• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition of B-type Y2O3?

    2017-08-30 08:25:20QianZhang張倩XiangWu巫翔andShanQin秦善
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張倩

    Qian Zhang(張倩),Xiang Wu(巫翔),and Shan Qin(秦善)

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    Pressure-induced phase transition of B-type Y2O3?

    Qian Zhang(張倩)1,?,Xiang Wu(巫翔)2,and Shan Qin(秦善)3

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    The synthesized monoclinic(B-type)phase of Y2O3has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature.A phase transition occurs from monoclinic(B-type)to hexagonal (A-type)phase at 23.5 GPa and these two phases coexist even at the highest pressure.Parameters of isothermal equation of state are V0=69.0(1)?A3,K0=159(3)GPa,=4(fixed)for the B-type phase and V0=67.8(2)?A3,K0=156(3)GPa,=4(fixed)for the A-type phase.The structural anisotropy increases with increasing pressure for both phases.

    Y2O3,x-ray diffraction,pressure-induced phase transition,equation of state

    1.Introduction

    Sesquioxides are very important materials which possess a wide range of physical and chemical properties and can be used for different technological applications.For example,they play a vital role in the grain growth inhibitor,[1]are used as additives of ceramics[2]and active catalysts for organic reactions,[3,4]and have potential use in nuclear engineering.[5,6]In addition,sesquioxides can adopt perovskite(Pv),post-perovskite(PPv),and post-PPv phases at extreme conditions,which has significant implications for the mantle of giant extrasolar silicate planets.For instance,Al2O3undergoes a series of pressure-induced phase transitions from corundum structure to Rh2O3(II)-type structure,then to the PPv-type structure,and finally to the post-PPv phase(U2S3-type,Pnma and Z=4)above 370 GPa.[7]Gd2S3-type(Pnma and Z=4)and Th2S3-type(Pnma and Z=4)structures, which have the same space group and cationic coordination numbers with the U2S3-type structure,have been observed in Sc2O3[8]and Ti2O3[9]at high pressure,respectively.

    The high-pressure behavior of rare-earth sesquioxides has been widely investigated.So far,five polymorphic forms have been identified in rare-earth sesquioxides.Hexagonal A (Pˉ3m1)in which cations are in seven-fold coordination,monoclinic B(C2/m)in which cations are mixed with six or sevenfold coordination,and cubic Cwith six-coordinated cations are commonly observed at room temperature and ambient pressure.[10]The two other phases denominated as H (hexagonal,P63/mmc)and X(cubic,)are formed at high temperature.[11]Cations in Gd2S3,Th2S3,and U2S3occupy seven and eight oxygen coordinations,which are higher than those in C,B,A,Pv,and PPv structures.

    Scandium and yttrium elements with the chemically similar lanthanide elements are often known to belong to the lanthanide family as the rare-earth metal elements.The optical properties of trivalent rare earth ion-doped nanocrystalline materials have been investigated extensively.Y2O3nanocrystals doped with trivalent rare earth ion have attracted considerable interest because of the high chemical durability and thermal stability.Eu-doped Y2O3is an important commercial luminescent material,it has been widely used in fluorescent lamps,projection television tubes,field emission displays,etc.[12]Y2O3crystallized into the C-type structure under ambient conditions.Lots of attempts have been made to understand its high-pressure behavior,but the high-pressure phase transition sequences show some inconsistencies.As for the pure Y2O3,the C→B,[13,14]C→B→A,[15–17]C→A,[18]and C→B→Gd2S3[19,20]phase sequences have been observed in experiments or theoretical calculations.The in situ highpressure luminescence spectra indicated that the C-type bulk Eu-doped Y2O3transformed into the B-type phase at 15 GPa, while 20 nm-sized nanocrystals did not.[21]

    As we all know,the experimental results are influenced by experimental conditions,such as non-hydrostaticity of pressure and regime of temperature treatment.In the static high pressure experiment at 2.5 GPa and 1273 K,the C-type Y2O3transformed to the B-type phase which was also found above 12 GPa in a shock-compression experiment,while the A-type phase was proposed to be the favorable stable high pressure phase.[14]In some quasi-hydrostatic compression experiments at room temperature,Y2O3followed the phase sequence of C→B→A.[15–17]A high-pressure Raman experiment reported two phase transitions,viz,C→B and B→Aat 12 GPa and 19 GPa respectively.[16]However,a high pressure x-ray experiment showed that pure Y2O3exhibited a direct transition to A structure at 12.1 GPa and room temperature,whereas the C→B→A transition was observed in Eu-doped Y2O3.[18]Considering the temperature effect,a sequence of structural phase transitions C→B→A observed in the room-temperature compression did not coincide with the phase transition sequence C→B→Gd2S3under high pressure and high temperature.[19]Moreover,there are some inconsistencies among the room-temperature data collected with different internal pressure standards under conditions close to hydrostatic environment by noble gases like He or Ne media and by solid or liquid media such as KBr and silicone oil.[22]The previous pressure-transmitting media in the experiments on Y2O3were silicone oil,[18]a mixture of methanol and ethanol,[23]or KBr powder.[16]

    To the best of our knowledge,starting Y2O3samples used in the former work were characterized by the C-type structure.The B-type polycrystalline Y2O3has been synthesized successfully using multi-anvil press in our previous work.[24]High-pressure x-ray diffraction experiments provide us information about high-pressure phase transitions and physical properties.[25–27]In this study,we carry out the high pressure experiment of B-type Y2O3as the starting material up to 44 GPa by in situ x-ray diffraction(XRD)in diamond anvil cell(DAC).

    2.Experiment

    The starting sample of the synthesized B-type Y2O3was described in detail in Ref.[24].In our XRD experiment, we generated high pressures by a symmetric type DAC with 300μm-diameter culets.A 150μm-diameter hole was drilled in the pre-indented to~30μm-thickness rhenium gasket.Pt was loaded in the chamber as pressure standard based on its well-known equation of state.[22]and Ne was used as the pressure medium.The in situ high-pressure XRD experiment at room temperature was conducted at 13IDD at Advanced Photon Source(APS).Diffraction patterns were collected using a MarCCD detector.The monochromatic x-ray which was focused to 5μm×5μm on the sample surface has a wavelength of 0.3344?A.Collection time for each pattern was 20 s. Diffraction images were integrated to one-dimensional spectra using the Fit2D program.[28]Lattice parameters were obtained using Unitcell.[29]Some x-ray diffraction patterns were fitted by the Le Bail method implemented in the GSAS+EXPGUI software.[30]

    3.Results and discussion

    The XRD pattern at ambient conditions gives lattice parameters a=13.892(7)?A,b=3.494(1)?A,c=8.614(4)?A, β=100.22(4),and V=411.4(2)?A3from a full profile model refinement.In situ high-pressure XRD data were collected up to 44 GPa at room temperature.Some selected XRD patterns are shown in Fig.1,where all peaks can be indexed into the B-type Y2O3and minor impurities up to 23.5 GPa.All peaks shifted to higher angles of 2θ with increasing pressure.As shown in Fig.1,the peaks began to change at 23.5 GPa,indicating the appearance of a new phase.According to the previous studies,[19]the new phase would be either A-or Gd2S3-type.By performing the x-ray profile fitting analyses and comparing the d values of the characteristic peaks with the previous experimental data,[19]we confirmed that the new phase adopted the A-type structureUpon compression,the B-type phase was found to obviously coexist throughout the transition process from the B-to A-type phase.The B-type phase still existed at the highest pressure,implying that the transition may be kinetically sluggish.In Sc2O3,the B to A transition at 77 GPa was predicted by abinitio calculation,[31]but the Gd2S3-type phase as the post-B phase was observed above 18 GPa atthe high temperature experiment.[8]Considering the similarity of Sc2O3and Y2O3,Sc2O3would also have the C→B→A phase transition sequence in the high-pressure experiment at room temperature.As previously mentioned,it is not a common phenomenon that the high-pressure structure sequence of Y2O3observed in the room temperature compression does not coincide with the phase transition sequence at high temperature.Generally speaking,the temperature effect is always considered in pressure-induced phase-transition experiments in order to obtain clear high-pressure structural information,because high temperature relaxes the differential stress and overcomes the potential kinetic effects on phase transition.Therefore,the laser heating usually promotes the phase transition to happen at lower pressure than that of the room temperature compression experiment.By analyzing the crystal structures of B-and A-type phases of Y2O3at high pressure,the B-type structure was found to be equivalent to the A-type structure.[19]This is a possible reason why the B to A transition was observed under compression at room temperature.In our synthesis experiment,we tried to synthesize the Gd2S3-type phase of Y2O3in a multi-anvil apparatus at HPHT conditions(20 GPa and 1800°C),but the B-type phase was reserved.[24]Ovsyannikov et al.tried to obtain the B-type Sc2O3at 14 GPa and 1600°C,but only the C-type phase was found in the recovered sample.[32]These results show that the HP-HT behaviors of Y2O3and Sc2O3are complex and further investigations of their P–T phase diagrams are needed.

    The B-and A-type unit-cell volumes showed a smooth decrease with the increasing pressure.The unit-cell volume data as a function of pressure is plotted in Fig.2 and analyzed by the second-order Birch–Murnaghan equation of state (B–M EoS).[33]The EoS parameters we obtained are listed in Table 1,which also includes the available experimental and theoretical data for comparison.The equilibrium volume V0obtained from the theoretical computation is underestimated compared with the experimental results,which is typical for the LDA computations.The isothermal bulk moduli of B-and A-type Y2O3compounds are approximate.Our result is consistent with the theoretical simulation data,[11]which shows that the difference between the bulk moduli of B-and A-type rare-earth sesquioxides is considerably small.

    Fig.1.(color online)X-ray diffraction profiles of the Y2 O3 sample under room temperature compression.The tick marks indicate the calculated positions of the diffraction peaks of B-and A-type phases with the LeBail method (GSAS).Solid line,symbols,and solid line at the bottom represent the calculated and the observed patterns and their differences at ambient conditions, respectively.Other solid lines represent the observed patterns at high pressure.

    Fig.2.(color online)The volume per formula of B-and A-type phases of Y2O3 as a function of pressure.The solid lines correspond to the second-order B–M EoS fitting to the experimental data.The volume collapse in the phase transition is about 2%at 23.5 GPa.The crystal structures are also shown. Red spheres are oxygen and dark green spheres at the center of polyhedra are yttrium.

    The phase transition from B-to A-type Y2O3is followed by a volume collapse of 2%at 23.5 GPa(Fig.2),which is at the same level as that of Sm2O3.[34]This transformation involves only a slight deformation.Compared to this B→A transition,the C→B first-order phase transition is accompanied by a more significant volume decrease(8%,[16]12.5%[15]).

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    The coordination number of Yincreases from six or seven in B-type structure,to seven in the A-type one during the B→A transition.In addition,the B(C2/m)and Ahave a group-subgroup relationship.[35]Contrary to the C→B reconstructive transition,the B→A transition is inferred to be displacive,which is also suggested in other studies.[17,19]

    Theoretical analysis of pressure-induced B to A-type phase transitions shows a linear correlation between bulk modulus,transition pressures,and the ionic radius of the cation.[11]The suggested transition pressure and bulk modulus for Y2O3are at the same level as those of our experimental results. The difference is mainly due to the GGA exchange correlation energy,which gives a larger V0and a smaller B0.The first single-crystal study of Sc2O3exhibited that the denser B-type phase is a bit more compressible than the C-type one.[32]This result did not confirm the other experimental studies on powdery Sc2O3.[8]The previous studies on powders of lanthanide sesquioxides did not reveal a noticeable difference in the bulk moduli of C-,B-,and A-type phases,e.g.,Ho2O3and Sm2O3.[34,36]Whether there exist noticeable bulk modulus differences among the C-,B-,and A-type rare-earth sesquioxides requires more experimental and theoretical investigations.

    During the past few decades,the rare-earth sesquioxides have been studied by numerous researchers to investigate the phase relationships among the C,B,and A phases.Early in 1966,Hoekstra found that the effect of ionic radius is much greater than temperature or pressure in shifting the C?B equilibrium line.[37]Moreover,compression experiments and theoretical results exhibited that higher pressure would be needed to stabilize the A-type phase in rare-earth sesquioxides with smaller cationic radius.[11,34]However,this systematics of the C→B→A phase sequence may not be applicable to the rare-earth sesquioxides only according to their cationic radii.The comparative crystallography in rare-earth sesquioxides has been summarized in other study.[8]Sc2O3(Sc3+;0.745?A), In2O3(In3+;0.800?A),and Y2O3(Y3+;0.900?A),which adopt the C-type structure at ambient conditions,crystallize into the Gd2S3structure at high pressure after laser heating.[8,19,38]It is possible that the Gd2S3structure would be found as a post B-type structure in other rare-earth sesquioxides at high temperature.

    The pressure evolution of the lattice parameters of the B-and A-type phases is shown in Fig.3.Regarding the unit-cell compressibilities,the a axis is the most compressible and the b axis is the least compressible for the B-type phase.As for the A-type Y2O3,the c axis is more compressible than the a axis mainly because of the large intervals between the layers in the c axial orientation.It indicates that the axial compressiblities of B-and A-type phases are anisotropic.

    Fig.3.(color online)Pressure-induced variations in the lattice parameters of the B-type(a)and A-type(b)phases of Y2O3.The solid lines are linear fittings of the experimental data.

    4.Conclusion

    The structural properties of B-type Y2O3under compression have been investigated by synchrotron radiation x-ray diffraction experiment with neon as the pressure-transmitting medium at room temperature up to 44 GPa.We observed a sluggish phase transition from B-to A-type phase at 23.5 GPa. The isothermal P–V relationship of Y2O3was described by the second-order Birch–Murnaghan equation of state with B0= 159(3)GPa for the B-type phase,and 156(3)GPa for the A-type phase.Note that the high pressure behavior of rare-earth sesquioxides is apparently complex,and there are lots of unanswered questions in their condensed matter physics.Further studies will bring exciting results on their high-pressure properties.

    Acknowledgements

    The authors are deeply grateful to Sergey V.Ovsyannikov and Leonid S.Dubrovinsky for synthesizing the sample.High-pressure experiments were performed at GeoSoil Enviro CARS of the APS,ANL.GeoSoil EnviroCARS operations are supported by the National Science Foundation-Earth Sciences(EAR-1128799)and the Department of Energy Geosciences(DE-FG02-94ER14466).APS is supported by DOEBES,under Contract No.DE-AC02-06CH11357.

    [1]Aktas B,Tekeli S and Kucuktuvek M 2014 Int.J.Mater.Res.105 208

    [2]Scott H 1975 J.Mater.Sci.10 1527

    [3]Hussein G A 1996 J.Anal.Appl.Pyrolysis 37 111

    [4]Dedov A,Loktev A,Moiseev I,Aboukais A,Lamonier J F and Filimonov I 2003 Applied Catalysis A:General 245 209

    [5]Shikama T,Toh K,Nagata S,Tsuchiya B,Yamauchi M,Nishitani T, Suzuki T,Okamoto K and Kubo N 2006 Nucl.Fusion 46 46

    [6]Weber W J,Ewing R C,Catlow C R A,de la Rubia T D,Hobbs L W, Kinoshita C,Matzke H,Motta A T,Nastasi M,Salje E K H,Vance E R and Zinkle S J 1998 J.Mater.Res.13 1434

    [7]Umemoto K and Wentzcovitch R M 2008 Proc.Natl.Acad.Sci.USA 105 6526

    [8]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2009 Inorg.Chem.48 7537

    [9]Nishio-Hamane D,Katagiri M,Niwa K,Sano-Furukawa A,Okada T and Yagi T 2009 High Press.Res.29 379

    [10]Zinkevich M 2007 Prog.Mater.Sci.52 597

    [11]Wu B,Zinkevich M,Aldinger F,Wen D and Chen L 2007 J.Solid State Chem.180 3280

    [12]Wang H,Uehara M,Nakamura H,Miyazaki M and Maeda H 2005 Adv. Mater.17 2506

    [13]Hoekstra H R and Gingerich K A 1964 Science 146 1163

    [14]Atou T,Kusaba K,Fukuoka K,Kikuchi M and Syono Y 1990 J.Solid State Chem.89 378

    [15]Halevy I,Carmon R,Winterrose M L,Yeheskel O,Tiferet E and Ghose S 2010 J.Phys.Conf.Ser.215 012003

    [16]Husson E,Proust C,Gillet P and Itie J 1999 Mater.Res.Bull.34 2085

    [17]Bose P P,Gupta M,Mittal R,Rols S,Achary S,Tyagi A and Chaplot S 2011 Phys.Rev.B 84 094301

    [18]Wang L,Pan Y,Ding Y,Yang W,Mao W L,Sinogeikin S V,Meng Y, Shen G and Mao H 2009 Appl.Phys.Lett.94 061921

    [19]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2010 Inorg.Chem.49 4478

    [20]Umemoto K and Wentzcovitch R M 2011 Phys.Chem.Miner.38 387

    [21]Bai X,Song H,Liu B,Hou Y,Pan G and Ren X 2008 J.Nanosci. Nanotechnol.8 1404

    [22]Fei Y,Ricolleau A,Frank M,Mibe K,Shen G and Prakapenka V 2007 Proc.Natl.Acad.Sci.USA 104 9182

    [23]Zhang J,Cui H,Zhu P,Ma C,Wu X,Zhu H,Ma Y and Cui Q 2014 J. Appl.Phys.115 023502

    [24]Zhang Q,Wu X,Ovsyannikov S V,Dong J,Qin S,Dubrovinsky L S and Chen D 2016 Chem.Res.Chin.Univ.32 545

    [25]Tang S X,Zhu H Y,Jiang J R,Wu X X,Dong Y X,Zhang J,Yang D P and Cui Q L 2015 Chin.Phys.B 24 096101

    [26]Li N N,Li Y,Li H,Tang R L,Zhao Y S,Han D D,Ma Y M,Cui Q L, Zhu P W and Wang X 2014 Chin.Phys.B 23 069101

    [27]Yang S W,Peng F,Li W T,Hu Q W,Yan X Z,Lei L,Li X D and He D W 2016 Chin.Phys.B 25 076101

    [28]Hammersley A,Svensson S,Hanfland M,Fitch A and Hausermann D 1996 High Press.Res.14 235

    [29]Holland T and Redfern S 1997 Mineral.Mag.61 65

    [30]Toby B H 2001 J.Appl.Crystallogr.34 210

    [31]Liu D,Lei W,Li Y,Ma Y,Hao J,Chen X,Jin Y,Yu S and Cui Q 2009 Inorg.Chem.48 8251

    [32]Ovsyannikov S V,Bykova E,Bykov M,Wenz M D,Pakhomova A S, Glazyrin K,Liermann H P and Dubrovinsky L 2015 J.Appl.Phys.118 165901

    [33]Birch F 1952 J.Geophys.Res.57 227

    [34]Jiang S,Liu J,Lin C,Li X and Li Y 2013 J.Appl.Phys.113 113502

    [35]Hahn T 2002 International Table for Crystallography,A(5th edn.) (Dordrecht:Kluwer)pp.540,541

    [36]Jiang S,Liu J,Li X,Bai L,Xiao W,Zhang Y,Lin C,Li Y and Tang L 2011 J.Appl.Phys.110 013526

    [37]Hoekstra H R 1966 Inorg.Chem.5 754

    [38]Yusa H,Tsuchiya T,Tsuchiya J,Sata N and Ohishi Y 2008 Phys.Rev. B 78 092107

    3 May 2017;revised manuscript

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090703

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.U1232204 and 41502029)and China Postdoctoral Science Foundation (Grant No.2015M580679).

    ?Corresponding author.E-mail:qianzhang@cug.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張倩
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
    繼妹聯(lián)手渣夫做局:那是父母偏愛的蝴蝶效應(yīng)
    Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
    Electrical and aerodynamic characteristics of sliding discharge based on a microsecond pulsed plasma supply
    基于社會(huì)責(zé)任培養(yǎng)的“生物多樣性”教學(xué)設(shè)計(jì)
    竇晨珂、曲樹云、王逸文、張倩作品精選
    基于賦權(quán)增能的德育評價(jià)生態(tài)系統(tǒng)的構(gòu)建
    民族文匯(2022年9期)2022-04-13 00:33:06
    《愿為葵子》
    賈逵隔籬偷學(xué)
    亚洲欧美一区二区三区黑人 | 久久精品国产自在天天线| 欧美xxⅹ黑人| 黄色视频在线播放观看不卡| 国产美女午夜福利| 国产精品国产三级国产专区5o| 国产69精品久久久久777片| 简卡轻食公司| 日韩一区二区三区影片| 欧美日韩视频精品一区| 亚洲美女搞黄在线观看| av一本久久久久| 久久久久久九九精品二区国产| 欧美成人午夜免费资源| 噜噜噜噜噜久久久久久91| 高清午夜精品一区二区三区| 亚洲国产色片| 国产精品人妻久久久影院| 日韩,欧美,国产一区二区三区| 男人爽女人下面视频在线观看| 一区在线观看完整版| 日韩在线高清观看一区二区三区| 中文乱码字字幕精品一区二区三区| 激情五月婷婷亚洲| 日本色播在线视频| 亚洲无线观看免费| 精品一区二区三区视频在线| 国产成人91sexporn| 免费观看在线日韩| 大香蕉久久网| 国产高潮美女av| 黄片无遮挡物在线观看| 午夜免费男女啪啪视频观看| 国产精品三级大全| 亚洲经典国产精华液单| 好男人视频免费观看在线| 精品一区二区三卡| 欧美精品一区二区免费开放| 亚洲精品一二三| 亚洲精品国产av成人精品| 最新中文字幕久久久久| 亚洲成人av在线免费| 亚洲人成网站在线播| 高清av免费在线| 日日啪夜夜爽| 国产精品一区二区在线不卡| 国产免费一级a男人的天堂| 一级爰片在线观看| 亚洲国产色片| 成人无遮挡网站| www.色视频.com| 麻豆成人av视频| 一区二区三区四区激情视频| 精品国产乱码久久久久久小说| 国产黄片美女视频| 亚洲人成网站高清观看| 欧美丝袜亚洲另类| 亚洲av成人精品一二三区| 国产欧美亚洲国产| 国产大屁股一区二区在线视频| 亚洲欧美清纯卡通| 激情 狠狠 欧美| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 国产一区二区在线观看日韩| 午夜免费男女啪啪视频观看| 一区二区三区乱码不卡18| 亚洲伊人久久精品综合| 亚洲经典国产精华液单| 男女无遮挡免费网站观看| 欧美成人午夜免费资源| 人妻系列 视频| 久久精品久久精品一区二区三区| 久久久久久久久大av| 男的添女的下面高潮视频| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 久久99蜜桃精品久久| kizo精华| 街头女战士在线观看网站| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| videos熟女内射| 久久午夜福利片| 少妇裸体淫交视频免费看高清| 国产男女超爽视频在线观看| 国内精品宾馆在线| 网址你懂的国产日韩在线| 91精品国产九色| 久久久久网色| 日本猛色少妇xxxxx猛交久久| 国产精品无大码| 免费大片黄手机在线观看| 晚上一个人看的免费电影| av一本久久久久| 亚洲av中文av极速乱| 成人综合一区亚洲| 夜夜骑夜夜射夜夜干| 日韩电影二区| 国产高清国产精品国产三级 | 亚洲熟女精品中文字幕| 精品99又大又爽又粗少妇毛片| 97在线视频观看| 欧美日韩在线观看h| 赤兔流量卡办理| av天堂中文字幕网| 狠狠精品人妻久久久久久综合| 一本久久精品| 亚洲经典国产精华液单| 精品一区在线观看国产| 老熟女久久久| 观看av在线不卡| 少妇 在线观看| 亚洲欧美日韩东京热| 多毛熟女@视频| 国产精品一区www在线观看| 七月丁香在线播放| 久久女婷五月综合色啪小说| 久久久久久久久久久丰满| 深爱激情五月婷婷| 成人免费观看视频高清| 日本欧美国产在线视频| 亚洲一级一片aⅴ在线观看| 香蕉精品网在线| 在线观看三级黄色| av网站免费在线观看视频| 麻豆成人av视频| 少妇人妻精品综合一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 夫妻午夜视频| 寂寞人妻少妇视频99o| 国产69精品久久久久777片| 亚洲熟女精品中文字幕| 欧美97在线视频| 蜜桃亚洲精品一区二区三区| 成人影院久久| 日产精品乱码卡一卡2卡三| 亚洲经典国产精华液单| 一级毛片我不卡| 精品国产乱码久久久久久小说| 国产又色又爽无遮挡免| 伦理电影免费视频| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 边亲边吃奶的免费视频| 国产成人a∨麻豆精品| 久久久久精品久久久久真实原创| av福利片在线观看| 18+在线观看网站| 免费看av在线观看网站| 久久久久久久久久久免费av| 国产成人精品婷婷| 日韩欧美 国产精品| 亚洲人成网站在线播| 欧美精品一区二区大全| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 91久久精品电影网| 内地一区二区视频在线| 丰满少妇做爰视频| 日韩中文字幕视频在线看片 | 国产黄色免费在线视频| 国产av一区二区精品久久 | 亚洲第一av免费看| 偷拍熟女少妇极品色| 久久亚洲国产成人精品v| 亚洲欧美中文字幕日韩二区| 国产午夜精品久久久久久一区二区三区| 少妇熟女欧美另类| 国产成人精品婷婷| 午夜精品国产一区二区电影| 免费观看av网站的网址| 国产91av在线免费观看| 久久久精品94久久精品| 日韩av不卡免费在线播放| 在线 av 中文字幕| 亚洲av成人精品一区久久| 中文欧美无线码| 看免费成人av毛片| 插阴视频在线观看视频| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 2022亚洲国产成人精品| 国产毛片在线视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 精品久久久噜噜| 51国产日韩欧美| 亚洲内射少妇av| 亚洲av欧美aⅴ国产| 亚洲av福利一区| 欧美日韩综合久久久久久| 日本欧美视频一区| 精品99又大又爽又粗少妇毛片| 简卡轻食公司| 青春草国产在线视频| 超碰97精品在线观看| 特大巨黑吊av在线直播| 久久精品久久久久久久性| 韩国av在线不卡| 蜜桃亚洲精品一区二区三区| 新久久久久国产一级毛片| 国产精品伦人一区二区| 国产精品蜜桃在线观看| 丝袜脚勾引网站| 18禁在线无遮挡免费观看视频| 国产亚洲5aaaaa淫片| 免费观看在线日韩| 久久这里有精品视频免费| 欧美3d第一页| 男人和女人高潮做爰伦理| 久久97久久精品| 一区在线观看完整版| 日本-黄色视频高清免费观看| 国产成人午夜福利电影在线观看| 国产乱人偷精品视频| 欧美成人a在线观看| a级毛片免费高清观看在线播放| 日本午夜av视频| 国产高潮美女av| 男女无遮挡免费网站观看| 久久热精品热| 国产av一区二区精品久久 | 国产欧美日韩一区二区三区在线 | 国产高潮美女av| 亚洲国产日韩一区二区| 亚洲精品一二三| 国产 一区 欧美 日韩| 久久精品久久久久久久性| 成年人午夜在线观看视频| 一区二区三区乱码不卡18| 国产成人a∨麻豆精品| 国内揄拍国产精品人妻在线| 男的添女的下面高潮视频| 久久国产精品大桥未久av | 国产亚洲最大av| 亚洲欧美日韩无卡精品| 天天躁夜夜躁狠狠久久av| 免费大片黄手机在线观看| 伦精品一区二区三区| 国产色爽女视频免费观看| 免费观看无遮挡的男女| 纯流量卡能插随身wifi吗| 国产精品久久久久成人av| 91在线精品国自产拍蜜月| 成人影院久久| 国产男人的电影天堂91| av国产免费在线观看| 在线看a的网站| 老司机影院毛片| 国产一区二区三区综合在线观看 | 一级毛片 在线播放| 免费观看a级毛片全部| 黄片无遮挡物在线观看| 中文天堂在线官网| 我的老师免费观看完整版| 黄色日韩在线| 欧美激情极品国产一区二区三区 | 国产淫语在线视频| 少妇猛男粗大的猛烈进出视频| 精品国产三级普通话版| 这个男人来自地球电影免费观看 | 3wmmmm亚洲av在线观看| 赤兔流量卡办理| 亚洲丝袜综合中文字幕| 亚洲av综合色区一区| 国产69精品久久久久777片| 插阴视频在线观看视频| 亚洲,一卡二卡三卡| 激情 狠狠 欧美| www.色视频.com| 91狼人影院| 国产又色又爽无遮挡免| 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 人妻系列 视频| 国产人妻一区二区三区在| 国内精品宾馆在线| videossex国产| av免费观看日本| 少妇人妻一区二区三区视频| 中文欧美无线码| 插逼视频在线观看| 国产有黄有色有爽视频| 最近中文字幕2019免费版| 亚洲精品一二三| 午夜免费观看性视频| 亚洲丝袜综合中文字幕| 中文字幕久久专区| 日韩电影二区| 一本一本综合久久| 我要看黄色一级片免费的| av在线播放精品| 欧美另类一区| 超碰av人人做人人爽久久| 国产国拍精品亚洲av在线观看| 18禁裸乳无遮挡动漫免费视频| 一区二区av电影网| 久久人人爽人人爽人人片va| 久久ye,这里只有精品| 日韩av免费高清视频| av免费在线看不卡| 国产精品av视频在线免费观看| 日韩精品有码人妻一区| 少妇人妻久久综合中文| 一区在线观看完整版| 国产男女超爽视频在线观看| 亚洲人成网站在线播| 91精品国产九色| 久久久久久久大尺度免费视频| 亚洲综合精品二区| 一级毛片 在线播放| 免费观看在线日韩| 国产一区二区三区综合在线观看 | 欧美3d第一页| 我要看黄色一级片免费的| 五月天丁香电影| 在现免费观看毛片| 91久久精品国产一区二区三区| 99热网站在线观看| 亚洲精品,欧美精品| 最新中文字幕久久久久| 草草在线视频免费看| 中文精品一卡2卡3卡4更新| a级毛片免费高清观看在线播放| 国产成人a∨麻豆精品| 精品国产三级普通话版| 五月玫瑰六月丁香| 亚洲国产欧美人成| 亚洲精品久久午夜乱码| 亚洲内射少妇av| 18禁在线播放成人免费| 国模一区二区三区四区视频| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 日日啪夜夜爽| 99久国产av精品国产电影| 色视频www国产| 在线观看国产h片| 久久6这里有精品| 2021少妇久久久久久久久久久| 色吧在线观看| 亚洲成人手机| 亚洲色图综合在线观看| 国产亚洲一区二区精品| 国产精品人妻久久久久久| 免费av不卡在线播放| 国产永久视频网站| 又大又黄又爽视频免费| 啦啦啦在线观看免费高清www| 亚洲精品乱久久久久久| 激情 狠狠 欧美| 国产视频首页在线观看| 国产精品久久久久久av不卡| 乱系列少妇在线播放| 久久精品夜色国产| 老司机影院成人| 晚上一个人看的免费电影| 晚上一个人看的免费电影| 日韩电影二区| 国产成人freesex在线| 天堂中文最新版在线下载| 午夜日本视频在线| 日韩精品有码人妻一区| 99久久精品热视频| 啦啦啦在线观看免费高清www| 中国国产av一级| 国产精品爽爽va在线观看网站| 日本av手机在线免费观看| 热99国产精品久久久久久7| 国产精品国产三级国产专区5o| 成年免费大片在线观看| 国产久久久一区二区三区| 亚洲国产毛片av蜜桃av| 免费看不卡的av| 成人免费观看视频高清| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 国产爽快片一区二区三区| 国产淫语在线视频| 中国美白少妇内射xxxbb| 大陆偷拍与自拍| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡免费网站照片| 一区二区三区四区激情视频| 大片免费播放器 马上看| 国产 精品1| 狠狠精品人妻久久久久久综合| 国产在线视频一区二区| 自拍偷自拍亚洲精品老妇| 久久影院123| 欧美3d第一页| 十八禁网站网址无遮挡 | 久久久久久久久久成人| 国产真实伦视频高清在线观看| 精品少妇久久久久久888优播| 国产一级毛片在线| 国产精品.久久久| 国内揄拍国产精品人妻在线| 亚洲av电影在线观看一区二区三区| 久久韩国三级中文字幕| 水蜜桃什么品种好| 欧美高清性xxxxhd video| 久久久久久久久久久丰满| 国产精品人妻久久久久久| 国产有黄有色有爽视频| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲国产精品专区欧美| 欧美一区二区亚洲| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 伦精品一区二区三区| 老司机影院毛片| 婷婷色综合大香蕉| 亚洲精品国产色婷婷电影| 91久久精品国产一区二区成人| 97精品久久久久久久久久精品| 亚洲国产毛片av蜜桃av| 色综合色国产| 在线观看免费日韩欧美大片 | 久久久久久久亚洲中文字幕| 国产成人一区二区在线| 91久久精品电影网| 亚洲av成人精品一二三区| 观看美女的网站| 一本一本综合久久| 欧美 日韩 精品 国产| 美女中出高潮动态图| 永久网站在线| 在线观看免费日韩欧美大片 | tube8黄色片| 伊人久久精品亚洲午夜| 亚洲av中文av极速乱| 一级片'在线观看视频| 亚洲欧美清纯卡通| 97在线人人人人妻| 波野结衣二区三区在线| 看非洲黑人一级黄片| 欧美一区二区亚洲| 亚洲va在线va天堂va国产| 国产成人精品一,二区| 99视频精品全部免费 在线| 日韩伦理黄色片| 天堂8中文在线网| 国产视频内射| 国产在线一区二区三区精| 国产欧美亚洲国产| 久久国产乱子免费精品| 青春草亚洲视频在线观看| 久久久色成人| tube8黄色片| 熟女电影av网| 亚洲成人中文字幕在线播放| 成人影院久久| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 免费观看av网站的网址| 国产成人91sexporn| 美女福利国产在线 | 久久国内精品自在自线图片| 欧美高清性xxxxhd video| www.av在线官网国产| av免费观看日本| 久久 成人 亚洲| 久久韩国三级中文字幕| 狠狠精品人妻久久久久久综合| 麻豆成人av视频| 亚洲一区二区三区欧美精品| 男的添女的下面高潮视频| 色婷婷av一区二区三区视频| 哪个播放器可以免费观看大片| 久久 成人 亚洲| 大香蕉97超碰在线| 国产视频内射| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 夫妻午夜视频| 欧美xxxx性猛交bbbb| kizo精华| 免费看日本二区| h视频一区二区三区| 哪个播放器可以免费观看大片| 国产精品熟女久久久久浪| 久久鲁丝午夜福利片| 国产男女内射视频| 亚洲人成网站高清观看| 婷婷色综合大香蕉| 国产 精品1| 久久久久久久久久人人人人人人| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 国产 一区精品| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 在线观看国产h片| 免费少妇av软件| 亚洲综合色惰| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 午夜激情久久久久久久| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 大香蕉久久网| 青春草亚洲视频在线观看| 亚洲第一av免费看| 视频区图区小说| 国产精品一二三区在线看| 高清黄色对白视频在线免费看 | 男女边吃奶边做爰视频| 婷婷色av中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 国产一区二区三区综合在线观看 | 久久久久久久久大av| 成人二区视频| 男女边摸边吃奶| 老司机影院成人| 精品国产露脸久久av麻豆| av国产精品久久久久影院| 80岁老熟妇乱子伦牲交| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 久久99精品国语久久久| av女优亚洲男人天堂| 亚洲成人av在线免费| 超碰av人人做人人爽久久| 91精品一卡2卡3卡4卡| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品久久久久久精品古装| 成人毛片a级毛片在线播放| 午夜福利影视在线免费观看| 网址你懂的国产日韩在线| 午夜免费鲁丝| 亚洲欧美成人精品一区二区| 日本猛色少妇xxxxx猛交久久| 精品亚洲成国产av| 视频区图区小说| 国产v大片淫在线免费观看| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 性色avwww在线观看| 久久久久久久久久久免费av| 天美传媒精品一区二区| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久av| 黄色欧美视频在线观看| 国产精品一及| 久久久久久久久久久丰满| 黄片wwwwww| 久热久热在线精品观看| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 亚洲av日韩在线播放| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| av国产精品久久久久影院| 国产伦理片在线播放av一区| 免费av中文字幕在线| 日韩电影二区| 亚洲av福利一区| 国产日韩欧美在线精品| 国产成人91sexporn| 亚洲美女搞黄在线观看| 日韩中字成人| 欧美3d第一页| 国产精品福利在线免费观看| 国产淫片久久久久久久久| 国产免费福利视频在线观看| av国产久精品久网站免费入址| 看十八女毛片水多多多| 啦啦啦中文免费视频观看日本| 欧美+日韩+精品| 成人特级av手机在线观看| av专区在线播放| 国产亚洲午夜精品一区二区久久| 黑丝袜美女国产一区| 午夜福利视频精品| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 岛国毛片在线播放| 国产av国产精品国产| 久久鲁丝午夜福利片| av国产精品久久久久影院| 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 97超碰精品成人国产| 激情 狠狠 欧美| 国产精品不卡视频一区二区| 在线观看国产h片| 一级毛片aaaaaa免费看小| 久久久久视频综合| 国产亚洲av片在线观看秒播厂| 一本色道久久久久久精品综合| 日日啪夜夜爽| 日本色播在线视频| 国产一级毛片在线| 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 香蕉精品网在线| 成人毛片a级毛片在线播放| 五月天丁香电影| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 日日啪夜夜撸| 超碰97精品在线观看| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗|