| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 三级男女做爰猛烈吃奶摸视频| 精品国产三级普通话版| 久久久精品94久久精品| 国产成人aa在线观看| 国产精品国产av在线观看| 神马国产精品三级电影在线观看| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 午夜日本视频在线| 久久影院123| 国产精品久久久久久久久免| 成人亚洲精品一区在线观看 | 亚洲精品aⅴ在线观看| 精品一区在线观看国产| 最近2019中文字幕mv第一页| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 九九久久精品国产亚洲av麻豆| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 黄色一级大片看看| 久久久成人免费电影| 禁无遮挡网站| 精品酒店卫生间| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影 | 一级a做视频免费观看| 极品教师在线视频| 午夜日本视频在线| 毛片女人毛片| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 国产伦精品一区二区三区四那| 精品久久久久久电影网| 中文字幕制服av| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 在线观看国产h片| av黄色大香蕉| 男女下面进入的视频免费午夜| 人妻少妇偷人精品九色| 亚洲成色77777| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| freevideosex欧美| 熟女人妻精品中文字幕| 亚洲av欧美aⅴ国产| 大片免费播放器 马上看| 一个人看视频在线观看www免费| 国产男女内射视频| 真实男女啪啪啪动态图| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 国产老妇女一区| 超碰av人人做人人爽久久| 高清在线视频一区二区三区| 国产 一区精品| 国内精品宾馆在线| 欧美人与善性xxx| 一边亲一边摸免费视频| 免费黄频网站在线观看国产| 又大又黄又爽视频免费| 成年免费大片在线观看| 2022亚洲国产成人精品| 51国产日韩欧美| 大陆偷拍与自拍| 午夜免费鲁丝| 在线播放无遮挡| 少妇的逼好多水| av线在线观看网站| 亚洲精品日韩av片在线观看| 国产乱来视频区| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| 精品酒店卫生间| 观看美女的网站| 久久久久久久亚洲中文字幕| 美女主播在线视频| 免费黄色在线免费观看| 麻豆久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 五月玫瑰六月丁香| 涩涩av久久男人的天堂| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 成人免费观看视频高清| 偷拍熟女少妇极品色| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 尤物成人国产欧美一区二区三区| 免费播放大片免费观看视频在线观看| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 熟女人妻精品中文字幕| 永久网站在线| 亚洲国产最新在线播放| 亚洲成人av在线免费| 一区二区三区四区激情视频| 成人欧美大片| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 国产午夜福利久久久久久| 成人漫画全彩无遮挡| 91精品国产九色| 99re6热这里在线精品视频| 国产精品国产三级专区第一集| 男女国产视频网站| 干丝袜人妻中文字幕| 黄色日韩在线| 狂野欧美激情性xxxx在线观看| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 国产 一区 欧美 日韩| 国产极品天堂在线| 日韩免费高清中文字幕av| 中文资源天堂在线| 爱豆传媒免费全集在线观看| 人妻系列 视频| 亚洲成人av在线免费| 日韩强制内射视频| 日韩欧美一区视频在线观看 | 高清日韩中文字幕在线| 天堂网av新在线| 国产成人91sexporn| 国产精品伦人一区二区| 伦精品一区二区三区| 国产精品av视频在线免费观看| 热99国产精品久久久久久7| 人妻 亚洲 视频| 国产精品久久久久久精品电影| 国产视频内射| 日本-黄色视频高清免费观看| 男男h啪啪无遮挡| 日韩国内少妇激情av| 亚洲av电影在线观看一区二区三区 | 国产成人freesex在线| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 韩国av在线不卡| 一区二区三区精品91| 日韩亚洲欧美综合| 亚洲色图综合在线观看| 国产 一区 欧美 日韩| 男人舔奶头视频| 69av精品久久久久久| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 欧美3d第一页| av播播在线观看一区| 丝袜脚勾引网站| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区 | 人体艺术视频欧美日本| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 久久99精品国语久久久| av女优亚洲男人天堂| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件| 久久久久性生活片| av.在线天堂| 欧美性感艳星| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 久久久久网色| 高清午夜精品一区二区三区| 青青草视频在线视频观看| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 在线a可以看的网站| 国产综合精华液| 一级毛片aaaaaa免费看小| 免费不卡的大黄色大毛片视频在线观看| 欧美丝袜亚洲另类| 国产有黄有色有爽视频| 18禁在线播放成人免费| 99久久精品一区二区三区| 国产成人免费观看mmmm| 成人亚洲精品av一区二区| 日韩av不卡免费在线播放| 丝袜脚勾引网站| 色网站视频免费| 日本av手机在线免费观看| 成人午夜精彩视频在线观看| 黑人高潮一二区| 蜜桃久久精品国产亚洲av| 国产高潮美女av| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 精品久久久精品久久久| 99久久九九国产精品国产免费| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 97超视频在线观看视频| 18禁动态无遮挡网站| 国产乱人视频| 99久久精品国产国产毛片| 免费av不卡在线播放| av在线天堂中文字幕| 午夜精品一区二区三区免费看| eeuss影院久久| 免费在线观看成人毛片| 亚洲欧美精品自产自拍| 婷婷色综合www| 在线天堂最新版资源| 一本久久精品| 五月开心婷婷网| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| av免费在线看不卡| 国产综合懂色| 一级毛片 在线播放| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 婷婷色av中文字幕| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 亚洲色图av天堂| 亚洲高清免费不卡视频| 三级男女做爰猛烈吃奶摸视频| 久久韩国三级中文字幕| 五月开心婷婷网| 免费观看性生交大片5| 高清视频免费观看一区二区| 色视频在线一区二区三区| 国产一区二区三区综合在线观看 | av福利片在线观看| 黑人高潮一二区| 又黄又爽又刺激的免费视频.| 免费av毛片视频| 极品教师在线视频| 亚洲欧美一区二区三区黑人 | 精品久久久噜噜| 99久久精品热视频| 熟妇人妻不卡中文字幕| av国产免费在线观看| a级毛色黄片| 亚洲av国产av综合av卡| 免费观看的影片在线观看| 老司机影院毛片| 嫩草影院新地址| 成人欧美大片| 一级a做视频免费观看| 成人美女网站在线观看视频| 各种免费的搞黄视频| 色网站视频免费| 好男人视频免费观看在线| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 国产毛片在线视频| 久久久精品94久久精品| 可以在线观看毛片的网站| 国产精品三级大全| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 在线观看人妻少妇| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 2022亚洲国产成人精品| 亚洲欧美一区二区三区国产| 1000部很黄的大片| 好男人在线观看高清免费视频| 熟女电影av网| 亚洲最大成人手机在线| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 十八禁网站网址无遮挡 | 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 人妻 亚洲 视频| 欧美另类一区| 日韩欧美一区视频在线观看 | 日韩电影二区| 国产精品爽爽va在线观看网站| 在线观看一区二区三区激情| 亚洲av福利一区| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 男女那种视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲人成网站高清观看| 色吧在线观看| 在线观看人妻少妇| 国产精品国产三级国产av玫瑰| 又黄又爽又刺激的免费视频.| 啦啦啦在线观看免费高清www| 免费人成在线观看视频色| 欧美国产精品一级二级三级 | 亚洲av一区综合| 尾随美女入室| 午夜免费鲁丝| 伦理电影大哥的女人| 欧美成人一区二区免费高清观看| 久久久久久久久久久免费av| 成人无遮挡网站| 天堂中文最新版在线下载 | 国产高清三级在线| 午夜激情久久久久久久| 小蜜桃在线观看免费完整版高清| 欧美日韩视频高清一区二区三区二| 内射极品少妇av片p| 嫩草影院入口| 久久久久久久久久人人人人人人| 毛片女人毛片| 男女边摸边吃奶| 中文在线观看免费www的网站| 午夜亚洲福利在线播放|