• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A scheme for Sagnac-effect quantum enhancement with Fock state light input?

    2017-08-30 08:25:50KunChen陳坤ShuXinChen陳樹新DeWeiWu吳德偉ChunYanYang楊春燕andQiangMiao苗強
    Chinese Physics B 2017年9期
    關(guān)鍵詞:陳坤

    Kun Chen(陳坤),Shu-Xin Chen(陳樹新),De-Wei Wu(吳德偉), Chun-Yan Yang(楊春燕),and Qiang Miao(苗強)

    Information and Navigation College,Airforce Engineering University,Xi’an 710077,China

    A scheme for Sagnac-effect quantum enhancement with Fock state light input?

    Kun Chen(陳坤),Shu-Xin Chen(陳樹新)?,De-Wei Wu(吳德偉), Chun-Yan Yang(楊春燕),and Qiang Miao(苗強)

    Information and Navigation College,Airforce Engineering University,Xi’an 710077,China

    Sagnac effect enhancement can improve optical gyro precision.For a certain input intensity,we suggest that the other input port of beam splitter(BS)should be fed with some quantum light to break through shot noise limit(SNL)to improve Sagnac effect without increasing radiation-pressure noise(NRP).We design a Sagnac effect quantum enhancement criterion (SQEC)to judge whether some quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme that utilizing Fock state light and parity measurement technique to extract the output phase.The results of the theoretical analysis show that the maximum sensitivity can be reached at θ=0,and the phase precision can break through SNL and even achieve Heisenberg limit(HL).When the Fock state average photon number n is far less than coherent state,the minimum measurable angular rate is improved withtimes,which can deduce shot noise and increase NRP little.

    optical gyro,radiation-pressure noise,parity measurement,Heisenberg limit

    1.Introduction

    The enhancement scheme of Sagnac effect which is the physical basis of gyroscope,is an interesting topic for the improvement of gyroscope precision.[1–4]Many melioration schemes have been proposed via atoms[5–7]and trapped ions.[8,9]In optical regime,the optical gyroscope fed with laser in coherent states,[10]of which the phase sensitivity is restricted by shot noise limit(SNL)whereis the total mean photon number in the interferometer.The gyroscope precision can be improved mainly by increasing the laser power(increasing),whereas radiation-pressure noise(NRP)will dominate and nonlinear effects will be introduced.[12]An effective method is to improve the precision under a certain source power.

    Quantum metrology pointed out that some entanglement properties of input states(N00N state,twin-Fock state,Yurke state,etc.)can be used to break through SNL and even reach the fundamental limit,[13]Heisenberg limit(HL),showing a new way to improve gyroscope precision with quantum techniques.Bertocchi et al.firstly studied Sagnac quantum effect at the single-photon level whose results are no below SNL due to that there is no entanglement in the input states.[14]Kolkiran et al.obtained the HL by entering two-photon entangled states generated via parametric down-conversion.However,in such technical applications,high intensity sources are needed.[15]Caves suggested that sub-shot noise uncertainty can be achieved when a high-intensity coherent state in one input port and the other input port fed with a low-intensity squeezed vacuum state in an interferometer.[16]We utilized the squeezed vacuum light and quantum balanced homodyne detection technique to improve the phase precision obviously[17]and further discussed the optimal measurement method for the coherent state and the squeezed vacuum state in the Sagnac interferometer.[18]However,the squeezed vacuum technique cannot achieve the highest sensitivity at θ=0 unless introducing phase biasing technique.In this paper,we discuss whether there are other useful states in the other input port which can obtain sub-shot-noise phase sensitivity.We design a Sagnac effect quantum enhancement criterion(SQEC)to judge whether a quantum state is useful and develop a Fock state scheme for Sagnac effect enhancement.

    This manuscript is organized as follows.In Section 2, we make a theoretical description for Sagnac effect and design the SQEC based on quantum Fisher information(QFI). In Section 3,we use the SQEC to judge some common quantum states,such as coherent state,Fock state,squeezed vacuum state,and coherent superposition state.In Section 4,we present a Sagnac effect enhancement scheme with Fock state light input and parity measurement technique to extract the output phase.In Section 5,we make an analysis of the scheme. Finally,we discuss the physics underlying phase sensitivity improvement with Fock state light and draw a conclusion.

    2.Sagnac effect quantum enhancement criterion

    Due to the phaseθ precision restricted with shotnoise,for the improvement of measurement precision,we suggest thatthe other input port should be fed with some quantum light. We make a brief theoretical description for Sagnac effect,and then design the SQEC to judge whether a quantum state is useful.

    2.1.Theoretical description for Sagnac effect

    Sagnac effect was first proposed by Georges Sagnac in 1913 for rotation detection in inertial space with optical systems.[19]As illustrated in Fig.1,if Sagnac interferometer rotates with an angular rate ? along the clockwise direction, the two parts of light split at point A will take different time for a circle along clockwise and anti-clockwise direction separately and the time difference is Δt=4πr2?/c2(λ is wavelength,r is the radius of interferometer,and c is the speed of light).Accordingly,the optical path difference is

    Furthermore,we can obtain a linear relation between the relative phase θ and rotation rate ? as[20]

    where L is the optical path length.The accuracy of rotating rate ? depends on the measurement precision of phase θ.Therefore,Sagnac effect enhancement is to improve the precision of phase θ essentially.

    Fig.1.A schematic diagram of Sagnac effect.[17]

    Next,we describe the Sagnac effect in the Schwinger representation with quantum theory.[21]When the two input quantum states|in〉inject into the input ports P1and P2of the Sagnac interferometer depicted in Fig.2 respectively, they are both split into two beams by the beam splitter(BS) and mix with each other.The state upon leaving the BS is |?〉=exp(?iπ/2Jx)|in〉where Jx≡(a+b+b+a)/2 is an angular momentum operator.The quantum state|?〉accumulates a relative phase θ due to the interferometer rotation and becomes|?′〉=exp(?iθJz)|?〉where Jz≡(a+a?b+b)/2. |?′〉joins at the BS and leaves the interferometer.The output state is|out〉=exp(iπ/2Jx)|?′〉.We can obtain the relationship between input and output states as

    Fig.2.A schematic diagram of Sagnac interferometer.

    2.2.SQEC design

    The current optical gyro is fed with coherent light into one input port of BS and detected at another output port.In fact,the other input port is fed with vacuum instead of nothing, which restricts the phase precision at the SQL theoretically,as shown below.

    When the Sagnac interferometer shown in Fig.2 has two input ports injected with quantum states,the relationship between input and output ports in Eq.(3)can be written in a density matrix as

    where ρaand ρbare density operators of the quantum state entering into input ports P1and P2,respectively.The estimation precision of phase θ can be described with quantum Cramer–Rao bound(QCR)[22]

    where FQis the so-called QFI,which can be calculated by maximizing the Fisher information over all possible positive operator valued measures(POVM)[23]

    where{E(ε)}are a set of Hermitian positive-operators and Lθis the Hermitian operator of symmetric logarithmic derivative (SLD),defined as

    If ρaand ρbare pure states,we can obtain the relation ρout(θ)=ρout(θ)2from Eq.(4),of which the derivative of θ is?θρout(θ)=?θρout(θ)2=[?θρout(θ)]ρout(θ)+ ρout(θ)[?θρout(θ)].Comparing with Eq.(7)of the SLD def inition,we have

    and then

    With further calculation,we can obtain the QFI

    In the system,the total photon number,the SNL and HL are defined respectively as

    Substituting Eq.(10)into Eq.(5)and comparing with Eq.(12),we can obtain the SQEC,namelyIf SQEC is satisfied,the phase precision can break through SNL and Sagnac effect can be enhanced with certain light power.If one conditionis satisfied,HL can be achieved.If only one quantum state enters into the interferometer,whatever ρaor ρb,it is easy to verify that the system can only achieve SNL.This agrees with the conclusion of Caves that if only one quantum state enters into the BS,the other input port will introduce vacuum fluctuation restricting the parameter estimation precision.

    3.SQEC analysis of quantum states

    In order to improve the Sagnac phase accuracy and break through SNL with a fixed total photon number,we need to choose a suitable quantum state entering the input port b to satisfy SQEC and make Θ?as large as possible.We will make an analysis of some common quantum states such as coherent state,Fock state,squeezed vacuum state,and coherent superposition state,which can be produced in experiment.

    3.1.Coherent state|β〉

    If coherent state|β〉fed into the input port P2,where β= |β|e?i?β,we can obtainandwhich does not satisfy SQEC.It can be found that QFI cannot be improved by entering a coherent state into the other port. Therefore,the coherent state cannot enhance the Sagnac effect.

    3.2.Fock state|n〉

    The Fock state,also known as the photon number state,is in extensive research for quantum metrology which can be produced through parametric down-conversion in experiment.[24]If port P2fed with Fock state|N〉,we obtain Θ?=0 andwhich suggests that the Fock state in port b can improve QFI.If the power of coherent state|α〉is much higher than Fock state|N〉,namelywe getand the phase precisionwhich means that the phase precision increases effectively as the photon number of Fock state increases.

    3.3.Squeezed vacuum state|ξ〉

    The squeezed vacuum state has been extensively studied in quantum communication,gravitational wave detection, and precision measurement due to that the quantum fluctuation of a quadrature component is smaller than vacuum fluctuation,and can be produced through a parametric amplifier or a four-wave mixing experimentally.[25]If port P2fed with squeezed vacuum state|ξ〉,we getandwhich satisfy SQEC and the precision increases with the squeezed strength r exponentially.In particular,owing towhen,we obtainandwhich reaches HL.It is obvious that the squeezed vacuum state can enhance Sagnac effect effectively, which have been discussed in detail in Ref.[17].

    3.4.Coherent superposition state

    The coherent superposition state|αb〉,or Schrodinger cat state,is defined as[26]

    where|αb〉is called even coherent state when φ=0;when φ=π/2,|αb〉is called Yurke–Stoler coherent state;when φ=π,|αb〉is called odd coherent state.Without loss of generality,we take α0as a real number.When selecting the optimal phase matching condition ?=π/2,we have

    When|αb〉is the odd or even coherent state,Θ?=When|αb〉is the Yurke–Stoler coherent state,Θ?=When,we can obtain≈and

    When the coherent superposition state is fed into the input port P2,the sub-shot-noise uncertainty can be approached and the QFI isIn particular,whenwe havewhich means that the coherent superposition state can also achieve an HL-like squeezed vacuum state.The coherent superposition state is also a kind of macroscopic superposition states,which is conducive to enhance the Sagnac effect in experiment.

    Through the analysis above,the other input port of Sagnac BS fed with some quantum light in Fock state, squeezed vacuum state,or coherent superposition state can break through SNL and increase phase precision to a certain degree in theory.Here,we choose Fock state light to enter into the BS for Sagnac effect enhancement(the enhancement scheme based on coherent superposition state input will be published elsewhere).Nevertheless,the QCR and SQEC are obtained based on POVM,which is a difficult task for design in experiment.How to design a POVM or implement optimal measurement to reach QCR experimentally is still an open question.The key problem is how to effectively extract the phase information of the output light.Parity measurement technique is suggested as follows.

    4.Parity measurement for Fock state input

    In the Sagnac effect enhancement scheme with Fock state light inputas shown in Fig.3,coherent state|α〉and Fock state |N〉respectively enter into the input ports P1and P2of BS.As the BS will be used twice as input and output,we set an optical circulator under port P2for input and output isolation.

    Parity measurement technique was firstly put forward by Bollinger et al.for spectrum measurement,and then introduced into the optical interferometry.[27]As experimenters only need to measure the parity of the photon number at one of the output ports,parity measurement is easy for manipulation. For any mode a,the parity operator can be expressed as[28]

    Generally,it is difficult to calculate parity operator expectation〈Π〉directly.As the expectation〈Π〉is proportional to the value of the Wigner function of output quantum state at the origin of the phase space,it can be obtained by calculating the Wigner function of the output state.

    Fig.3.Sagnac effect enhanced scheme.

    The Wigner function of the input state ρa?ρbin Eq.(4) is the product of two Wigner functions of ρaand ρb[29]

    where Wρa(αi)and Wρb(βi)are Wigner functions of input state ρaand ρbrespectively.When ρaand ρbare coherent state and Fock state,there are

    where the Laguerre polynomials Ln(·)is written in the form of its generation function[30]

    for convenient calculation later.For the two output ports αfand βfin the interferometer,substituting the input and output relation[31]

    and Eq.(17)into Eq.(16),we can obtain the Wigner function of the output state as

    As we measure the photon number parity at the output port af,the origin of the Wigner function value of output state of port afis needed.Integrating βfof Eq.(19)and setting αf=0,we can obtain

    In Eq.(21),when θ→0,〈Π〉→(?1)nwhich corresponds to the parity operator expectation of Fock state and indicates that the output is Fock state without coherent state;when θ→π,which corresponds to parity operator expectation of coherent state and indicates that the output is coherent state without Fock state.This can be understood that the output state is the statistical mixture between Fock state and coherent state modulated by the relative phase θ.

    When cosθ=0(θ=π/2 or 3π/2),the parity operator expectation is

    The parity operator expectation with different average photon numbers of Fock state is shown in Fig.4,where the average photon number of coherent state is|α|2=2.The peak of parity operator expectation is at θ=0,at which we can reach the highest sensitivity.When Fock state injectsinto the Sagnac interferometer,even if there is only one photon,the wave crest becomes steeper,which indicates that the phase sensitivity has been improved effectively.Figures 4(b)and 4(c)respectively describe the relationships between parity operator expectation and the average photon number n of Fock state which changes from 0 to 20.It can be clearly found that the wave crest becomes steeper and steeper as n increases.Next to the wave crest,the expectation curve exists a fluctuation and then is relatively stable in a rather long phase scope(Fig.4(c)).The sensitivity of wave crest and wave trough increase as n increases, and there is more large angle range with low sensitivity.In the next section,theory analysis is given.

    Fig.4.(color online)Parity operator expectation against phase θ for different mean photon numbers of Fock state n(the mean photon number of coherent state|α|2=2).(a)The curve of parity operator expectation for different n;(b)the three-dimensional(3D)plot of parity operator expectation against phase θ as n increases;(c)the 3D plot of parity operator expectation against phase θ as n decreases.

    5.Performance analysis

    As the laguerre polynomials can be written as

    which can achieve QCR and indicate the phase with the highest sensitivity at θ=0.Although the error achieves QCR, showing that the parity measurement is a kind of optimal measurement method,we cannot break through SNL without Fock state input,as shown in Fig.5.

    Fig.5.(color online)The curve of phase error with only coherent light input.

    When n≥1,the derivative of parity operator expectation is

    If there is only Fock state input,namely|α|2=0,the parity operator expectation is〈Π〉=(?1)ncosnθ and its derivative is d〈Π〉/dθ=?(?1)nn cosn?1θ sinθ.We can obtain the phase error

    When θ→0 or θ→π,Δθ can reach QCR,as shown in Fig.6.We cannot break through the SNL only with Fock state input either.

    Fig.6.(color online)The curve of phase error with only Fock state light input.

    When|α|2>0,the phase error with both Fock state and coherent state input is

    When θ→0,the minimum error can be obtained as

    which suggests that the best sensitivity is at θ→0 and parity measurement can achieve HL as shown in Fig.7.Because the denominator of Eq.(27)will become 0 at several values of θ as the photon number n changes,some errors become large and several peaks emerge in the error curve,which means that the performance of this method is poor at some values of phase. The error curve is relatively flat near 0°,and reaches the minimum at 0°.To facilitate the analysis of the minimum error, we draw the error curve near 0°area as shown in Fig.7(b), where n=1.It can be found that the error indeed reaches HL which proves the validity of Eq.(28).The proposed scheme can reach the highest sensitivity when θ→0 directly.

    Fig.7.(color online)Phase errors of coherent state and Fock state input (the mean photon number of coherent state|α|2=2).(a)The phase error at different values of θ and mean photon number of Fock state; (b)the phase error curve near 0°area.

    The analysis above indicates that parity measurement technique is a feasible and optimal method to reach QCR and break through SNL.As a result of the Fock state input, compared with only increasing the pure coherent light photon number(power),one extra item 2n|α|2emerges in the denominator of Eq.(28),which is the key role to improve the phase accuracy under the same power,as shown in Fig.8.

    Fig.8.(color online)The phase error comparison between suggested scheme and SNL.

    Specifically,we take the fiber optic gyro(FOG)for example to discuss the performance with this technique as follows. The measurable minimum angular rate is a very important indicator.Usually,the best phase sensitivity corresponds to the measurable minimum angular rate

    where h is the Planck constant,e is electron energy,and c is the speed of light.For a FOG of the wavelength λ= 1550 nm,the length of optical fiber L=5 km,coil diameter D=0.2 m,detector responsivity PD=1 A/W,signal bandwidth Δf=0.01 Hz,the optical power P=250μW,and phase bias ?b=3π/4.We can obtain the minimum detectable angular rate ?min=4.2×10?5(°)/h with the first equation.

    When the mean photon number of coherent state and Fock state respectively are|α|2and n,the phase SNL isCombining with Eqs.(28)and(29),we have

    where ?′can reach the minimum valuewhen|α|2=n.If the optical power P=250μW,according to the formula P=hcn/λ,the average photon number is 1.9×1015approximately and n=9.5×1014.We can calculate the minimum detectable angular rate in the proposed schemewhich is enhanced 7 orders without any input power increase.

    The dynamic range of FOG is the ratio of the maximum input angular rate to the minimum angular rate.The dynamic range of the classical method can achieve π/Δ?SNL,and this proposed method can increasetimes,which shows that the dynamic range is increased with the square root of the average photon number of Fock state.

    Although it is difficult to make the power of Fock state equal to coherent state,the precision of gyro can be improved under the same power by entering the Fock state into the interferometer.When the Fock state average photon number is far less than that of coherent state,there iswhich means that the minimum detectable angular rate can be improved with a factor ofFor example,as long as the input Fock state average photon number reaches 50,the accuracy can be improved with 10 times while NRP increases little.

    6.Discussion

    What is the essential physics for phase sensitivity improvement in the interferometer?In the Sagnac linear interferometer,it is the particle entanglement of input states that provide sub-shot-noise phase uncertainty.Pezze pointed out that not all the entangled states can overcome SNL,but the one,and only one,which satisfied with the sufficient condition for entanglement judgeIf the sufficient condition is satisfied,the input states ρinare entangled and can achieve the sub-shot-noise phase uncertainty Δθmin=suggesting ρinare useful for Sagnac effect enhancement.When the input states are coherent state ρaand Fock state|N〉,we can calculate the QFI of input states ρin=ρa?|N〉〈N|and obtainindicating that the input states are in entangled states and can overcome SNL.The squeezed vacuum state and coherent superposition state mentioned above can both be in the useful entangled states with coherent state.

    In particular,when passing through the BS,the quantum states ρin=ρa?|N〉〈N|are transformed as

    where D(α)=exp(αa+?α?a)is the displacement operator. It is easy to find that|?〉Nhas strong correlations between the displaced Fock states of the two modes,[33]which is similar to the macroscopic maximally entangled state,entangled coherent state.The distinction is that the entangled coherent state is entangled between coherent state and vacuum state,as|?〉Nis statistical mixture with the entangle states between displaced Fock states.When entering a Fock state with only one photon, equation(31)can be simplified as

    which is entangled between coherent state(displaced vacuum state)and displaced Fock state.It is the one input photon that produces an entangled state with large photon numbers, which is the physical reason why 2.4 dB sensitivity gain can be achieved with only one photon injection.

    If the other input port fed with coherent state|β〉, the input quantum states|α〉|β〉will be transformed intoafter the BS,which is direct product state of two coherent states but not entangled.This is distinct from Fock state input.Obviously,coherent state is not able to increase phase sensitivity,which is consistent to the conclusion of SQEC.

    Through the analysis above,the most important reason for Sagnac effect enhanced with Fock state input is that the quantum states after BS in two modes are entangled,which can provide sub-shot-noise phase sensitivity with appropriate measurement method at the output.

    7.Conclusions

    We design a SQEC to judge whether the quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme by utilizing Fock state light and parity measurement technique to extract the output phase.The results of the theoretical analysis show that the maximum sensitivity can be reached at θ=0,and the phase precision can break through SNL and even achieve Heisenberg limit(HL). When the Fock state average photon number n is far less than that of coherent state,the minimum measurable angular rate is improved withtimes,which can deduce the shot noise and increase NRP little.We can achieve much higher accuracy with a relative small power of Fock state input.The proposed scheme is an effective way to improve the precision of gyro.

    [1]Joseph S 2014 Gen.Relativ.Gravit.46 1710

    [2]Jing J,Li Y,Zhang Z C,Wu C X and Song N F 2016 Chin.Phys.B 25 084213

    [3]Wu Q,Yu J L,Wang J,Wang W R,Jia S,Huang G B,Hei K F and Li L J 2015 Acta Phys.Sin.64 044205(in Chinese)

    [4]Liu J,Zhang T E,Zhang W,Lei L H,Xue C Y,Zhang W D and Tang J 2015 Acta Phys.Sin.64 107802(in Chinese)

    [5]Luo C,Huang J,Zhang X and Lee C 2017 Phys.Rev.A 95 023608

    [6]Gauguet A,Canuel B,Leveque T,Chaibi W and Landragin A 2009 Phys.Rev.A 80 063604

    [7]Tackmann G,Berg P,Schubert C,Abend S,Gilowski M,Ertmer W and Rasel E M 2012 New J.Phys.14 015002

    [8]Rico-Gutierrez L M,Spiller T P and Dunningham J A 2015 New J. Phys.17 043022

    [9]Campbell W C and Hamilton P 2016 arXiv:1609.00659

    [10]Schreiber K U,Klugel T,Wells J P R,Hurst R B and Gebauer A 2011 Phys.Rev.Lett.107 173904

    [11]Giovanetti V,Lloyd S and Maccone L 2011 Nat.Photon.5 222

    [12]William N P and Jonathan P D 2010 New.J.Phys.12 083014

    [13]Xiang G Y and Guo G C 2013 Chin.Phys.B 22 110601

    [14]Bertocchi G,Alibart O,Ostrowsky D B,Tanzilli S and Baldi P 2006 J. Phys.B 39 1011

    [15]Kolkiran and Agarwal G S 2007 Opt.Express 15 679

    [16]Caves C M 1981 Phys.Rev.D 23 1693

    [17]Chen K,Chen S X,Wu D W,Yang C Y and Wu H 2016 Acta Phys.Sin. 65 054203(in Chinese)

    [18]Chen K,Chen S X,Wu D W,Yang C Y,Wang X,Li X,Wu H and Liu Z W 2016 Acta Phys.Sin.65 194203(in Chinese)

    [19]Barrett B,Geiger R and Dutta I 2014 C.R.Physique 15 875

    [20]Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge:Cambridge University Press)pp.101–106

    [21]Yurke B,McCall S L and Klauder J R 1986 Phys.Rev.A 33 4033

    [22]Alex M 2006 Phys.Rev.A 73 033821

    [23]Luca P and Augusto S 2014 arXiv:1411.5164v1[quant-ph]

    [24]Luca P and Augusto S 2013 Phys.Rev.Lett.110 163604

    [25]Baune C,Gniesmer J,Sch?nbeck A,Vollmer C E,Fiurasek J and Schnabel R 2015 Opt.Express 23 16035

    [26]Jaewoo J,Kimin P,Hyunseok J,William J M,Kae N and Timothy P S 2012 Phys.Rev.A 86 043828

    [27]Gerry C C 2000 Phys.Rev.A 61 043811

    [28]Campos R A,Gerry C C and Benmoussa A 2003 Phys.Rev.A 68 023810

    [29]Hu L Y,Wei C P,Fang J,Huang J H and Liu C J 2014 Opt.Commun. 323 68

    [30]Xu X F and Fan H Y 2015 Chin.Phys.B 24 010301

    [31]Tan Q S,Liao J Q,Wang X G and Franco N 2014 Phys.Rev.A 89 053822

    [32]Luca P and Augusto S 2009 Phys.Rev.Lett.102 100401

    [33]Windhagera A,Suda M,Pacher C,Peev M and Poppe A 2011 Opt. Commun.284 1907

    19 December 2016;revised manuscript

    23 May 2017;published online 2 August 2017)

    10.1088/1674-1056/26/9/094212

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61573372 and 61603413).

    ?Corresponding author.E-mail:chenshuxin68@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    陳坤
    Microwave frequency downshift in the timevarying collision plasma
    陳坤:行走的力量
    陳坤從二次元中看世界
    100張碟片成就
    做人與處世(2016年6期)2016-04-20 06:02:26
    陳坤演繹“小鮮肉”的完美進化
    "老中醫(yī)"陳坤
    愛你(2015年16期)2015-11-15 06:05:39
    把花瓶身份再升華一下陳坤
    電影故事(2015年51期)2015-01-11 09:17:20
    那些陳坤喜歡的道理,年輕人們意見紛紛
    壹讀(2014年16期)2014-09-04 09:21:50
    陳坤:在行走中傳遞大愛
    陳坤:打開胸給你看
    海峽姐妹(2014年5期)2014-02-27 15:09:18
    免费大片18禁| 久久99精品国语久久久| 成人毛片a级毛片在线播放| 国产欧美亚洲国产| 久久狼人影院| 男男h啪啪无遮挡| 在线观看国产h片| 最近最新中文字幕免费大全7| 男女啪啪激烈高潮av片| 欧美激情国产日韩精品一区| 久久婷婷青草| 男人添女人高潮全过程视频| 国产爽快片一区二区三区| 日本av免费视频播放| 国产永久视频网站| 国产探花极品一区二区| 另类亚洲欧美激情| 久久国内精品自在自线图片| av又黄又爽大尺度在线免费看| 性高湖久久久久久久久免费观看| 插阴视频在线观看视频| 男的添女的下面高潮视频| 又爽又黄a免费视频| 黄色毛片三级朝国网站 | 国产成人精品无人区| 国产亚洲一区二区精品| 精品午夜福利在线看| 精品国产露脸久久av麻豆| 亚洲精品一二三| 人妻 亚洲 视频| 日韩精品免费视频一区二区三区 | 最黄视频免费看| 看非洲黑人一级黄片| 看非洲黑人一级黄片| 久久精品久久久久久噜噜老黄| 亚洲精品视频女| 亚洲精品亚洲一区二区| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 高清欧美精品videossex| 伦理电影免费视频| 日韩亚洲欧美综合| 国产欧美日韩精品一区二区| 永久免费av网站大全| 丰满人妻一区二区三区视频av| 男男h啪啪无遮挡| 特大巨黑吊av在线直播| 精品人妻熟女毛片av久久网站| 美女脱内裤让男人舔精品视频| 大又大粗又爽又黄少妇毛片口| 国产熟女午夜一区二区三区 | 国产毛片在线视频| 男人添女人高潮全过程视频| 国产色爽女视频免费观看| 国产淫语在线视频| 男人添女人高潮全过程视频| 美女中出高潮动态图| 精品一区二区三卡| 久久狼人影院| 老女人水多毛片| tube8黄色片| 亚洲丝袜综合中文字幕| 人妻 亚洲 视频| 精品视频人人做人人爽| 成人综合一区亚洲| 自线自在国产av| 国产乱来视频区| 99热全是精品| 国产乱来视频区| 18禁动态无遮挡网站| 久久久久久久国产电影| 纯流量卡能插随身wifi吗| 亚洲人成网站在线播| 国产精品久久久久久精品电影小说| 视频中文字幕在线观看| 性色avwww在线观看| av不卡在线播放| 国产精品久久久久久精品电影小说| 国产中年淑女户外野战色| 人妻系列 视频| 麻豆精品久久久久久蜜桃| 热re99久久精品国产66热6| 国产精品久久久久久精品古装| 欧美日韩亚洲高清精品| 少妇精品久久久久久久| 国产伦在线观看视频一区| 日本黄色日本黄色录像| 国产成人精品久久久久久| 成人毛片60女人毛片免费| 成人毛片a级毛片在线播放| freevideosex欧美| 极品人妻少妇av视频| 一本色道久久久久久精品综合| 中国三级夫妇交换| 人人澡人人妻人| 黄色毛片三级朝国网站 | h日本视频在线播放| 久久国产精品大桥未久av | 插阴视频在线观看视频| 少妇精品久久久久久久| 22中文网久久字幕| 国产日韩一区二区三区精品不卡 | 欧美丝袜亚洲另类| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 高清不卡的av网站| 涩涩av久久男人的天堂| 在线看a的网站| 99久久中文字幕三级久久日本| 午夜91福利影院| 又爽又黄a免费视频| 国产av精品麻豆| 日本vs欧美在线观看视频 | 日韩一本色道免费dvd| 色哟哟·www| 曰老女人黄片| 日韩成人伦理影院| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 亚洲美女搞黄在线观看| 纵有疾风起免费观看全集完整版| 丰满迷人的少妇在线观看| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 欧美bdsm另类| 春色校园在线视频观看| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 如日韩欧美国产精品一区二区三区 | 午夜av观看不卡| 国产亚洲5aaaaa淫片| 欧美日韩视频精品一区| 日本色播在线视频| 少妇人妻久久综合中文| 男女国产视频网站| 美女xxoo啪啪120秒动态图| 成人漫画全彩无遮挡| av国产精品久久久久影院| 日韩欧美精品免费久久| 黄色视频在线播放观看不卡| 久久精品久久久久久久性| 中文字幕人妻熟人妻熟丝袜美| 国产在线男女| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 免费不卡的大黄色大毛片视频在线观看| 视频中文字幕在线观看| 一区二区三区免费毛片| 国产在视频线精品| 日韩亚洲欧美综合| 性色av一级| 国产精品蜜桃在线观看| 日日啪夜夜爽| 免费黄频网站在线观看国产| 欧美97在线视频| 久久久久久久久久成人| 久久久国产精品麻豆| 大陆偷拍与自拍| 日本免费在线观看一区| 国产精品一区二区性色av| 国产精品一区二区性色av| 日本色播在线视频| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 国产伦精品一区二区三区四那| 免费看光身美女| av.在线天堂| 国产黄色免费在线视频| 免费人妻精品一区二区三区视频| 日本色播在线视频| 国产男女内射视频| 精品一区在线观看国产| 久久午夜福利片| 国产老妇伦熟女老妇高清| 简卡轻食公司| 成人美女网站在线观看视频| 亚洲第一av免费看| 亚洲性久久影院| 亚洲欧美成人精品一区二区| 国产白丝娇喘喷水9色精品| 亚洲真实伦在线观看| 少妇的逼好多水| 青春草国产在线视频| 九草在线视频观看| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| 极品人妻少妇av视频| 国产老妇伦熟女老妇高清| 97超碰精品成人国产| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 国产综合精华液| 如何舔出高潮| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 国产免费又黄又爽又色| 久久精品国产自在天天线| 99久久精品国产国产毛片| 国产在线男女| 亚洲综合色惰| 亚洲精品456在线播放app| 老司机影院毛片| 大片电影免费在线观看免费| 久热久热在线精品观看| 22中文网久久字幕| 性色avwww在线观看| 午夜视频国产福利| 精品久久久久久电影网| 亚洲欧美日韩另类电影网站| 最近中文字幕2019免费版| 男女边吃奶边做爰视频| av黄色大香蕉| av在线观看视频网站免费| 久久 成人 亚洲| 男女无遮挡免费网站观看| 国产午夜精品久久久久久一区二区三区| 亚洲成人手机| 亚洲,欧美,日韩| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 精品久久久噜噜| 久久99蜜桃精品久久| 人妻人人澡人人爽人人| 精品少妇黑人巨大在线播放| 欧美另类一区| 久久久a久久爽久久v久久| av在线观看视频网站免费| 亚洲国产最新在线播放| 十八禁网站网址无遮挡 | 丁香六月天网| 日韩一本色道免费dvd| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 我的老师免费观看完整版| av免费在线看不卡| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 亚洲情色 制服丝袜| 欧美日韩av久久| 欧美精品高潮呻吟av久久| 夫妻性生交免费视频一级片| 中国三级夫妇交换| 在线 av 中文字幕| 亚洲av在线观看美女高潮| 极品少妇高潮喷水抽搐| 精品久久久噜噜| 欧美高清成人免费视频www| 午夜免费男女啪啪视频观看| a级一级毛片免费在线观看| 欧美变态另类bdsm刘玥| 亚洲三级黄色毛片| 久久久久久久久久成人| 永久网站在线| 日本与韩国留学比较| 国产一区亚洲一区在线观看| 校园人妻丝袜中文字幕| 国产精品一区www在线观看| 一个人免费看片子| 五月开心婷婷网| 久久久午夜欧美精品| 五月玫瑰六月丁香| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 精品99又大又爽又粗少妇毛片| 免费观看在线日韩| 亚洲国产最新在线播放| 久久精品国产亚洲av涩爱| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 亚洲精品亚洲一区二区| 国产亚洲精品久久久com| 蜜桃在线观看..| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站| 国产av码专区亚洲av| 嫩草影院新地址| 亚洲丝袜综合中文字幕| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 日本午夜av视频| 熟女人妻精品中文字幕| 99精国产麻豆久久婷婷| 美女福利国产在线| 国产精品国产av在线观看| 日本av免费视频播放| 成人漫画全彩无遮挡| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 亚洲成色77777| 婷婷色综合大香蕉| 亚洲精品久久午夜乱码| av女优亚洲男人天堂| videos熟女内射| 亚洲经典国产精华液单| 自拍偷自拍亚洲精品老妇| 搡老乐熟女国产| 婷婷色综合www| 黄色欧美视频在线观看| 免费观看av网站的网址| 久久久久久久久大av| 卡戴珊不雅视频在线播放| 国产乱来视频区| 久久久久久久久久成人| 免费观看a级毛片全部| 精品一区二区三区视频在线| 熟女电影av网| 精品少妇内射三级| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 在现免费观看毛片| 国产伦在线观看视频一区| 看非洲黑人一级黄片| 精品少妇内射三级| 99久久精品一区二区三区| 国产极品天堂在线| 久久国产亚洲av麻豆专区| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| 亚州av有码| 简卡轻食公司| 国产成人精品福利久久| av免费在线看不卡| 色视频www国产| 女性生殖器流出的白浆| 国产精品免费大片| 秋霞在线观看毛片| 大陆偷拍与自拍| 亚洲av福利一区| 免费黄色在线免费观看| 国产白丝娇喘喷水9色精品| 久久久久视频综合| 99热这里只有是精品在线观看| 九草在线视频观看| 有码 亚洲区| 青春草国产在线视频| 22中文网久久字幕| 国产精品99久久99久久久不卡 | 国产精品偷伦视频观看了| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 午夜福利,免费看| 亚洲熟女精品中文字幕| 成人无遮挡网站| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 成人国产av品久久久| 精品视频人人做人人爽| 91aial.com中文字幕在线观看| av在线播放精品| 蜜桃久久精品国产亚洲av| 久久99一区二区三区| 国产精品一区二区在线不卡| 国产在线男女| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 黑人高潮一二区| 亚洲精品一区蜜桃| www.色视频.com| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 欧美丝袜亚洲另类| 亚洲熟女精品中文字幕| 中文字幕制服av| 国产精品福利在线免费观看| 成人二区视频| 26uuu在线亚洲综合色| 亚洲av综合色区一区| freevideosex欧美| 欧美丝袜亚洲另类| 免费观看a级毛片全部| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 伊人久久国产一区二区| 亚洲国产av新网站| 国产在线一区二区三区精| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 深夜a级毛片| 一级av片app| 亚洲熟女精品中文字幕| 国产爽快片一区二区三区| 日韩中字成人| 欧美成人午夜免费资源| 99久久中文字幕三级久久日本| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 一级爰片在线观看| 美女国产视频在线观看| 妹子高潮喷水视频| 日韩人妻高清精品专区| 中文字幕精品免费在线观看视频 | 国精品久久久久久国模美| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 国产成人免费无遮挡视频| 亚洲av成人精品一区久久| 日本午夜av视频| 男人爽女人下面视频在线观看| 国产探花极品一区二区| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 免费观看的影片在线观看| 亚洲在久久综合| 午夜激情久久久久久久| 日本黄色片子视频| 精品国产露脸久久av麻豆| 亚洲自偷自拍三级| 纯流量卡能插随身wifi吗| 欧美区成人在线视频| 狂野欧美激情性xxxx在线观看| 丰满饥渴人妻一区二区三| av有码第一页| 一级a做视频免费观看| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| 亚洲美女视频黄频| 99久国产av精品国产电影| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 午夜激情福利司机影院| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩在线观看h| av女优亚洲男人天堂| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 国产乱人偷精品视频| 日韩中字成人| 中文在线观看免费www的网站| 大码成人一级视频| 国产av一区二区精品久久| 久久ye,这里只有精品| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 亚洲天堂av无毛| 精品99又大又爽又粗少妇毛片| 女人精品久久久久毛片| 免费观看在线日韩| 嫩草影院入口| 在线看a的网站| 亚洲精品第二区| 欧美日韩视频精品一区| 精品亚洲乱码少妇综合久久| 国产亚洲91精品色在线| 中国美白少妇内射xxxbb| 色视频在线一区二区三区| 女人久久www免费人成看片| 最后的刺客免费高清国语| 成人亚洲精品一区在线观看| 嫩草影院新地址| 欧美+日韩+精品| 久久影院123| 秋霞伦理黄片| 丰满人妻一区二区三区视频av| 久久ye,这里只有精品| 在现免费观看毛片| 久久国产精品大桥未久av | 三上悠亚av全集在线观看 | 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 一区二区三区乱码不卡18| 久久久久国产网址| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 日韩av免费高清视频| 亚洲第一av免费看| 色吧在线观看| 久久久久久久久久久丰满| 少妇人妻 视频| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| 熟女人妻精品中文字幕| 欧美xxⅹ黑人| 久久综合国产亚洲精品| 99久久精品国产国产毛片| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 色网站视频免费| 精品一区在线观看国产| 国产淫语在线视频| 大片电影免费在线观看免费| 99久久精品一区二区三区| 欧美少妇被猛烈插入视频| 久久这里有精品视频免费| 多毛熟女@视频| 精品一品国产午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄| av女优亚洲男人天堂| 亚洲成人一二三区av| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 国产视频内射| 亚洲精品日韩在线中文字幕| av女优亚洲男人天堂| av.在线天堂| 一区二区三区免费毛片| 不卡视频在线观看欧美| √禁漫天堂资源中文www| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 欧美精品一区二区免费开放| 性色av一级| 亚洲av国产av综合av卡| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 久久97久久精品| 亚洲国产精品999| 成人影院久久| 亚洲人成网站在线观看播放| 色哟哟·www| 青春草视频在线免费观看| 国产一区亚洲一区在线观看| 成人美女网站在线观看视频| 亚洲av福利一区| 成年女人在线观看亚洲视频| 色哟哟·www| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 国产精品国产av在线观看| 我要看日韩黄色一级片| 成人午夜精彩视频在线观看| 多毛熟女@视频| 国产欧美日韩精品一区二区| 大片电影免费在线观看免费| 日韩欧美一区视频在线观看 | 欧美 亚洲 国产 日韩一| 国产精品.久久久| av在线播放精品| 国产在线免费精品| 大片免费播放器 马上看| 国产高清不卡午夜福利| 高清不卡的av网站| 人人妻人人澡人人爽人人夜夜| 人妻人人澡人人爽人人| 欧美三级亚洲精品| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 久久人人爽人人片av| 国产极品天堂在线| 国产69精品久久久久777片| 亚洲精品,欧美精品| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 丝袜喷水一区| 日本wwww免费看| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国产在视频线精品| 永久网站在线| 在现免费观看毛片| 性高湖久久久久久久久免费观看| 伦理电影免费视频| 亚洲国产精品999| 搡老乐熟女国产| 夜夜爽夜夜爽视频| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 日韩av免费高清视频| 国产又色又爽无遮挡免| 偷拍熟女少妇极品色| 国产成人freesex在线| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 少妇熟女欧美另类| av福利片在线| 涩涩av久久男人的天堂| 高清av免费在线| 日韩成人伦理影院| 日日摸夜夜添夜夜爱| 天堂中文最新版在线下载| 在线免费观看不下载黄p国产| 如日韩欧美国产精品一区二区三区 | 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 一个人免费看片子| 国产亚洲最大av| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 自拍偷自拍亚洲精品老妇| 美女视频免费永久观看网站|