• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition of B-type Y2O3?

    2017-08-30 08:25:20QianZhang張倩XiangWu巫翔andShanQin秦善
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張倩

    Qian Zhang(張倩),Xiang Wu(巫翔),and Shan Qin(秦善)

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    Pressure-induced phase transition of B-type Y2O3?

    Qian Zhang(張倩)1,?,Xiang Wu(巫翔)2,and Shan Qin(秦善)3

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    The synthesized monoclinic(B-type)phase of Y2O3has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature.A phase transition occurs from monoclinic(B-type)to hexagonal (A-type)phase at 23.5 GPa and these two phases coexist even at the highest pressure.Parameters of isothermal equation of state are V0=69.0(1)?A3,K0=159(3)GPa,=4(fixed)for the B-type phase and V0=67.8(2)?A3,K0=156(3)GPa,=4(fixed)for the A-type phase.The structural anisotropy increases with increasing pressure for both phases.

    Y2O3,x-ray diffraction,pressure-induced phase transition,equation of state

    1.Introduction

    Sesquioxides are very important materials which possess a wide range of physical and chemical properties and can be used for different technological applications.For example,they play a vital role in the grain growth inhibitor,[1]are used as additives of ceramics[2]and active catalysts for organic reactions,[3,4]and have potential use in nuclear engineering.[5,6]In addition,sesquioxides can adopt perovskite(Pv),post-perovskite(PPv),and post-PPv phases at extreme conditions,which has significant implications for the mantle of giant extrasolar silicate planets.For instance,Al2O3undergoes a series of pressure-induced phase transitions from corundum structure to Rh2O3(II)-type structure,then to the PPv-type structure,and finally to the post-PPv phase(U2S3-type,Pnma and Z=4)above 370 GPa.[7]Gd2S3-type(Pnma and Z=4)and Th2S3-type(Pnma and Z=4)structures, which have the same space group and cationic coordination numbers with the U2S3-type structure,have been observed in Sc2O3[8]and Ti2O3[9]at high pressure,respectively.

    The high-pressure behavior of rare-earth sesquioxides has been widely investigated.So far,five polymorphic forms have been identified in rare-earth sesquioxides.Hexagonal A (Pˉ3m1)in which cations are in seven-fold coordination,monoclinic B(C2/m)in which cations are mixed with six or sevenfold coordination,and cubic Cwith six-coordinated cations are commonly observed at room temperature and ambient pressure.[10]The two other phases denominated as H (hexagonal,P63/mmc)and X(cubic,)are formed at high temperature.[11]Cations in Gd2S3,Th2S3,and U2S3occupy seven and eight oxygen coordinations,which are higher than those in C,B,A,Pv,and PPv structures.

    Scandium and yttrium elements with the chemically similar lanthanide elements are often known to belong to the lanthanide family as the rare-earth metal elements.The optical properties of trivalent rare earth ion-doped nanocrystalline materials have been investigated extensively.Y2O3nanocrystals doped with trivalent rare earth ion have attracted considerable interest because of the high chemical durability and thermal stability.Eu-doped Y2O3is an important commercial luminescent material,it has been widely used in fluorescent lamps,projection television tubes,field emission displays,etc.[12]Y2O3crystallized into the C-type structure under ambient conditions.Lots of attempts have been made to understand its high-pressure behavior,but the high-pressure phase transition sequences show some inconsistencies.As for the pure Y2O3,the C→B,[13,14]C→B→A,[15–17]C→A,[18]and C→B→Gd2S3[19,20]phase sequences have been observed in experiments or theoretical calculations.The in situ highpressure luminescence spectra indicated that the C-type bulk Eu-doped Y2O3transformed into the B-type phase at 15 GPa, while 20 nm-sized nanocrystals did not.[21]

    As we all know,the experimental results are influenced by experimental conditions,such as non-hydrostaticity of pressure and regime of temperature treatment.In the static high pressure experiment at 2.5 GPa and 1273 K,the C-type Y2O3transformed to the B-type phase which was also found above 12 GPa in a shock-compression experiment,while the A-type phase was proposed to be the favorable stable high pressure phase.[14]In some quasi-hydrostatic compression experiments at room temperature,Y2O3followed the phase sequence of C→B→A.[15–17]A high-pressure Raman experiment reported two phase transitions,viz,C→B and B→Aat 12 GPa and 19 GPa respectively.[16]However,a high pressure x-ray experiment showed that pure Y2O3exhibited a direct transition to A structure at 12.1 GPa and room temperature,whereas the C→B→A transition was observed in Eu-doped Y2O3.[18]Considering the temperature effect,a sequence of structural phase transitions C→B→A observed in the room-temperature compression did not coincide with the phase transition sequence C→B→Gd2S3under high pressure and high temperature.[19]Moreover,there are some inconsistencies among the room-temperature data collected with different internal pressure standards under conditions close to hydrostatic environment by noble gases like He or Ne media and by solid or liquid media such as KBr and silicone oil.[22]The previous pressure-transmitting media in the experiments on Y2O3were silicone oil,[18]a mixture of methanol and ethanol,[23]or KBr powder.[16]

    To the best of our knowledge,starting Y2O3samples used in the former work were characterized by the C-type structure.The B-type polycrystalline Y2O3has been synthesized successfully using multi-anvil press in our previous work.[24]High-pressure x-ray diffraction experiments provide us information about high-pressure phase transitions and physical properties.[25–27]In this study,we carry out the high pressure experiment of B-type Y2O3as the starting material up to 44 GPa by in situ x-ray diffraction(XRD)in diamond anvil cell(DAC).

    2.Experiment

    The starting sample of the synthesized B-type Y2O3was described in detail in Ref.[24].In our XRD experiment, we generated high pressures by a symmetric type DAC with 300μm-diameter culets.A 150μm-diameter hole was drilled in the pre-indented to~30μm-thickness rhenium gasket.Pt was loaded in the chamber as pressure standard based on its well-known equation of state.[22]and Ne was used as the pressure medium.The in situ high-pressure XRD experiment at room temperature was conducted at 13IDD at Advanced Photon Source(APS).Diffraction patterns were collected using a MarCCD detector.The monochromatic x-ray which was focused to 5μm×5μm on the sample surface has a wavelength of 0.3344?A.Collection time for each pattern was 20 s. Diffraction images were integrated to one-dimensional spectra using the Fit2D program.[28]Lattice parameters were obtained using Unitcell.[29]Some x-ray diffraction patterns were fitted by the Le Bail method implemented in the GSAS+EXPGUI software.[30]

    3.Results and discussion

    The XRD pattern at ambient conditions gives lattice parameters a=13.892(7)?A,b=3.494(1)?A,c=8.614(4)?A, β=100.22(4),and V=411.4(2)?A3from a full profile model refinement.In situ high-pressure XRD data were collected up to 44 GPa at room temperature.Some selected XRD patterns are shown in Fig.1,where all peaks can be indexed into the B-type Y2O3and minor impurities up to 23.5 GPa.All peaks shifted to higher angles of 2θ with increasing pressure.As shown in Fig.1,the peaks began to change at 23.5 GPa,indicating the appearance of a new phase.According to the previous studies,[19]the new phase would be either A-or Gd2S3-type.By performing the x-ray profile fitting analyses and comparing the d values of the characteristic peaks with the previous experimental data,[19]we confirmed that the new phase adopted the A-type structureUpon compression,the B-type phase was found to obviously coexist throughout the transition process from the B-to A-type phase.The B-type phase still existed at the highest pressure,implying that the transition may be kinetically sluggish.In Sc2O3,the B to A transition at 77 GPa was predicted by abinitio calculation,[31]but the Gd2S3-type phase as the post-B phase was observed above 18 GPa atthe high temperature experiment.[8]Considering the similarity of Sc2O3and Y2O3,Sc2O3would also have the C→B→A phase transition sequence in the high-pressure experiment at room temperature.As previously mentioned,it is not a common phenomenon that the high-pressure structure sequence of Y2O3observed in the room temperature compression does not coincide with the phase transition sequence at high temperature.Generally speaking,the temperature effect is always considered in pressure-induced phase-transition experiments in order to obtain clear high-pressure structural information,because high temperature relaxes the differential stress and overcomes the potential kinetic effects on phase transition.Therefore,the laser heating usually promotes the phase transition to happen at lower pressure than that of the room temperature compression experiment.By analyzing the crystal structures of B-and A-type phases of Y2O3at high pressure,the B-type structure was found to be equivalent to the A-type structure.[19]This is a possible reason why the B to A transition was observed under compression at room temperature.In our synthesis experiment,we tried to synthesize the Gd2S3-type phase of Y2O3in a multi-anvil apparatus at HPHT conditions(20 GPa and 1800°C),but the B-type phase was reserved.[24]Ovsyannikov et al.tried to obtain the B-type Sc2O3at 14 GPa and 1600°C,but only the C-type phase was found in the recovered sample.[32]These results show that the HP-HT behaviors of Y2O3and Sc2O3are complex and further investigations of their P–T phase diagrams are needed.

    The B-and A-type unit-cell volumes showed a smooth decrease with the increasing pressure.The unit-cell volume data as a function of pressure is plotted in Fig.2 and analyzed by the second-order Birch–Murnaghan equation of state (B–M EoS).[33]The EoS parameters we obtained are listed in Table 1,which also includes the available experimental and theoretical data for comparison.The equilibrium volume V0obtained from the theoretical computation is underestimated compared with the experimental results,which is typical for the LDA computations.The isothermal bulk moduli of B-and A-type Y2O3compounds are approximate.Our result is consistent with the theoretical simulation data,[11]which shows that the difference between the bulk moduli of B-and A-type rare-earth sesquioxides is considerably small.

    Fig.1.(color online)X-ray diffraction profiles of the Y2 O3 sample under room temperature compression.The tick marks indicate the calculated positions of the diffraction peaks of B-and A-type phases with the LeBail method (GSAS).Solid line,symbols,and solid line at the bottom represent the calculated and the observed patterns and their differences at ambient conditions, respectively.Other solid lines represent the observed patterns at high pressure.

    Fig.2.(color online)The volume per formula of B-and A-type phases of Y2O3 as a function of pressure.The solid lines correspond to the second-order B–M EoS fitting to the experimental data.The volume collapse in the phase transition is about 2%at 23.5 GPa.The crystal structures are also shown. Red spheres are oxygen and dark green spheres at the center of polyhedra are yttrium.

    The phase transition from B-to A-type Y2O3is followed by a volume collapse of 2%at 23.5 GPa(Fig.2),which is at the same level as that of Sm2O3.[34]This transformation involves only a slight deformation.Compared to this B→A transition,the C→B first-order phase transition is accompanied by a more significant volume decrease(8%,[16]12.5%[15]).

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    The coordination number of Yincreases from six or seven in B-type structure,to seven in the A-type one during the B→A transition.In addition,the B(C2/m)and Ahave a group-subgroup relationship.[35]Contrary to the C→B reconstructive transition,the B→A transition is inferred to be displacive,which is also suggested in other studies.[17,19]

    Theoretical analysis of pressure-induced B to A-type phase transitions shows a linear correlation between bulk modulus,transition pressures,and the ionic radius of the cation.[11]The suggested transition pressure and bulk modulus for Y2O3are at the same level as those of our experimental results. The difference is mainly due to the GGA exchange correlation energy,which gives a larger V0and a smaller B0.The first single-crystal study of Sc2O3exhibited that the denser B-type phase is a bit more compressible than the C-type one.[32]This result did not confirm the other experimental studies on powdery Sc2O3.[8]The previous studies on powders of lanthanide sesquioxides did not reveal a noticeable difference in the bulk moduli of C-,B-,and A-type phases,e.g.,Ho2O3and Sm2O3.[34,36]Whether there exist noticeable bulk modulus differences among the C-,B-,and A-type rare-earth sesquioxides requires more experimental and theoretical investigations.

    During the past few decades,the rare-earth sesquioxides have been studied by numerous researchers to investigate the phase relationships among the C,B,and A phases.Early in 1966,Hoekstra found that the effect of ionic radius is much greater than temperature or pressure in shifting the C?B equilibrium line.[37]Moreover,compression experiments and theoretical results exhibited that higher pressure would be needed to stabilize the A-type phase in rare-earth sesquioxides with smaller cationic radius.[11,34]However,this systematics of the C→B→A phase sequence may not be applicable to the rare-earth sesquioxides only according to their cationic radii.The comparative crystallography in rare-earth sesquioxides has been summarized in other study.[8]Sc2O3(Sc3+;0.745?A), In2O3(In3+;0.800?A),and Y2O3(Y3+;0.900?A),which adopt the C-type structure at ambient conditions,crystallize into the Gd2S3structure at high pressure after laser heating.[8,19,38]It is possible that the Gd2S3structure would be found as a post B-type structure in other rare-earth sesquioxides at high temperature.

    The pressure evolution of the lattice parameters of the B-and A-type phases is shown in Fig.3.Regarding the unit-cell compressibilities,the a axis is the most compressible and the b axis is the least compressible for the B-type phase.As for the A-type Y2O3,the c axis is more compressible than the a axis mainly because of the large intervals between the layers in the c axial orientation.It indicates that the axial compressiblities of B-and A-type phases are anisotropic.

    Fig.3.(color online)Pressure-induced variations in the lattice parameters of the B-type(a)and A-type(b)phases of Y2O3.The solid lines are linear fittings of the experimental data.

    4.Conclusion

    The structural properties of B-type Y2O3under compression have been investigated by synchrotron radiation x-ray diffraction experiment with neon as the pressure-transmitting medium at room temperature up to 44 GPa.We observed a sluggish phase transition from B-to A-type phase at 23.5 GPa. The isothermal P–V relationship of Y2O3was described by the second-order Birch–Murnaghan equation of state with B0= 159(3)GPa for the B-type phase,and 156(3)GPa for the A-type phase.Note that the high pressure behavior of rare-earth sesquioxides is apparently complex,and there are lots of unanswered questions in their condensed matter physics.Further studies will bring exciting results on their high-pressure properties.

    Acknowledgements

    The authors are deeply grateful to Sergey V.Ovsyannikov and Leonid S.Dubrovinsky for synthesizing the sample.High-pressure experiments were performed at GeoSoil Enviro CARS of the APS,ANL.GeoSoil EnviroCARS operations are supported by the National Science Foundation-Earth Sciences(EAR-1128799)and the Department of Energy Geosciences(DE-FG02-94ER14466).APS is supported by DOEBES,under Contract No.DE-AC02-06CH11357.

    [1]Aktas B,Tekeli S and Kucuktuvek M 2014 Int.J.Mater.Res.105 208

    [2]Scott H 1975 J.Mater.Sci.10 1527

    [3]Hussein G A 1996 J.Anal.Appl.Pyrolysis 37 111

    [4]Dedov A,Loktev A,Moiseev I,Aboukais A,Lamonier J F and Filimonov I 2003 Applied Catalysis A:General 245 209

    [5]Shikama T,Toh K,Nagata S,Tsuchiya B,Yamauchi M,Nishitani T, Suzuki T,Okamoto K and Kubo N 2006 Nucl.Fusion 46 46

    [6]Weber W J,Ewing R C,Catlow C R A,de la Rubia T D,Hobbs L W, Kinoshita C,Matzke H,Motta A T,Nastasi M,Salje E K H,Vance E R and Zinkle S J 1998 J.Mater.Res.13 1434

    [7]Umemoto K and Wentzcovitch R M 2008 Proc.Natl.Acad.Sci.USA 105 6526

    [8]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2009 Inorg.Chem.48 7537

    [9]Nishio-Hamane D,Katagiri M,Niwa K,Sano-Furukawa A,Okada T and Yagi T 2009 High Press.Res.29 379

    [10]Zinkevich M 2007 Prog.Mater.Sci.52 597

    [11]Wu B,Zinkevich M,Aldinger F,Wen D and Chen L 2007 J.Solid State Chem.180 3280

    [12]Wang H,Uehara M,Nakamura H,Miyazaki M and Maeda H 2005 Adv. Mater.17 2506

    [13]Hoekstra H R and Gingerich K A 1964 Science 146 1163

    [14]Atou T,Kusaba K,Fukuoka K,Kikuchi M and Syono Y 1990 J.Solid State Chem.89 378

    [15]Halevy I,Carmon R,Winterrose M L,Yeheskel O,Tiferet E and Ghose S 2010 J.Phys.Conf.Ser.215 012003

    [16]Husson E,Proust C,Gillet P and Itie J 1999 Mater.Res.Bull.34 2085

    [17]Bose P P,Gupta M,Mittal R,Rols S,Achary S,Tyagi A and Chaplot S 2011 Phys.Rev.B 84 094301

    [18]Wang L,Pan Y,Ding Y,Yang W,Mao W L,Sinogeikin S V,Meng Y, Shen G and Mao H 2009 Appl.Phys.Lett.94 061921

    [19]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2010 Inorg.Chem.49 4478

    [20]Umemoto K and Wentzcovitch R M 2011 Phys.Chem.Miner.38 387

    [21]Bai X,Song H,Liu B,Hou Y,Pan G and Ren X 2008 J.Nanosci. Nanotechnol.8 1404

    [22]Fei Y,Ricolleau A,Frank M,Mibe K,Shen G and Prakapenka V 2007 Proc.Natl.Acad.Sci.USA 104 9182

    [23]Zhang J,Cui H,Zhu P,Ma C,Wu X,Zhu H,Ma Y and Cui Q 2014 J. Appl.Phys.115 023502

    [24]Zhang Q,Wu X,Ovsyannikov S V,Dong J,Qin S,Dubrovinsky L S and Chen D 2016 Chem.Res.Chin.Univ.32 545

    [25]Tang S X,Zhu H Y,Jiang J R,Wu X X,Dong Y X,Zhang J,Yang D P and Cui Q L 2015 Chin.Phys.B 24 096101

    [26]Li N N,Li Y,Li H,Tang R L,Zhao Y S,Han D D,Ma Y M,Cui Q L, Zhu P W and Wang X 2014 Chin.Phys.B 23 069101

    [27]Yang S W,Peng F,Li W T,Hu Q W,Yan X Z,Lei L,Li X D and He D W 2016 Chin.Phys.B 25 076101

    [28]Hammersley A,Svensson S,Hanfland M,Fitch A and Hausermann D 1996 High Press.Res.14 235

    [29]Holland T and Redfern S 1997 Mineral.Mag.61 65

    [30]Toby B H 2001 J.Appl.Crystallogr.34 210

    [31]Liu D,Lei W,Li Y,Ma Y,Hao J,Chen X,Jin Y,Yu S and Cui Q 2009 Inorg.Chem.48 8251

    [32]Ovsyannikov S V,Bykova E,Bykov M,Wenz M D,Pakhomova A S, Glazyrin K,Liermann H P and Dubrovinsky L 2015 J.Appl.Phys.118 165901

    [33]Birch F 1952 J.Geophys.Res.57 227

    [34]Jiang S,Liu J,Lin C,Li X and Li Y 2013 J.Appl.Phys.113 113502

    [35]Hahn T 2002 International Table for Crystallography,A(5th edn.) (Dordrecht:Kluwer)pp.540,541

    [36]Jiang S,Liu J,Li X,Bai L,Xiao W,Zhang Y,Lin C,Li Y and Tang L 2011 J.Appl.Phys.110 013526

    [37]Hoekstra H R 1966 Inorg.Chem.5 754

    [38]Yusa H,Tsuchiya T,Tsuchiya J,Sata N and Ohishi Y 2008 Phys.Rev. B 78 092107

    3 May 2017;revised manuscript

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090703

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.U1232204 and 41502029)and China Postdoctoral Science Foundation (Grant No.2015M580679).

    ?Corresponding author.E-mail:qianzhang@cug.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張倩
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
    繼妹聯(lián)手渣夫做局:那是父母偏愛的蝴蝶效應(yīng)
    Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
    Electrical and aerodynamic characteristics of sliding discharge based on a microsecond pulsed plasma supply
    基于社會(huì)責(zé)任培養(yǎng)的“生物多樣性”教學(xué)設(shè)計(jì)
    竇晨珂、曲樹云、王逸文、張倩作品精選
    基于賦權(quán)增能的德育評價(jià)生態(tài)系統(tǒng)的構(gòu)建
    民族文匯(2022年9期)2022-04-13 00:33:06
    《愿為葵子》
    賈逵隔籬偷學(xué)
    草草在线视频免费看| 97超碰精品成人国产| 自线自在国产av| 久久久国产欧美日韩av| 日本欧美视频一区| 18+在线观看网站| 人人妻人人爽人人添夜夜欢视频| 国产精品国产av在线观看| 高清视频免费观看一区二区| 欧美激情极品国产一区二区三区 | 最新中文字幕久久久久| 亚洲内射少妇av| 亚洲精品国产av成人精品| 久久精品国产a三级三级三级| 80岁老熟妇乱子伦牲交| 免费观看av网站的网址| 日日撸夜夜添| 王馨瑶露胸无遮挡在线观看| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三| freevideosex欧美| 国产片内射在线| 精品一区二区三区视频在线| 天天影视国产精品| 全区人妻精品视频| 桃花免费在线播放| 中文字幕精品免费在线观看视频 | 日韩av免费高清视频| 欧美 亚洲 国产 日韩一| 国产在线一区二区三区精| 欧美激情极品国产一区二区三区 | tube8黄色片| 国产av精品麻豆| 久久精品久久久久久噜噜老黄| 黑人欧美特级aaaaaa片| 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 成人国产av品久久久| 国产极品天堂在线| 青春草国产在线视频| 国精品久久久久久国模美| 男女高潮啪啪啪动态图| 少妇猛男粗大的猛烈进出视频| 女性被躁到高潮视频| 卡戴珊不雅视频在线播放| 欧美 亚洲 国产 日韩一| a级毛色黄片| 亚洲国产精品国产精品| 两个人免费观看高清视频| 国产在线视频一区二区| 日本免费在线观看一区| 亚洲激情五月婷婷啪啪| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 国产1区2区3区精品| av女优亚洲男人天堂| 国产免费又黄又爽又色| 91午夜精品亚洲一区二区三区| 亚洲内射少妇av| 人妻少妇偷人精品九色| 亚洲性久久影院| 超色免费av| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产亚洲av涩爱| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 极品少妇高潮喷水抽搐| 日本黄大片高清| 国产精品一国产av| 毛片一级片免费看久久久久| 老女人水多毛片| 99国产综合亚洲精品| 极品人妻少妇av视频| 成人无遮挡网站| 国产日韩欧美亚洲二区| 你懂的网址亚洲精品在线观看| 中国三级夫妇交换| 欧美精品亚洲一区二区| 国产成人一区二区在线| 国产精品无大码| 黄色怎么调成土黄色| 如何舔出高潮| 亚洲中文av在线| 国产国语露脸激情在线看| av在线播放精品| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 丝袜脚勾引网站| 久久久精品免费免费高清| 男女啪啪激烈高潮av片| 日本av手机在线免费观看| 晚上一个人看的免费电影| 国产一区二区激情短视频 | 99九九在线精品视频| 高清在线视频一区二区三区| 国产成人精品无人区| 亚洲内射少妇av| 久久人人爽人人片av| 久久亚洲国产成人精品v| 久久99蜜桃精品久久| 综合色丁香网| 国产日韩欧美亚洲二区| 在线看a的网站| 国产男女内射视频| 欧美亚洲日本最大视频资源| 少妇被粗大的猛进出69影院 | 90打野战视频偷拍视频| av.在线天堂| 欧美精品一区二区免费开放| 视频区图区小说| 2018国产大陆天天弄谢| 国产视频首页在线观看| av一本久久久久| 一区二区三区四区激情视频| a级毛片黄视频| 久久久久久人妻| 久久毛片免费看一区二区三区| 国产精品一区二区在线观看99| 亚洲精品自拍成人| 日韩大片免费观看网站| 国精品久久久久久国模美| 三级国产精品片| 赤兔流量卡办理| 久久99精品国语久久久| 美女福利国产在线| 美女中出高潮动态图| 亚洲精品乱码久久久久久按摩| 精品一区在线观看国产| 999精品在线视频| 久久女婷五月综合色啪小说| 免费av中文字幕在线| 建设人人有责人人尽责人人享有的| 亚洲,欧美,日韩| 日韩伦理黄色片| 午夜福利影视在线免费观看| 亚洲精华国产精华液的使用体验| 26uuu在线亚洲综合色| 久久精品国产综合久久久 | 伦理电影免费视频| 丝袜在线中文字幕| 成年美女黄网站色视频大全免费| 多毛熟女@视频| 999精品在线视频| 最近中文字幕2019免费版| 成人国语在线视频| 成年人午夜在线观看视频| 国产午夜精品一二区理论片| 国产麻豆69| 亚洲av免费高清在线观看| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 久久99热这里只频精品6学生| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 亚洲国产最新在线播放| 久久婷婷青草| 最新中文字幕久久久久| 亚洲五月色婷婷综合| 国产成人精品福利久久| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| av在线app专区| 欧美3d第一页| 国产精品一区二区在线不卡| 人人澡人人妻人| 亚洲欧美一区二区三区国产| 日日啪夜夜爽| 成人亚洲精品一区在线观看| 一区在线观看完整版| 男女国产视频网站| av女优亚洲男人天堂| 欧美精品高潮呻吟av久久| 久久女婷五月综合色啪小说| 欧美bdsm另类| 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 哪个播放器可以免费观看大片| av国产久精品久网站免费入址| 美女中出高潮动态图| 日本av免费视频播放| 99久久综合免费| 成年动漫av网址| 国产精品一国产av| 97人妻天天添夜夜摸| 国产一区二区激情短视频 | 卡戴珊不雅视频在线播放| 欧美97在线视频| 国产精品偷伦视频观看了| 日韩欧美精品免费久久| 欧美人与善性xxx| 久久久久久伊人网av| 国产黄色视频一区二区在线观看| 99视频精品全部免费 在线| 精品一区在线观看国产| 免费少妇av软件| 久久99蜜桃精品久久| 性色avwww在线观看| 国产又色又爽无遮挡免| av网站免费在线观看视频| 夫妻午夜视频| av在线老鸭窝| 少妇被粗大猛烈的视频| 亚洲精品第二区| 久久久久久久久久久免费av| 亚洲情色 制服丝袜| videos熟女内射| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 少妇的逼水好多| 久久这里只有精品19| 免费黄色在线免费观看| 大陆偷拍与自拍| 成人18禁高潮啪啪吃奶动态图| 精品人妻一区二区三区麻豆| 最黄视频免费看| www日本在线高清视频| 久久久久久久久久成人| 亚洲内射少妇av| 久久久久久人妻| 一级,二级,三级黄色视频| 久久 成人 亚洲| 国产av一区二区精品久久| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 黄色毛片三级朝国网站| 尾随美女入室| 亚洲欧洲日产国产| 日本91视频免费播放| 91aial.com中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 久久av网站| 精品午夜福利在线看| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| av一本久久久久| 老女人水多毛片| 成人黄色视频免费在线看| 久久久久精品性色| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 欧美老熟妇乱子伦牲交| 最近最新中文字幕免费大全7| 黄网站色视频无遮挡免费观看| 在线天堂最新版资源| 青青草视频在线视频观看| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 国产片特级美女逼逼视频| www.av在线官网国产| 夫妻午夜视频| 国产xxxxx性猛交| 免费播放大片免费观看视频在线观看| 99热这里只有是精品在线观看| 狠狠婷婷综合久久久久久88av| 午夜免费鲁丝| 宅男免费午夜| 国产片内射在线| 亚洲欧美色中文字幕在线| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 一级片免费观看大全| 国产1区2区3区精品| 久久久久久久亚洲中文字幕| 欧美3d第一页| 人妻少妇偷人精品九色| 新久久久久国产一级毛片| 国产精品久久久久久久电影| 精品午夜福利在线看| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 热99国产精品久久久久久7| 免费人成在线观看视频色| 22中文网久久字幕| 黑人欧美特级aaaaaa片| 久久久久久人妻| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| 麻豆乱淫一区二区| 另类亚洲欧美激情| 两性夫妻黄色片 | 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看 | 亚洲色图综合在线观看| 蜜桃在线观看..| 五月玫瑰六月丁香| 老女人水多毛片| 日韩不卡一区二区三区视频在线| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 成人亚洲欧美一区二区av| 久久久久久久精品精品| 国产成人精品一,二区| 精品人妻熟女毛片av久久网站| 性色av一级| 国产精品久久久久成人av| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 亚洲国产色片| 国产在线免费精品| xxx大片免费视频| 成年人午夜在线观看视频| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 午夜激情久久久久久久| 欧美3d第一页| 亚洲国产精品一区二区三区在线| 五月伊人婷婷丁香| 老司机影院成人| 日本黄色日本黄色录像| 成人国产麻豆网| 一本大道久久a久久精品| 宅男免费午夜| 中文字幕人妻熟女乱码| 五月天丁香电影| 亚洲性久久影院| 精品一区二区免费观看| 99久国产av精品国产电影| 丁香六月天网| 亚洲欧美一区二区三区黑人 | www.色视频.com| 51国产日韩欧美| 黄色一级大片看看| 久久久久久伊人网av| 一级黄片播放器| 波野结衣二区三区在线| 亚洲综合色网址| 国产无遮挡羞羞视频在线观看| 老司机影院毛片| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 满18在线观看网站| 成人影院久久| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 国产成人精品一,二区| 一本色道久久久久久精品综合| av黄色大香蕉| 色吧在线观看| 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 免费少妇av软件| 黄网站色视频无遮挡免费观看| 人人妻人人澡人人爽人人夜夜| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三| 欧美精品av麻豆av| 国产成人一区二区在线| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 青青草视频在线视频观看| 亚洲性久久影院| 青青草视频在线视频观看| 国产成人一区二区在线| 国产av国产精品国产| 黄色一级大片看看| 午夜91福利影院| 国产成人精品在线电影| 春色校园在线视频观看| 亚洲精品aⅴ在线观看| 曰老女人黄片| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 中文乱码字字幕精品一区二区三区| 亚洲av日韩在线播放| 亚洲精品日本国产第一区| 边亲边吃奶的免费视频| 99热全是精品| 91aial.com中文字幕在线观看| 亚洲成人一二三区av| 国产熟女午夜一区二区三区| 18禁观看日本| 99久久中文字幕三级久久日本| 男女午夜视频在线观看 | 成人综合一区亚洲| 久久久精品94久久精品| 高清视频免费观看一区二区| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 欧美日韩av久久| 亚洲精品乱码久久久久久按摩| 日韩一区二区三区影片| 日韩中字成人| 乱码一卡2卡4卡精品| 成人国产av品久久久| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| av福利片在线| 日日啪夜夜爽| 国产亚洲欧美精品永久| 国产精品不卡视频一区二区| 国精品久久久久久国模美| 性高湖久久久久久久久免费观看| 成人无遮挡网站| 亚洲第一区二区三区不卡| 老司机亚洲免费影院| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 美女主播在线视频| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| 精品国产一区二区三区四区第35| 丰满乱子伦码专区| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 色网站视频免费| 亚洲精品国产av成人精品| 最近最新中文字幕大全免费视频 | 成人国产麻豆网| videos熟女内射| 欧美精品国产亚洲| 欧美激情 高清一区二区三区| 久久青草综合色| 国产白丝娇喘喷水9色精品| 人妻人人澡人人爽人人| 中文天堂在线官网| 免费看av在线观看网站| 精品久久久久久电影网| 涩涩av久久男人的天堂| 亚洲内射少妇av| 欧美激情 高清一区二区三区| av在线播放精品| 欧美日韩综合久久久久久| 精品人妻熟女毛片av久久网站| 91精品国产国语对白视频| 欧美最新免费一区二区三区| 国产亚洲精品久久久com| 午夜福利网站1000一区二区三区| 国产乱来视频区| 69精品国产乱码久久久| 亚洲少妇的诱惑av| 夫妻午夜视频| 亚洲精品美女久久av网站| 精品国产国语对白av| 国产在线视频一区二区| 青青草视频在线视频观看| 免费黄网站久久成人精品| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 最新的欧美精品一区二区| 婷婷色综合www| 黄色配什么色好看| 黑人猛操日本美女一级片| 高清毛片免费看| 亚洲色图 男人天堂 中文字幕 | 久久99热6这里只有精品| 最近最新中文字幕大全免费视频 | 久久精品国产鲁丝片午夜精品| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 日韩欧美一区视频在线观看| 桃花免费在线播放| h视频一区二区三区| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| 国产探花极品一区二区| 久久影院123| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人看| 18禁观看日本| 日韩伦理黄色片| 亚洲精品国产av蜜桃| 99香蕉大伊视频| 999精品在线视频| 日本av免费视频播放| 在线观看www视频免费| 只有这里有精品99| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 一二三四在线观看免费中文在 | 久久久久久伊人网av| 国产日韩欧美亚洲二区| 亚洲av福利一区| 深夜精品福利| 春色校园在线视频观看| 一区二区三区精品91| 伊人久久国产一区二区| 亚洲精品国产色婷婷电影| 性高湖久久久久久久久免费观看| 亚洲国产色片| 少妇被粗大猛烈的视频| 日韩电影二区| 亚洲,一卡二卡三卡| 国产有黄有色有爽视频| 天堂俺去俺来也www色官网| 亚洲av成人精品一二三区| 在线观看免费视频网站a站| 91在线精品国自产拍蜜月| 欧美xxⅹ黑人| 热re99久久精品国产66热6| 十分钟在线观看高清视频www| 国产精品人妻久久久久久| 丝袜美足系列| 精品人妻偷拍中文字幕| 国产爽快片一区二区三区| 免费久久久久久久精品成人欧美视频 | 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 另类亚洲欧美激情| 午夜91福利影院| 丝袜人妻中文字幕| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| 久久精品人人爽人人爽视色| 欧美xxxx性猛交bbbb| 国产精品秋霞免费鲁丝片| 久久精品国产鲁丝片午夜精品| 精品一区在线观看国产| 亚洲人成77777在线视频| 少妇人妻精品综合一区二区| 少妇人妻久久综合中文| 亚洲精品一二三| 99九九在线精品视频| 国产极品天堂在线| 免费黄频网站在线观看国产| 青春草亚洲视频在线观看| 插逼视频在线观看| 婷婷色av中文字幕| 大片电影免费在线观看免费| 国产探花极品一区二区| av女优亚洲男人天堂| 视频区图区小说| 午夜免费男女啪啪视频观看| 一级毛片我不卡| 在线观看免费日韩欧美大片| 精品亚洲成a人片在线观看| 国产高清国产精品国产三级| 亚洲成人av在线免费| 久久99热6这里只有精品| 久久久久视频综合| 久久鲁丝午夜福利片| 亚洲国产精品成人久久小说| 99热国产这里只有精品6| 午夜视频国产福利| 热re99久久国产66热| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 青青草视频在线视频观看| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲精品一区二区精品久久久 | www日本在线高清视频| 中文字幕人妻熟女乱码| 午夜视频国产福利| 亚洲综合精品二区| av免费观看日本| 久热这里只有精品99| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 午夜福利视频在线观看免费| av国产精品久久久久影院| 精品人妻偷拍中文字幕| 新久久久久国产一级毛片| 午夜免费鲁丝| 精品人妻偷拍中文字幕| 男女午夜视频在线观看 | 中文字幕人妻丝袜制服| 黄色 视频免费看| 久久久国产一区二区| 亚洲av电影在线进入| 99热全是精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看 | 成人二区视频| 午夜激情久久久久久久| 国产精品一区二区在线观看99| 韩国高清视频一区二区三区| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 国产无遮挡羞羞视频在线观看| 九色成人免费人妻av| 亚洲成人av在线免费| 国产成人欧美| 国产激情久久老熟女| 精品国产一区二区三区久久久樱花| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 肉色欧美久久久久久久蜜桃| 久久久久久久国产电影| 国产精品一区二区在线不卡| 最近最新中文字幕大全免费视频 | 男女高潮啪啪啪动态图| 肉色欧美久久久久久久蜜桃| 18禁观看日本| 黑人欧美特级aaaaaa片| 22中文网久久字幕| av在线老鸭窝|