• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?

    2017-08-30 08:25:32PeiXiao肖培PingAnDu杜平安BaoLinNie聶寶林andDanRen任丹
    Chinese Physics B 2017年9期
    關(guān)鍵詞:寶林

    Pei Xiao(肖培),Ping-An Du(杜平安),Bao-Lin Nie(聶寶林),and Dan Ren(任丹)

    Department of Mechatronics Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?

    Pei Xiao(肖培),Ping-An Du(杜平安)?,Bao-Lin Nie(聶寶林),and Dan Ren(任丹)

    Department of Mechatronics Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    In this paper,an efficient multi-conductor simplification technique is proposed to model the electromagnetic immunity on cable bundles within a braid shielding structure over a large frequency range.By grouping together the conductors based on the knowledge of Z-Smith chart,the required computation time is markedly reduced and the complexity of modeling the completely shielding cable bundles is significantly simplified with a good accuracy.After a brief description of the immunity problems in shielding structure,a six-phase procedure is detailed to generate the geometrical characteristics of the reduced cable bundles.Numerical simulation is carried out by using a commercial software CST to validate the efficiency and advantages of the proposed approach.The research addressed in this paper is considered as a simplified modeling technique for the electromagnetic immunity within a shielding structure.

    cable bundles,electromagnetic immunity,braid shielding structure,numerical simulation

    1.Introduction

    In modern industrial domains such as the automotive industry and aviation industry,reliably and efficiently generating a full numerical model of complex real systems has become a difficult task for the designers.[1,2]Numerical modeling method and simulation have been widely used in the electromagnetic compatibility(EMC)analysis.[3–5]It requires a reliable model of the target electrical structure,in particular the model of the cable harness.[6,7]In order to simplify the structural modeling and improve the analytic efficiency,this paper focuses on the reduction technique of braid shielding cable bundles.

    The electromagnetic(EM)coupling mechanism on cable harnesses in a real system has been widely studied based on the theory of multiconductor transmission line networks (MTLN).[8–13]Compared with numerical simulation in calculating EM fields,the MTLN formalism performs better accuracy and needs less computation time.Unfortunately,the MTLN model behaves inefficiently at high frequencies due to the appearance of nonquasi-TEM modes.Hence,many researchers put forward hybrid methods to handle the EM coupling situations on cable harnesses.[14,15]In addition,some researchers adopted measurement approaches to deal with their modeling.[16]However,despite the rapid improvement in computer performance,it is still impossible to perform an accurate computation on the complete model of the whole realistic cable harnesses.

    Previous work on elaborating an EMC model for the cable harness with so called“equivalent cable bundle method (ECBM)”has been reported.On the assumption that the common-mode(CM)response is more critical than the differential-mode response for the EM coupling problems, the ECBM for modeling CM currents on cable bundles at high frequency for automotive applications is proposed for the first time.[17]Then,this technique is extended to model EM emissions of complex cable bundles.[18]Recently,the ECBM has been adopted to model the crosstalk of complex cable bundles[19,20]and calculate the conducted rear-door disturbances at a vehicle level with a huge number of wires.[21,22]

    In this paper,an efficient reduced technique is proposed to handle the modeling of the EM immunity prediction of complex cable bundles within a braid shielding structure.For this new kind of application,the main assumption is the same as that addressed in Ref.[17].The rest of this paper is organized as follows.Section 2 presents the equivalent process of the simplification technique in detail,which contains conductor grouping and equivalent geometrical characteristics.In Section 3,we validate the proposed method with a model of braid shielding 14-conductors by using CST Cable Studio and the FSV technique is used to analyze the comparison between the results from the complete model and those from the reduced model.Finally,some comments on the proposed simplification technique are given in Section 4.

    2.Theory

    2.1.Immunity problems on shielding cable bundles

    Figure 1 illustrates a model of n-conductor bounded in a braid shielding structure and irradiated by an incident EM field.The radiation field excites the induced current along each conductor.For the immunity problems,the huge com-plexity of the whole cable bundles seems to be unreasonable to model when considering the required computer resources. Though previous“ECBM”puts forward a solution to the immunity case that all the equivalent unshielded conductors are located above the infinite ideal conducting plane,it cannot be directly used to simplify the modeling of the coupling prediction of the conductors within the shielding screen.Thus, this paper focuses on a multi conductor reduction technique for modeling immunity problem on shielding cable bundles.The presented technique overcomes the limit to the MTL formalism at high frequency by using three-dimensional(3D)computation codes.

    The generation of the equivalent cross-section geometrical characteristic parameters in the braid shielding structure is quite different from that in the half-free space.As the analytical expressions of self and mutual inductance of the braid shielding mul-ticonductors are difficult to obtain,an approximate model of mul-ticonductors within an ideal conducting cylindrical shield is adopted to compute the electrical parameters.In this paper,we define a central distance d and central angle θ to determine the relative position parameters of the reduced bundles.It should be noted that the shield transfer impedance associated with inductance is not discussed in the simplification technique because the approximate method is used in computing the inductance of braid shielding mul-ticonductors.We do not need to analyze the coupling mechanism by using the shield transfer impedance,because it is considered in the CST simulation.

    The purpose of the approach is to lower the computation time and simplify the modeling process by reducing the mul-ticonductor cable bundles model into four groups shown in Fig.2.For the immunity problems,the provided modeling technique presents a modified six-phase procedure to generate the electrical and geometrical characteristic parameters of the reduced cable bundles,which contains conductor grouping,cable bundle matrices reduction,cross-section geometry modeling and equivalent loads determination.The creation of groups of conductors is based on the knowledge of Z-Smith chart,which provides a convenient way to describe the relationship between load impedance and reflection coefficient. The whole problem is calculated over a large frequency range. Based on the assumption in Ref.[17],the proposed simplification technique provides a way of modeling the CM current induced at the extremity of inner conductors.

    Fig.1.(color online)Illustration of the electromagnetic immunity on braid shielding mul-ticonductor cable bundles model.

    Fig.2.(color online)Cross-section geometries of the complete and reduced cable bundle.

    2.2.Presentation of the procedure

    a)Step 1:Creation of groups of conductors based on ZS mith chart

    In the first step,all the conductors of the complete cable bundle are classified as four groups with respect to the location of normalized terminal loadin Z-Smith chart,whererepresents the terminal impedance and ZCthe equivalent CM characteristic impedance of all conductors,i corresponds to the terminal number(“1”represents the near end terminal and“2”the far end terminal)and j the conductor number as illustrated in Table 1.It should be noted that the management of the cable harness grouping is just to simplify the coupling CM current calculation and the classification method will not affect the overall performance.

    Table 1.Conductor classification table.

    Figure 3 demonstrates the classification of groups of 9-conductor model.The dots in the Z-Smith chart represent near end normalized loads of each conductor,while the asterisks represent far end normalized loads.All the dots and asterisks are included in four sections denoted by I1,I2,II1,and II2.From the characteristic of Z-Smith chart,the terminal load has similar reflective properties in an adjacent area.Here,letwhereare the arbitrary terminal impedances connected to the near ends.Then we can obtain the following inequality:

    wherefis described as the distance between arbitraryandThe criterion of cable bundle grouping can be established by f.Then,we define I1as the area of f<1 with a set of a maximum number points on the graph which satisfy the condition,which means the absolute distance value of the two arbitrary normalized near end terminal loads is less than 1.Then I2the rest normalized near end loads.The II1and II2can be defined in the same manner,which means f<1 in II1and the rest in II2.Thus the 9 conductors can be sorted into 4 groups.

    b)Step 2:Reduced cable bundle matrices

    The second step aims to determine the reduced cable bundle inductance[Leq]and capacitance matrix[Ceq].According to the general MTLN theory,the equations of N-conductor cable bundle can be written as

    On the assumption that the same group CM current Igciequals the sum of the currents induced on each conductor of the group and all the conductors in groupihave the same group voltage Vgci,the reduced cable bundle containing four conductors is established and the equivalent MTLN equations can be modified as

    From Eqs.(1)–(4),the reduced inductance matrix[Leq] and capacitance matrix[Ceq]can be obtained as follows:[23]

    Fig.3.(color online)Criterion of cable bundle grouping based on the Z-Smith chart.

    where group 1 contains conductor 1?α with the total number N1,group 2 conductor(α+1)?β with the total number N2, group 3 conductor(β+1)?ξ with the total number N3,group 4 conductor(ξ+1)?N with the total number N4.

    c)Step 3:Reduced cable bundle cross-section geometry

    The third step is to generate the cross-section of the reduced cable bundle,which consists of six phases.As the inductance parameters of the shielding multiconductor are associated with the structural factors,such as the distance between the analytical conductor and screen,the relative distance among conductors,the calculation of the cross-sectional geometry parameters of equivalent model are obtained thanks to study made in Ref.[24]and the knowledge of the[Leq]and [Ceq]matrices.

    1)Phase 1:Estimate the central distance dibetween each equivalent conductor and the central axis of the braid shielding structure.Distance diof each equivalent conductor corresponds to the average of the distance of all the conductors of the group.

    2)Phase 2:Estimate the radius riof the braid shielding structure.The analytical formula for self-inductance liiof a wire in an ideal perfectly conducting shield is equal toThus,the radius riof each equivalent conductor can be approximated by

    3)Phase 3:The analytical formula of mutual inductance lijbetween two conductors in an ideal perfectly conducting shield can be written as

    Thus,the central angle between two conductors can be approximated by

    4)Phase 4:Optimize the reduced cross-section geometrical parameter di,ri,and θijbased on the dichotomic optimization and exact electrostatic calculations.

    5)Phase 5:Determine the thickness of the dielectric coating surrounding each equivalent conductor while avoiding dielectric coating overlapping.

    6)Phase 6:Calculate and optimize the relative permittivity εrof each wire dielectric coating,which is in accordance with the[Ceq]matrix using an electrostatic calculation.

    Figure 4 shows the corresponding computational process of the proposed simplification technique used to build the cross-section geometry.Computational process for modeling the cross-section geometry of a reduced cable bundle in braid shielding structure.

    Fig.4.Computational process for modeling the cross-section geometry of a reduced cable bundle in braid shielding structure.(a)–(f)Phases 1–6.

    d)Step 4:Reduced cable bundle equivalent terminal loads

    The fourth and the last step consists in computing the terminal loads of the reduced model connected to each equivalent conductor end.Here,the equivalent CM loads are defined as the loads that connect conductor ends to the shield screen. The terminal load connected to an equivalent conductor end is equal to the loads at the same end of all the conductors of the group connected in parallel.

    It should be noted that the previous four-step procedure is used for a simple point-to-point connected shielding cable bundle.Nevertheless,due to the calculation methods of the self and mutual inductance of shielding multiconductor,there are two important restrictions on their applicability.These are that the wires must be widely separated and the dielectric medium surrounding the wires must be homogeneous. The charge distributions around closely spaced wires will be nonuniform around their peripheries but will be approximately uniform for ratios of wire separation to wire-radius 4 and higher.

    3.Validations of reduction technique by numerical models

    In this section,a model of braid shielding 14-conductor is constructed to validate the proposed reduced technique with a commercial tool CST.Please note that in the following simulations the number of the same group conductors is chosen arbitrarily in order to demonstrate the universality of the presented approach to immunity prediction problems.

    3.1.Complete and reduced braid shielding cable bundle description

    As illustrated in Fig.2,a 14-conductor point-to-point connected cable bundle,1-meter long,located in a copper braid shielding structure with a radius of 12 mm and a thickness of 0.5 mm is modeled.Each conductor has a radius of 0.5 mm and is surrounded by dielectric coating with a thickness of 0.2 mm and dielectric constant of εr=2.5 andμr=1. The conductors with a serial number“2,3,4,5,6”are evenly distributed on the circle with a radius of 2 mm,while the conductors with a serial number“6,7,8,9,10,11,12,13,14”on the circle with a radius of 4 mm.The central coordinate of each conductor is presented in Table 2.By using modal analysis,[19]the analytical 14-conductor cable bundle characteristic impedance ZCequals 244.4 ?.The terminal loads connected to the ends of each conductor are described in Table 3. According to the classification method proposed in the first equivalent step,the 14-conductor can be sorted into the following four groups:

    1)group 1:conductors 1,2,12;

    2)group 2:conductors 3,6,14;

    3)group 3:conductors 4,5,7,8;

    4)group 4:conductors 9,10,11,13.

    The p.u.1.inductance matrix[L]and capacitance matrix [C]of the complete model in Fig.5 are

    Table 2.Coordinates of each conductor of the 14-conductor shielding cable bundle(unit:mm).

    Table 3.Terminal loads of the 14-conductor shielding cable bundle.

    Hereafter,inserting Eqs.(11)and(12)into Eqs.(6)and(7),the reduced p.u.1.inductance matrix[Leq]and capacitance matrix [Ceq]can be written as follows:

    Fig.5.(a)Cross-sectional geometry of the 14-conductor complete shielding cable bundle model and(b)the corresponding 4-equivalent conductor reduced shielding cable bundle model.

    After applying the six-phase procedure described in the third step in Section 2,the cross-section geometry of 4-equivalent-conductor model is obtained and illustrated in Fig.5.The equivalent CM terminal loads are calculated and the results are listed in Table 4.In addition,the relevant central distance,radius and central coordinate are listed in Table 5.

    Cross-sectional geometry of the 14-conductor complete shielding cable bundle model and the corresponding 4-equivalent-conductor reduced shielding cable bundle model.

    Table 4.Terminal loads of each conductor of the reduced shielding bundle.

    Table 5.Central coordinate of each conductor of the reduced shielding cable bundle(unit:mm).

    3.2.Comparing results

    The induced CM current at the near and far ends of each cable in frequency domain are calculated by using CST Cable Studio.Based on the co-simulation technique,the adopted numerical approach uses the TLM technique to analyze the electric field around the conductors and then use AC result solver to compute the coupling to terminal loads.These computations correspond to the case of a plane wave illumination with a 1 V/m magnitude,the propagation direction 45°with respect to the reference conducting ground plane and the electric field direction parallel to the conductor.Figures 6–9 illustrate the comparison between the CM currents obtained at the ends of the complete cable bundle and the reduced cable bundle.

    Using the feature selective validation(FSV)technique, it provides a way to validate computational electro magnetics(CEM)and predict the assessment of EMC data.[25,26]The FSV technique is used to evaluate the results between the complete model and the simplified model.The FSV technique shows a measure of the“quality”of the correlation between the two sets of data according to specific criteria.Among those measure indicators,we mainly focus on the total amplitude difference measure(ADMtot),the total feature difference measure(FDMtot),and the total global difference measure(GDMtot).These are available as numerical values and can be converted into a natural language descriptor on a sixlevel scale:excellent(0–0.1),very good(0.1–0.2),good(0.2–0.4),fair(0.4–0.8),poor(0.8–1.6),and very poor(>1.6).

    The FSV evaluation results of Figs.6–9 are listed in Table 6.From the visual evaluation,it is obviously found that the agreement between the reduced and complete model results is still satisfactory.Thus,it is demonstrated that the proposed simplification technique can be successfully used to model the CM currents on braid shielding multiconductor cable bundles.

    Fig.6.(color online)Comparison of the CM current in frequency domain on cable 1 between the complete(conductors 1,2,12)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.7.(color online)Comparison of the CM current in frequency domain on cable 2 between the complete(conductors 3,6,14)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.8.(color online)Comparison of the CM current in frequency domain on cable 3 between the complete(conductor4,5,7,8)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.9.(color online)Comparison of the CM current in frequency domain on cable 4 between the complete(conductor 9,10,11,13)and reduced cable bundle model:(a)near end;(b)far end.

    Table 6.FSV evaluation of results in Figs.6–9.

    Several reasons are identified to explain the degradation of the agreement at some frequency points.In particular,we suspect the modeling of the cross-section geometry,which is determined by an approximated method.As the terminal loads involve inductance and capacitance,the impedance value is associated with frequency.In this paper,we use the mean value over frequency(0–3 GHz)of the terminal loads of the complete model to represent the equivalent loads.

    3.3.Comparison of analysis time

    Table 7 shows the computation times for both types of cable bundle models,calculated by CST Cable Studio.The CST simulation configuration is set to satisfy a convergence criterion and all of the computations are completed by a desktop computer with Intel(R)Xeon(R)CPUE3-1231 v3@3.40 GHz and 32 G RAM under Windows 7.From the table,it is obviously found that the reduced model behaves better in efficiency.Furthermore,it greatly simplifies the modeling process at the expense of certain calculation accuracy.

    Table 7.Analysis time of the simplified and complete model.

    4.Conclusions

    In this paper,we propose a simplification technique to model the EM immunity problem on braid shielding multi-conductor cable bundles.In order to conveniently describe the relationship between load impedance and reflection coefficient,a new method of conductors grouping based on the knowledge of Z-Smith chart is presented.Then,a modified six-phase equivalent process is detailed.For the generation of the equivalent cross-section geometrical characteristic parameters,a central distance d and central angle θ are defined and calculated by an approximate method to determine the relative position parameters of the reduced bundle.After that,a coated 14-conductor model is proposed to validate the addressed approach by using the CST.

    On the assumption that the CM current response is more critical than the differential-mode response for the EM coupling problems,our technique mainly focuses on the CM currents induced at the terminals of cable bundle.The purpose of the approach is to lower the computation time and simplify the modeling process.The simulation results confirm the possibility to model braid shielding cable bundle.From the analytical process,it can be expected that the bigger.

    [1]Egot-Lemaire S,Klingler M,Lafon F,Koné L and Baranowski S 2012 IEEE Trans.Electromag.Compat.54 1222

    [2]Ren D,Du P A,Nie B N,Cao Z and Liu W K 2014 Acta Phys.Sin.63 120701(in Chinese)

    [3]Jiao C Q and Li Y Y 2015 Chin.Phys.B 24 104101

    [4]Luo J W,Du P A,Ren D and Nie B L 2015 Acta Phys.Sin.64 010701 (in Chinese)

    [5]Cao Z,Du P A,Nie B L,Ren D and Zhang Q D 2014 Acta Phys.Sin. 63 124102(in Chinese)

    [6]Arianos S,Francavilla M A,Righero M and Vipiana 2014 IEEE Trans. Electromag.Compat.56 844

    [7]Ridel M and Parmantier J P 2014 International Symposium on Electromagnetic Compatibility,May 12–16,2014,Tokyo,Japan,p.21

    [8]Xie H Y,Li Y,Qiao H L and Wang J G 2015 Chin.Phys.B 24 060501

    [9]Jobava R G,Gheonjian A L,Hippeli J and Chiqovani G 2014 IEEE Trans.Electromag.Compat.56 1420

    [10]Baum C E,Liu T K and Tesche F M 1978 Interaction Note 350 467547

    [11]Wu Z J,Wang L F and Liao C L 2009 Acta Phys.Sin.58 6146(in Chinese)

    [12]Wan J R,Liu Y P and Zhou H L 2010 Acta Phys.Sin.59 2948(in Chinese)

    [13]Sun Y X,Zhuo Q K,Jiang Q H and Li Q 2015 Acta Phys.Sin.64 44102 (in Chinese)

    [14]Ferrieres X,Parmantier J P,Bertuol S and Ruddle A R 2004 IEEE Trans.Electromag.Compat.46 624

    [15]Bautista M A E,Francavilla M A,Vipiana F and Vecchi G 2014 IEEE Trans.Antennas Propag.62 1523

    [16]Li G,Hess G,Hoeckele R and Davidson 2015 IEEE Trans.Electromag. Compat.57 827

    [17]Andrieu G,Koné L,Bocquet F and Démoulin B 2008 IEEE Trans. Electromag.Compat.50 175

    [18]Andrieu G,Reineix A,Bunlon X and Parmantier J P 2009 IEEE Trans. Electromag.Compat.51 108

    [19]Li Z,Shao Z J,Ding J and Niu Z Y 2011 IEEE Trans.Electromag. Compat.53 1040

    [20]Li Z,Liu L L,Yan J and Xu A W 2013 IEEE Trans.Electromag.Compat.55 975

    [21]Belkhelfa S,Lefouili M and Drissi K E K 2015 IEEE Trans.Magn.51 1

    [22]Ridel M and Parmantier J P 2012 Proceedings ESA Workshop on Aerospace EMC,May 21–23,2012,Venice,Italy,p.1

    [23]Zheng Y L 2011 Analysis of Automotive Wiring Harness Equivalent Modeland Its Application in Electromagnetic Compatibility Simulation (Ph.D.Dissertation)(Chongqing:Chongqing University)(in Chinese)

    [24]Paul C R 2008 Analysis of Multiconductor Transmission Lines(New Jersey:John Wileyamp;Sons)p.196

    [25]Duffy A P,Martin A J M,Orlandi A and Antonini G 2006 IEEE Trans. Electromag.Compat.48 449

    [26]Orlandi A,Duffy A P,Archambeault B and Antonini G 2006 IEEE Trans.Electromag.Compat.48 460

    17 February 2017;revised manuscript

    31 March 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/094102

    ?Project supported by the National Natural Science Foundation of China(Grant No.51675086)and the National Defense Pre-Research Foundation of China (Grant No.6140758010116DZ02002).

    ?Corresponding author.E-mail:dupingan@uestc.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    寶林
    姜寶林作品
    Rolling velocity and relative motion of particle detector in local granular flow
    小學(xué)語(yǔ)文低年級(jí)繪本閱讀教學(xué)策略探析
    《力量》
    孫寶林履新約翰迪爾中國(guó)區(qū)總裁
    “養(yǎng)路鐵人”金寶林
    北方人(2017年10期)2017-07-03 14:07:24
    冰城白樺樹(shù)
    都市(2016年9期)2016-11-22 03:18:49
    老車(chē)夫
    12 Liver and Biliary System
    觀摩·啟示·反思——從基層合唱排練看閻寶林教授教學(xué)體系的嚴(yán)謹(jǐn)與辯證
    永久网站在线| 不卡一级毛片| 日日摸夜夜添夜夜添小说| 午夜福利成人在线免费观看| 午夜激情欧美在线| 别揉我奶头~嗯~啊~动态视频| 老鸭窝网址在线观看| 91久久精品国产一区二区成人| 乱人视频在线观看| 俄罗斯特黄特色一大片| 男女下面进入的视频免费午夜| 亚洲成人免费电影在线观看| netflix在线观看网站| 97超级碰碰碰精品色视频在线观看| 69人妻影院| 久久中文看片网| 久久99热这里只有精品18| 草草在线视频免费看| 97人妻精品一区二区三区麻豆| 久久香蕉精品热| 亚洲中文字幕日韩| 永久网站在线| 一区二区三区高清视频在线| 久久精品91蜜桃| 国产视频一区二区在线看| 亚洲中文日韩欧美视频| 色综合婷婷激情| 好看av亚洲va欧美ⅴa在| 欧美+日韩+精品| 国产亚洲精品av在线| 欧美+日韩+精品| 成人高潮视频无遮挡免费网站| 日韩精品中文字幕看吧| 欧美绝顶高潮抽搐喷水| 99久久精品一区二区三区| 美女被艹到高潮喷水动态| 91在线观看av| 国产伦在线观看视频一区| 天天一区二区日本电影三级| 日韩国内少妇激情av| 成人精品一区二区免费| 国产精品亚洲美女久久久| 国产精品国产高清国产av| 久久国产精品影院| 99视频精品全部免费 在线| 小说图片视频综合网站| 成人精品一区二区免费| 色5月婷婷丁香| 国产精品1区2区在线观看.| 女同久久另类99精品国产91| 亚洲人成网站在线播放欧美日韩| 动漫黄色视频在线观看| 国产高潮美女av| 男人舔奶头视频| 嫩草影视91久久| 村上凉子中文字幕在线| 精华霜和精华液先用哪个| 国产不卡一卡二| 3wmmmm亚洲av在线观看| 国产不卡一卡二| 久久婷婷人人爽人人干人人爱| 搡女人真爽免费视频火全软件 | 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女| 亚洲电影在线观看av| 熟女电影av网| 1000部很黄的大片| 亚洲真实伦在线观看| 少妇人妻一区二区三区视频| 国产主播在线观看一区二区| 色吧在线观看| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 深爱激情五月婷婷| av视频在线观看入口| 午夜老司机福利剧场| 国产中年淑女户外野战色| 在线看三级毛片| 国内久久婷婷六月综合欲色啪| 国产大屁股一区二区在线视频| 淫妇啪啪啪对白视频| 国产激情偷乱视频一区二区| 99久久99久久久精品蜜桃| 国产精品99久久久久久久久| h日本视频在线播放| 全区人妻精品视频| 日韩免费av在线播放| 村上凉子中文字幕在线| 日韩欧美一区二区三区在线观看| 国产欧美日韩精品亚洲av| 欧美性猛交╳xxx乱大交人| 亚洲aⅴ乱码一区二区在线播放| 男插女下体视频免费在线播放| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 天美传媒精品一区二区| 亚洲天堂国产精品一区在线| 一个人免费在线观看的高清视频| 国产精品久久久久久久久免 | 天堂影院成人在线观看| 桃色一区二区三区在线观看| 亚洲人成网站在线播| 真实男女啪啪啪动态图| 国产成人a区在线观看| 欧洲精品卡2卡3卡4卡5卡区| av在线老鸭窝| 内地一区二区视频在线| 尤物成人国产欧美一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 天堂网av新在线| 国产av麻豆久久久久久久| 亚洲国产日韩欧美精品在线观看| 级片在线观看| 校园春色视频在线观看| 国产美女午夜福利| 69人妻影院| 国产精品自产拍在线观看55亚洲| 国产极品精品免费视频能看的| 亚洲成人久久爱视频| 日本免费a在线| 嫩草影院新地址| 99久久无色码亚洲精品果冻| 久久久久久久午夜电影| 99国产极品粉嫩在线观看| 欧美日韩黄片免| 精品人妻1区二区| 亚洲精品在线观看二区| 国产不卡一卡二| 中文字幕人成人乱码亚洲影| 最好的美女福利视频网| 国产黄片美女视频| 在线免费观看的www视频| 午夜免费激情av| 哪里可以看免费的av片| 久久欧美精品欧美久久欧美| 特级一级黄色大片| av福利片在线观看| 91字幕亚洲| 好男人电影高清在线观看| 日韩欧美 国产精品| 一级黄色大片毛片| 99久久久亚洲精品蜜臀av| 99久久九九国产精品国产免费| 精品久久久久久久人妻蜜臀av| 亚洲中文日韩欧美视频| 久久亚洲真实| 可以在线观看毛片的网站| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 久久久国产成人免费| 国产欧美日韩一区二区精品| 99在线视频只有这里精品首页| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 国产人妻一区二区三区在| 久久亚洲真实| 一个人免费在线观看电影| 亚洲激情在线av| 国产野战对白在线观看| 久久久精品大字幕| 亚洲av一区综合| 国产一区二区激情短视频| www.999成人在线观看| 三级国产精品欧美在线观看| 欧美潮喷喷水| 91九色精品人成在线观看| 波多野结衣巨乳人妻| 91在线观看av| 亚洲在线自拍视频| 一卡2卡三卡四卡精品乱码亚洲| 级片在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色综合站精品国产| 精品久久久久久久久av| 国产亚洲av嫩草精品影院| 欧美中文日本在线观看视频| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添小说| 久久国产精品影院| 亚洲国产精品999在线| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 真人一进一出gif抽搐免费| 国产单亲对白刺激| 免费一级毛片在线播放高清视频| 国产亚洲精品久久久久久毛片| 亚洲精品成人久久久久久| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 九色国产91popny在线| 天天一区二区日本电影三级| 日韩欧美国产一区二区入口| 午夜福利欧美成人| 俄罗斯特黄特色一大片| 亚洲精品粉嫩美女一区| 成人国产一区最新在线观看| www.色视频.com| 搡老妇女老女人老熟妇| 少妇人妻精品综合一区二区 | 搡老妇女老女人老熟妇| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看| 久久人人精品亚洲av| 国产黄a三级三级三级人| 国产精华一区二区三区| 久久精品国产亚洲av天美| 亚洲无线观看免费| 久久精品91蜜桃| 色吧在线观看| 男女之事视频高清在线观看| 国产乱人视频| 琪琪午夜伦伦电影理论片6080| 一级黄片播放器| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 成年女人永久免费观看视频| 99久久精品国产亚洲精品| 99久久精品一区二区三区| 久久精品国产亚洲av天美| 欧美黄色淫秽网站| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| 午夜影院日韩av| 99在线人妻在线中文字幕| 毛片女人毛片| 亚洲天堂国产精品一区在线| 欧美激情久久久久久爽电影| 日韩欧美国产一区二区入口| 亚洲18禁久久av| 久久亚洲真实| 国产v大片淫在线免费观看| 久久久精品大字幕| 色哟哟哟哟哟哟| 国产男靠女视频免费网站| 在线播放无遮挡| 好看av亚洲va欧美ⅴa在| 国产精品影院久久| 亚洲激情在线av| 免费观看的影片在线观看| 免费在线观看日本一区| 男人舔奶头视频| 亚洲av熟女| 国产精品永久免费网站| 免费无遮挡裸体视频| 深夜a级毛片| 长腿黑丝高跟| 亚洲黑人精品在线| 亚洲电影在线观看av| 此物有八面人人有两片| 黄片小视频在线播放| www.www免费av| 内地一区二区视频在线| 人妻制服诱惑在线中文字幕| 少妇被粗大猛烈的视频| 亚洲熟妇熟女久久| 色综合亚洲欧美另类图片| 毛片一级片免费看久久久久 | 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 国产精品野战在线观看| 国产免费一级a男人的天堂| 国产真实伦视频高清在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 午夜日韩欧美国产| 欧美又色又爽又黄视频| 精品乱码久久久久久99久播| 亚洲精品久久国产高清桃花| 亚洲国产精品久久男人天堂| 久久99热6这里只有精品| 亚洲五月婷婷丁香| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类 | 欧美中文日本在线观看视频| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 每晚都被弄得嗷嗷叫到高潮| 露出奶头的视频| 国产成人欧美在线观看| 成人国产综合亚洲| 久久热精品热| 亚洲无线在线观看| 狂野欧美白嫩少妇大欣赏| 脱女人内裤的视频| 日韩免费av在线播放| 免费电影在线观看免费观看| 午夜老司机福利剧场| 性欧美人与动物交配| 免费人成在线观看视频色| 波多野结衣高清无吗| 97超视频在线观看视频| 天天躁日日操中文字幕| 97超级碰碰碰精品色视频在线观看| 久久久精品大字幕| 黄色一级大片看看| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| av女优亚洲男人天堂| 国产精品野战在线观看| 亚洲av成人不卡在线观看播放网| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 免费在线观看影片大全网站| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 美女被艹到高潮喷水动态| 国产熟女xx| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 人妻制服诱惑在线中文字幕| 在线a可以看的网站| 午夜福利欧美成人| 欧美成人一区二区免费高清观看| 亚洲欧美日韩高清在线视频| 午夜两性在线视频| 宅男免费午夜| 国产美女午夜福利| 91在线观看av| 亚洲成人精品中文字幕电影| 午夜福利免费观看在线| 真人一进一出gif抽搐免费| 最后的刺客免费高清国语| 国产国拍精品亚洲av在线观看| 久久久久九九精品影院| 久久久久久久久中文| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 蜜桃亚洲精品一区二区三区| 国产免费男女视频| 精品久久久久久久久亚洲 | 乱人视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 黄色配什么色好看| www.色视频.com| 午夜精品在线福利| 免费看日本二区| 最后的刺客免费高清国语| 亚洲男人的天堂狠狠| 欧美日韩黄片免| a级毛片a级免费在线| 久久草成人影院| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 高清毛片免费观看视频网站| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| 最后的刺客免费高清国语| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 男女那种视频在线观看| 日韩免费av在线播放| 久久久精品欧美日韩精品| 老司机午夜十八禁免费视频| 赤兔流量卡办理| 男女下面进入的视频免费午夜| 国产精品嫩草影院av在线观看 | 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 中文字幕av在线有码专区| 他把我摸到了高潮在线观看| 简卡轻食公司| 校园春色视频在线观看| 中文字幕久久专区| 搡老岳熟女国产| 欧美成人a在线观看| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| av天堂中文字幕网| 国产不卡一卡二| 国产人妻一区二区三区在| 婷婷亚洲欧美| 国产精品一区二区三区四区久久| 日韩亚洲欧美综合| 亚洲av二区三区四区| 69人妻影院| 国产亚洲精品av在线| 精品午夜福利在线看| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 亚洲欧美日韩高清专用| 伊人久久精品亚洲午夜| 亚洲av美国av| 国产视频内射| 免费av不卡在线播放| a级毛片a级免费在线| 极品教师在线视频| 此物有八面人人有两片| 国产亚洲精品久久久com| 亚洲国产精品合色在线| 欧美性猛交╳xxx乱大交人| 啦啦啦韩国在线观看视频| 少妇被粗大猛烈的视频| 非洲黑人性xxxx精品又粗又长| 麻豆成人av在线观看| 免费大片18禁| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 中文字幕免费在线视频6| 亚洲国产精品sss在线观看| 亚洲精品久久国产高清桃花| 啦啦啦韩国在线观看视频| 午夜福利18| 久久九九热精品免费| 国产探花极品一区二区| 亚洲美女视频黄频| 色播亚洲综合网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲第一电影网av| 欧美中文日本在线观看视频| 男女那种视频在线观看| 国产三级在线视频| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 国产中年淑女户外野战色| 久久精品91蜜桃| 亚洲黑人精品在线| 在线观看舔阴道视频| 精品久久国产蜜桃| 天堂网av新在线| 国产精品,欧美在线| 欧美3d第一页| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 亚洲最大成人av| 99精品在免费线老司机午夜| 高清日韩中文字幕在线| 内地一区二区视频在线| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 国产精品精品国产色婷婷| 99热精品在线国产| 免费电影在线观看免费观看| www.熟女人妻精品国产| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 在线观看av片永久免费下载| 最近在线观看免费完整版| 伦理电影大哥的女人| 一个人免费在线观看电影| 国产成人免费无遮挡视频| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 国产亚洲av嫩草精品影院| 国产中年淑女户外野战色| 久久久久久久久久人人人人人人| 在线观看国产h片| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 毛片女人毛片| 亚洲最大成人中文| 国产亚洲午夜精品一区二区久久 | 成人毛片a级毛片在线播放| 好男人视频免费观看在线| 天天一区二区日本电影三级| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 简卡轻食公司| 国产熟女欧美一区二区| 69av精品久久久久久| 特级一级黄色大片| 久久久久国产网址| 色哟哟·www| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 久久久久精品久久久久真实原创| 国产精品一二三区在线看| 男人舔奶头视频| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三 | 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 国产成人freesex在线| av在线天堂中文字幕| 日韩电影二区| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 国内精品美女久久久久久| 性插视频无遮挡在线免费观看| 国产毛片在线视频| 成人毛片a级毛片在线播放| 亚洲,欧美,日韩| 免费黄色在线免费观看| 少妇熟女欧美另类| 亚洲欧美成人精品一区二区| 亚洲精品日韩在线中文字幕| 亚洲国产精品专区欧美| 国产成人免费无遮挡视频| 熟妇人妻不卡中文字幕| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| 男女边摸边吃奶| 久久97久久精品| 成人午夜精彩视频在线观看| 亚洲综合色惰| 狠狠精品人妻久久久久久综合| 亚洲精品久久久久久婷婷小说| 欧美xxxx黑人xx丫x性爽| 久久亚洲国产成人精品v| 有码 亚洲区| 在线观看一区二区三区激情| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 91狼人影院| 中文精品一卡2卡3卡4更新| 别揉我奶头 嗯啊视频| 精品久久久久久久久亚洲| 久久久久性生活片| 亚洲欧美中文字幕日韩二区| 老司机影院毛片| 亚洲av电影在线观看一区二区三区 | 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 免费看a级黄色片| 乱系列少妇在线播放| 成年女人看的毛片在线观看| 嫩草影院入口| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 亚洲在线观看片| 精品国产三级普通话版| 99热这里只有是精品在线观看| 身体一侧抽搐| 日韩欧美精品免费久久| 国产毛片在线视频| 激情五月婷婷亚洲| 乱码一卡2卡4卡精品| 美女高潮的动态| 看免费成人av毛片| 一级毛片电影观看| 联通29元200g的流量卡| 日本wwww免费看| 丝袜美腿在线中文| 精品视频人人做人人爽| 精品少妇黑人巨大在线播放| 成人亚洲精品一区在线观看 | 久久精品国产a三级三级三级| av黄色大香蕉| 午夜福利高清视频| 国产黄片视频在线免费观看| 秋霞在线观看毛片| 亚洲精品中文字幕在线视频 | 黄片wwwwww| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 免费大片18禁| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | videos熟女内射| av在线观看视频网站免费| 少妇 在线观看| 中文字幕av成人在线电影| 男人爽女人下面视频在线观看| 亚洲精品aⅴ在线观看| 最后的刺客免费高清国语| 特级一级黄色大片| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美 | 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 日本黄色片子视频| 久久久色成人| 色5月婷婷丁香| 国产精品三级大全| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 插阴视频在线观看视频| 韩国高清视频一区二区三区| 夜夜看夜夜爽夜夜摸| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女国产视频在线观看| 中文字幕制服av| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 精品久久久久久久久av| 亚洲婷婷狠狠爱综合网| 免费看av在线观看网站| kizo精华| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久 | av网站免费在线观看视频| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看| 国产精品精品国产色婷婷| 亚洲丝袜综合中文字幕| 少妇人妻久久综合中文| 午夜老司机福利剧场| .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 婷婷色综合大香蕉| 在线 av 中文字幕| 国产黄色免费在线视频| 一级av片app|