• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and magneto transport properties of Bi2Se3 nanowires?

    2017-08-30 08:26:08KangZhang張亢HaiyangPan潘海洋ZhongxiaWei魏仲夏MinhaoZhang張敏昊FengqiSong宋風麒XuefengWang王學鋒andRongZhang張榮
    Chinese Physics B 2017年9期
    關鍵詞:仲夏海洋

    Kang Zhang(張亢),Haiyang Pan(潘海洋),Zhongxia Wei(魏仲夏),Minhao Zhang(張敏昊), Fengqi Song(宋風麒),Xuefeng Wang(王學鋒),?,and Rong Zhang(張榮)

    1 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Physics,Nanjing University,Nanjing 210093,China

    Synthesis and magneto transport properties of Bi2Se3nanowires?

    Kang Zhang(張亢)1,Haiyang Pan(潘海洋)2,Zhongxia Wei(魏仲夏)2,Minhao Zhang(張敏昊)1, Fengqi Song(宋風麒)2,Xuefeng Wang(王學鋒)1,?,and Rong Zhang(張榮)1

    1 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Physics,Nanjing University,Nanjing 210093,China

    Bi2Se3,as a three-dimensional topological insulator,has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry.Here we report the synthesis and characterization of high-quality singlecrystalline Bi2Se3nanowires.Bi2Se3nanowires were synthesized by chemical vapor deposition(CVD)method via goldcatalyzed vapor-liquid-solid(VLS)mechanism.The structure and morphology were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),x-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.In magnetotransport measurements,the Aharonov–Bohm(AB)effect was observed in a nanowire-based nanode-vice,suggesting the existence of surface states in Bi2Se3nanowires.

    topological insulators,nanowires,chemical vapor deposition,Aharonov–Bohm effect

    1.Introduction

    Topological insulators(TIs)possess a bulk bandgap and gapless surface states protected by time-reversal symmetry, which has been observed directly by angle-resolved photoemission spectroscopy(ARPES).[1–6]By doping magnetic impurities,the surface states would be gapped,resulting in many exotic topological phenomena.[7–12]For example,a quantum anomalous Hall effect(QAHE)was observed in Cr-doped (Bi,Sb)2Te3films.[12,13]Bismuth selenide(Bi2Se3),which was identified as one of three-dimensional TI materials,has attracted a great deal of attention and been widely studied. Electronic transport experiments were often carried out to study the surface states of TIs.[14–19]However,the surface states were readily buried by the bulk contribution because of the abundant crystal defects.[20,21]One of the solutions is to synthesize nanomaterials with a large surface-to-volume ratio,which can magnify the surface states’contribution ratio in electronic transport experiments.[16,22,23]Besides,nanostructures of TIs are considered as critical materials for spintronic applications and quantum computers.[24,25]Therefore, it is urgently needed to synthesize high-quality Bi2Se3nanostructures.One of the most prominent methods is the chemical vapor deposition(CVD)technique,which has been reported by variousgroups.[14,16,18,25]Besides,a series of quantum phenomena related to the surface states have been observed in TIs nanostructures prepared by CVD,including weak antilocalization(WAL),[26]Aharonov–Bohm(AB)interference,[14,16]Shubnikov–de Haas(SdH)oscillations,[27–30]and universal conductance fluctuations(UCF).[14,31]

    In this work,we have synthesized high-quality Bi2Se3nanowires by a simple CVD approach.Different characterization methods were used to investigate the structural characteristics and verify the high quality of the nanowires,such as scanning electron microscope(SEM),transmission electron microscopy(TEM)with energy dispersive x-ray spectroscopy (EDS),x-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.We also investigated the transport properties of as-grown nanowires by fabricating nanowire-based nanodevices.The measured magnetoresistance of Bi2Se3nanowires under a magnetic field up to 9 T showed the clear WAL effect and AB oscillations.

    2.Experiment method

    Bi2Se3nanowires were synthesized in a single heat zone tube furnace,and the quartz tube was 70 cm in length and 30 mm in diameter.Bi2Se3powder(99.999%)was used as the precursor,and Bi2Se3nanowires were grown on silicon substrates covered with a 10 nm gold layer as the catalyst via the vapor-liquid-solid(VLS)mechanism.In the growth process,Bi2Se3powder was placed at the central heat zone in a quartz boat,while the Si substrates in another quartz boat were placed downstream in the low-temperature region,which was 9–15 cm away from the source.In order to remove air and water in the quartz tube,the system was pumped and flushed with Ar gas flow several times prior to the growth.Then the temperature was raised to 560°C in 30 min and main-tained at 560°C for 60 min at a constant Ar gas flow rate of 20 sccm as the carrier gas and protective gas.During the whole growth process,the pressure in the tube was kept at 25 Pa. Then the nanowires were transfered onto the surface of clean SiO2/Si substrates.The single nanowire devices were fabricated by the photolithography technique and standard lift-off processes,in which Ti(5 nm)/Au(70 nm)alloy was evaporated by electron-beam evaporation(EBE).The transport properties of the Bi2Se3nanowire were measured in a Quantum Design PPMS-9(physical property measurement system).

    3.Results and discussion

    The morphology of the as-grown Bi2Se3nanostructures was analyzed by SEM images,as shown in Fig.1.Figure 1(a) shows the nanostructures on the Si substrate,suggesting that most of the synthesized products are straight nanowires with an average length of about 15μm.It is seen in Fig.1(a)that there are Au particles at the tip end of most nanowires.Figure 1(b)shows the magnified SEM image of a single Bi2Se3nanowire with a diameter of about 200 nm.The Au tip at the end of the nanowire can be observed obviously,clearly indicating the VLS growth mechanism.[16,26,32]In addition to the nanowires,the strip-shaped Bi2Se3nanoribbons are obtained at the same time,as shown in Fig.1(c).The nanoribbon shows a width of over 500 nm,and Au is also seen at the tip end of the nanoribbon,also suggesting the VLS growth mechanism of nanoribbon.The EDS spectrum of a single Bi2Se3nanowire is shown in Fig.1(d),and the quantitative analysis suggests an atomic ratio of Bi/Se close to 1:1,which indicates that there exist Se vacancies in Bi2Se3nanowires.Because of the low formation energy of the native defects,[33]the as-grown crystals of Bi2Se3always accompany a lot of Se vacancies(usually~1019cm?3)that act as electron donors.[20,34]As a result, Bi2Se3usually displays a metallic behavior and the residual bulk carriers hinder the transport studies of the surface states of Bi2Se3.

    Fig.1.The SEM images of(a)as-grown Bi2Se3 nanowires on substrates,(b)a single nanowire,and(c)a single nanoribbon.(d)The EDS spectrum of a single Bi2Se3 nanowire.

    In the initial stage of growth,when the furnace temperature was raised to 560°C,the temperature of the Si substrates was about 350°C,far below the melting point of Au (1063°C).In fact,Au is nonreactive but at the nanoscale it becomes a catalyst for reactions.[35–37]The size of Au particle we used is about 5 nm,so the Au particle could melt and form Au droplets on the Si substrates at 350°C.Then the Au droplets absorb the evaporated Bi2Se3molecules carried by Ar gas flow to form a liquid solution.Along with the increase of dissolved quantity,the solution soon turns to a supersaturated solution and serves as nucleation sites.Further source molecules lead to the Bi2Se3crystallization and the uniaxial growth of Bi2Se3nanowires or nanoribbons.Throughout the entire growth process,it contains three states of matter:vapor (evaporated source),liquid(supersaturated solution),and solid (crystallizing),and it exactly complies with the VLS growth mechanism.[38–40]We notice that the Au particle moves from Si substrates surface to the top of nanowires or nanoribbons during growth,which proves the catalysis of Au in the VLS growth process.However,there should be something different in the detailed growth processes of nanowires and nanoribbons even though they share the same growth mechanism.Compared with thin nanowires,flat nanoribbons like the one shown in Fig.1(c)indicate the obvious lateral growth,which usually dominates in the absence of a catalyst.It contains three growth processes:evaporation,crystallization,and epitaxial growth. We call this growth mode the vapor-solid(VS)mechanism since there is no liquid substance formed during the whole growth process.We conclude that the formation of nanoribbons includes two mechanisms:uniaxial VLS growth and epitaxial VS growth.When we increase the pressure in the tube or Ar flow rate during growth,the quantity of nanoribbons increases gradually,which is associated with the flow rate of the evaporated source material.Higher pressure or Ar flow rate will increase the mass flow rate of the source material,and VS growth dominates over VLS growth for a large mass flow rate.[38]

    Figure 2(a)shows the typical TEM image of a single Bi2Se3nanowire with a width of 150 nm.The good crystallinity of the synthesized nanowire is verified by the high resolution TEM(HRTEM)image shown in Fig.2(b).The lattice spacing of 0.21 nm in the inset agrees well with the previous reports,indicating that the nanowires grow along the[110] direction.[25,41]The chemical composition of our samples was analyzed by the EDS attached in the TEM.Figure 2(c)shows the EDS spectrum collected from the center of the nanowire, which confirms the compositions of Bi and Se.Further quantitative analysis reveals that the atomic ratio of Bi and Se is about 46:54,also indicating the existence of Se vacancies in Bi2Se3nanowires.The EDS spectrum collected from the head of the short nanowire is shown in Fig.2(d),suggesting that the particle on the head only contains Au,verifying the VLS growth mechanism.The C and Cu peaks come from the carbon-supported copper grid.

    Fig.2.(color online)(a)TEM and(b)HRTEM images of a typical nanowire.The inset in panel(b)shows the lattice spacing of 0.21 nm.(c),(d)EDS spectra collected from the body and head of a single Bi2Se3 nanowire,respectively.

    Fig.3.(color online)XPS spectra of Bi2Se3.(a)Se 3d peaks of the nanowires and the bulk(the inset).(b)Bi 4f peaks of the nanowires(black line)and the bulk(red line).

    Figure 3(a)shows peaks of Bi2Se3nanowire at 53.0 eV and 54.1 eV that correspond to Se 3d5/2and 3d3/2,respectively,which are consistent with the peaks of bulk Bi2Se3prepared by the melting method at 53.1 eV and 54.0 eV,as shown in the inset.In Fig.3(b),the black line shows peaks of Bi2Se3nanowire at 157.5 eV and 162.8 eV related to Bi 4f5/2and 4f7/2,which are close to the peaks of bulk Bi2Se3at 157.9 eV and 163.2 eV illustrated by the red line.Compared with the pure bulk of Se and Bi for Bi2Se3nanowires,the binding energies of the Se 3d peaks decrease by about 1.6 eV,while the binding energies of Bi 4f peaks increase by about 0.5 eV. The changes of the binding energies are caused by the Se–Bi bond and the charge transfer from Bi to Se.In Fig.4,we show a typical Raman spectrum taken from a single Bi2Se3nanowire.Three characteristic peaks are found at the position of 71 cm?1,131 cm?1,and 171 cm?1,which are related to three vibrational modes ofandrespectively. This is consistent with the previous reports of the Bi2Se3single crystal and nanostructures.[42–45]

    Fig.4.(color online)Raman spectrum of a single nanowire.

    The SEM image of a typical nanowire device is shown in Fig.5(a).The width and thickness of the nanowire are about 130 nm and 21 nm,which are estimated by SEM and atomic force microscope(AFM),respectively,as shown in the insets of Fig.5(a).Figure 5(b)shows the temperature-dependent resistance curve of the nanowire device,which suggests a metallic behavior.As shown by the above chemical composition analysis,there are Se vacancies in our nanowires,which may lead to the metallic behavior.[14,16]The four-terminal magnetoresistance was measured on a 9 T Quantum Design PPMS system.The magnetoresistance curve of the nanowire under vertical magnetic fields at 2 K is shown in Fig.5(c).The weak anti-localization effect(WAL)with a sharp cusp is visible near the zero magnetic field,which is due to the spin–orbit coupling(SOC)effect or the surface states in Bi2Se3.[16,46]Under the parallel magnetic field along the longitudinal direction of nanowire at 2 K,the magnetoresistance curve is shown in Fig.5(d).The WAL cusp near the zero magneticfield comes from the SOC of the bulk.At low magnetic fields, the pronounced and reproducible periodic resistance oscillations with a period of ΔB=1.8 T can be observed clearly, which is attributed to the AB oscillation.[16,28,47–49]The left inset in Fig.5(d)shows the index dependence of oscillation minima of the field positions,and the period of magnetic field (ΔB=1.8 T)is obtained from the slope of the fitting straight line.The AB oscillation is caused by the quantum interference effects of phase coherent conduction electrons after completing closed trajectories which encircle a certain magnetic flux.The characteristic period of the external magnetic field could be described by ΔB=Φ0/S,where the flux quantum Φ0=h/e,h is Planck’s constant,e is the electron charge,and S is the cross-sectional area of the nanowire.Considering our sample,the width and thickness of the nanowire are 130 nm and 21 nm,respectively,giving a cross-sectional area of about 2.6×10?15m2,which is close to the estimated cross-sectional area S=Φ0/ΔB=2.3×10?15m2.The fast Fourier transform (FFT)of magnetoresistance derivative d R/d B is shown in the right inset of Fig.5(d).In addition to the prominent h/e oscillation of the AB effect,the oscillation frequency of h/2e can also be observed,which is identified as the Altshuler–Aronov–Spival(AAS)effect that originates from WAL.[50]Compared with the AB effect,the AAS effect is more robust against temperature,which has been observed and analyzed in a previous report.[51]The observation of the AB oscillation in Bi2Se3nanowire provides evidence of the existence of surface states of topological insulators.Actually,in our metallic nanowires, bulk carriers contribute to a significant portion in the electron transport.However,the phase coherence of surface states cannot be destroyed by the interaction between bulk and surface electrons,which suggests that the low-dimensional system is an ideal platform to explore the topological surface states of TI materials.

    Fig.5.(color online)Magnetoresistance properties of a single Bi2Se3 nanodevice.(a)SEM image of the Bi2Se3 nanodevice.The magnified SEM image and the AFM height diagram of the nanodevice are shown in the insets.(b)Temperature-dependent resistance curve at zero magnetic field.(c)Magnetoresistance curve in the vertical magnetic field at 2 K.(d)Magnetoresistance curve in the parallel magnetic field at 2 K.The magnetic field positions of resistance oscillation minima versus oscillation index at 2 K and the FFT of the d R/d B in?9 T to 9 T range are shown in the insets.

    4.Conclusion

    In conclusion,Bi2Se3nanowires have been synthesized through a VLS process.The good crystallinity of the nanowires is characterized by HRTEM,XPS,and Raman spectra.The analysis of the chemical composition reveals the existence of Se vacancies in our nanowires.Magnetotransport measurements show the AB effect,manifesting the surface state nature of Bi2Se3nanowires.Our results are helpful for understanding the growth mechanism and magnetoresis-tance properties of the single Bi2Se3nanowire.

    [1]Fu L,Kane C L and Mele E J 2007 Phys.Rev.Lett.98 106803

    [2]Kane C L and Mele E J 2005 Phys.Rev.Lett.95 226801

    [3]Koenig M,Wiedmann S,Bruene C,Roth A,Buhmann H,Molenkamp L W,Qi X L and Zhang S C 2007 Science 318 766

    [4]Moore J E and Balents L 2007 Phys.Rev.B 75 121306

    [5]Fu L and Kane C L 2007 Phys.Rev.B 76 045302

    [6]Chen Y L,Analytis J G,Chu J H,Liu Z K,Mo S K,Qi X L,Zhang H J,Lu D H,Dai X,Fang Z,Zhang S C,Fisher I R,Hussain Z and Shen Z X 2009 Science 325 178

    [7]Takagaki Y,Jenichen B,Jahn U,Ramsteiner M and Friedland K J 2012 Phys.Rev.B 85 115314

    [8]Qi X L,Hughes T L and Zhang S C 2008 Phys.Rev.B 78 195424

    [9]Qi X L,Li R D,Zang J D and Zhang S C 2009 Science 323 1184

    [10]Fu L and Kane C L 2008 Phys.Rev.Lett.100 096407

    [11]Zhang J Y,Zhao B,Zhou T and Yang Z Q 2016 Chin.Phys.B 25 117308

    [12]He K,Ma X C,Chen X,Li L,Wang Y Y and Xue Q K 2013 Chin. Phys.B 22 67305

    [13]Chang C Z,Zhang J,Feng X,Shen J,Zhang Z,Guo M,Li K,Ou Y, Wei P,Wang L L,Ji Z Q,Feng Y,Ji S,Chen X,Jia J,Dai X,Fang Z, Zhang S C,He K,Wang Y,Lu L,Ma X C and Xue Q K 2013 Science 340 167

    [14]Pan H,Zhang K,Wei Z,Wang J,Han M,Song F,Wang X,Wang B and Zhang R 2017 Appl.Phys.Lett.110 053108

    [15]Dufouleur J,Veyrat L,Teichgr?ber A,Neuhaus S,Nowka C,Hampel S,Cayssol J,Schumann J,Eichler B,Schmidt O G,Büchner B and Giraud R 2013 Phys.Rev.Lett.110 186806

    [16]Peng H,Lai K,Kong D,Meister S,Chen Y,Qi X L,Zhang S C,Shen Z X and Cui Y 2010 Nat.Mater.9 225

    [17]Qu F,Yang F,Chen J,Shen J,Ding Y,Lu J,Song Y,Yang H,Liu G, Fan J,Li Y,Ji Z,Yang C and Lu L 2011 Phys.Rev.Lett.107 016802

    [18]Yan Y,Liao Z M,Zhou Y B,Wu H C,Bie Y Q,Chen J J,Meng J,Wu X S and Yu D P 2013 Sci.Rep.3 1264

    [19]Lu H Z and Shen S Q 2016 Chin.Phys.B 25 117202

    [20]Checkelsky J G,Hor Y S,Liu M H,Qu D X,Cava R J and Ong N P 2009 Phys.Rev.Lett.103 246601

    [21]Eto K,Ren Z,Taskin A A,Segawa K and Ando Y 2010 Phys.Rev.B 81 195309

    [22]Wang L X,Yan Y,Zhang L,Liao Z M,Wu H C and Yu D P 2015 Nanoscale 7 16687

    [23]Liu Y,Ma Z,Zhao Y F,Singh M and Wang J 2013 Chin.Phys.B 22 67302

    [24]Cho S,Kim D,Syers P,Butch N P,Paglione J and Fuhrer M S 2012 Nano Lett.12 469

    [25]Kong D,Randel J C,Peng H,Cha J J,Meister S,Lai K,Chen Y,Shen Z X,Manoharan H C and Cui Y 2010 Nano Lett.10 329

    [26]Cha J J,Claassen M,Kong D,Hong S S,Koski K J,Qi X L and Cui Y 2012 Nano Lett.12 4355

    [27]Xiu F,He L,Wang Y,Cheng L,Chang L T,Lang M,Huang G,Kou X, Zhou Y,Jiang X,Chen Z,Zou J,Shailos A and Wang K L 2011 Nat. Nano 6 216

    [28]Lee S,In J,Yoo Y,Jo Y,Park Y C,Kim H J,Koo H C,Kim J,Kim B and Wang K L 2012 Nano Lett.12 4194

    [29]Safdar M,Wang Q,Mirza M,Wang Z,Xu K and He J 2013 Nano Lett. 13 5344

    [30]Hamdou B,Gooth J,Dorn A,Pippel E and Nielsch K 2013 Appl.Phys. Lett.103 193107

    [31]Li Z,Chen T,Pan H,Song F,Wang B,Han J,Qin Y,Wang X,Zhang R,Wan J,Xing D and Wang G 2012 Sci.Rep.2 595

    [32]Wei Q,Su Y,Yang C J,Liu Z G,Xu H N,Xia Y D and Yin J 2011 J. Mater.Sci.46 2267

    [33]Scanlon D O,King P D C,Singh R P,de la Torre A,Walker S M,Balakrishnan G,Baumberger F and Catlow C R A 2012 Adv.Mater.24 2154

    [34]Ren Z,Taskin A A,Sasaki S,Segawa K and Ando Y 2011 Phys.Rev. B 84 075316

    [35]Kratzer P,Sakong S and Pankoke V 2012 Nano Lett.12 943

    [36]Dubrovskii V G and Sibirev N V 2008 Phys.Rev.B 77 035414

    [37]Dubrovskii V G,Sibirev N V,Harmand J C and Glas F 2008 Phys.Rev. B 78 235301

    [38]Hamdou B,Kimling J,Dorn A,Pippel E,Rostek R,Woias P and Nielsch K 2013 Adv.Mater.25 239

    [39]Givargizov E I 1975 J.Cryst.Growth 31 20

    [40]Milewski J V,Gac F D,Petrovic J J and Skaggs S R 1985 J.Mater.Sci. 20 1160

    [41]Mlack J T,Rahman A,Johns G L,Livi K J T and Markovi? N 2013 Appl.Phys.Lett.102 193108

    [42]Zhang G,Qin H,Teng J,Guo J,Guo Q,Dai X,Fang Z and Wu K 2009 Appl.Phys.Lett.95 053114

    [43]Yan Y,Zhou X,Jin H,Li C Z,Ke X,Van Tendeloo G,Liu K,Yu D, Dressel M and Liao Z M 2015 Acs Nano 9 10244

    [44]Richter W and Becker C R 1977 Phys.Status Solidi B 84 619

    [45]Zhang J,Peng Z,Soni A,Zhao Y,Xiong Y,Peng B,Wang J,Dresselhaus M S and Xiong Q 2011 Nano Lett.11 2407

    [46]Huber T E,Celestine K and Graf M J 2003 Phys.Rev.B 67 245317

    [47]Zhang Y and Vishwanath A 2010 Phys.Rev.Lett.105 206601

    [48]Fu Z G,Zhang P and Li S S 2011 Appl.Phys.Lett.99 243110

    [49]Jens H B and Joel E M 2013 Rep.Prog.Phys.76 056501

    [50]Bardarson J H,Brouwer P W and Moore J E 2010 Phys.Rev.Lett.105 156803

    [51]Wang L X,Li C Z,Yu D P and Liao Z M 2016 Nat.Commun.7 10769

    6 April 2017;revised manuscript

    11 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/096101

    ?Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB921103 and 2013CB921103),the National Natural Science Foundation of China(Grant Nos.11274003 and 91421109),and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China.

    ?Corresponding author.E-mail:xfwang@nju.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    仲夏海洋
    《壬寅仲夏》
    出發(fā),去看看未來的海洋
    仲夏之夜
    香格里拉(2021年2期)2021-07-28 06:50:42
    仲夏的休閑放松
    ViVi美眉(2019年8期)2019-09-10 07:22:44
    仲夏夢
    智族GQ(2019年7期)2019-08-26 09:31:36
    仲夏風箏微漾
    海洋的路
    當代音樂(2018年4期)2018-05-14 06:47:13
    大美青海,仲夏之行
    愛的海洋
    琴童(2017年7期)2017-07-31 18:33:48
    第一章 向海洋出發(fā)
    小學科學(2017年5期)2017-05-26 18:25:53
    一区二区三区国产精品乱码| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| 18禁黄网站禁片午夜丰满| 黑人欧美特级aaaaaa片| 亚洲国产高清在线一区二区三| 欧美av亚洲av综合av国产av| 最近最新中文字幕大全免费视频| 久久久久国产一级毛片高清牌| 亚洲av片天天在线观看| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 99在线视频只有这里精品首页| 日韩欧美国产在线观看| 亚洲国产高清在线一区二区三| 黄色女人牲交| 国产成人影院久久av| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 2021天堂中文幕一二区在线观| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 蜜桃久久精品国产亚洲av| 老司机深夜福利视频在线观看| 99国产极品粉嫩在线观看| 国产一区二区在线av高清观看| 两性夫妻黄色片| 91大片在线观看| 在线观看66精品国产| 国内揄拍国产精品人妻在线| 亚洲国产精品成人综合色| 免费看日本二区| 一本综合久久免费| 一区福利在线观看| www.www免费av| 日本在线视频免费播放| 一边摸一边做爽爽视频免费| 亚洲18禁久久av| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 男人舔女人的私密视频| 最近最新免费中文字幕在线| 男女床上黄色一级片免费看| 欧美性猛交╳xxx乱大交人| 国产精品一及| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 久99久视频精品免费| 久久久久精品国产欧美久久久| 少妇熟女aⅴ在线视频| 精品人妻1区二区| 亚洲国产欧洲综合997久久,| 日本a在线网址| 99精品久久久久人妻精品| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻 | 成人国产综合亚洲| 日韩免费av在线播放| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 亚洲五月婷婷丁香| 欧美一级毛片孕妇| 啦啦啦韩国在线观看视频| 宅男免费午夜| 国产真人三级小视频在线观看| 美女高潮喷水抽搐中文字幕| 男女之事视频高清在线观看| 国产欧美日韩一区二区精品| 欧美中文日本在线观看视频| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av| 99国产极品粉嫩在线观看| 久久这里只有精品中国| 久久精品综合一区二区三区| 最近最新中文字幕大全免费视频| 亚洲成人久久爱视频| 桃色一区二区三区在线观看| 久久热在线av| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁观看日本| 悠悠久久av| 啦啦啦免费观看视频1| 99热只有精品国产| 变态另类丝袜制服| 最近最新中文字幕大全免费视频| 午夜精品在线福利| 精品午夜福利视频在线观看一区| 成人欧美大片| 激情在线观看视频在线高清| 老熟妇仑乱视频hdxx| 久久亚洲精品不卡| 90打野战视频偷拍视频| 俺也久久电影网| 少妇的丰满在线观看| 国产精品乱码一区二三区的特点| 国产高清激情床上av| 久久精品成人免费网站| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 久久久水蜜桃国产精品网| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 精品国产亚洲在线| 精品国产超薄肉色丝袜足j| svipshipincom国产片| 国产精品国产高清国产av| 亚洲专区中文字幕在线| 1024香蕉在线观看| 18美女黄网站色大片免费观看| aaaaa片日本免费| 国产高清videossex| 少妇熟女aⅴ在线视频| 日韩 欧美 亚洲 中文字幕| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 欧美av亚洲av综合av国产av| 午夜亚洲福利在线播放| 免费在线观看成人毛片| 久久人妻av系列| 香蕉久久夜色| 在线a可以看的网站| 成人三级黄色视频| 久久香蕉国产精品| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 无限看片的www在线观看| 日韩免费av在线播放| 黄片小视频在线播放| 人成视频在线观看免费观看| 免费在线观看亚洲国产| 一级毛片女人18水好多| 中文亚洲av片在线观看爽| 欧美黑人精品巨大| 欧美在线一区亚洲| 精品欧美一区二区三区在线| 又黄又爽又免费观看的视频| 国产三级中文精品| 亚洲黑人精品在线| 一区二区三区国产精品乱码| 久久精品夜夜夜夜夜久久蜜豆 | 91大片在线观看| 久久久久久人人人人人| 亚洲国产精品成人综合色| 黑人欧美特级aaaaaa片| 欧美日本亚洲视频在线播放| 免费看十八禁软件| 精品国产乱子伦一区二区三区| 神马国产精品三级电影在线观看 | 久久久久久免费高清国产稀缺| 色综合站精品国产| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 亚洲精品久久国产高清桃花| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 日本 欧美在线| 精品久久久久久久久久免费视频| 嫩草影视91久久| 日本a在线网址| 国产又黄又爽又无遮挡在线| 久久人人精品亚洲av| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 国产精品影院久久| 男女视频在线观看网站免费 | 我要搜黄色片| 淫妇啪啪啪对白视频| 免费看a级黄色片| 欧美黑人巨大hd| 怎么达到女性高潮| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 欧美午夜高清在线| 免费在线观看成人毛片| 欧美三级亚洲精品| 日本a在线网址| 国产成人av激情在线播放| av中文乱码字幕在线| 亚洲五月天丁香| 天堂av国产一区二区熟女人妻 | 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 亚洲第一电影网av| 美女大奶头视频| 久久九九热精品免费| 国产精品亚洲一级av第二区| 久久中文字幕一级| 99热这里只有是精品50| 午夜a级毛片| 国产真实乱freesex| 免费在线观看视频国产中文字幕亚洲| 免费高清视频大片| 中出人妻视频一区二区| 国内少妇人妻偷人精品xxx网站 | 九色国产91popny在线| 神马国产精品三级电影在线观看 | 999久久久国产精品视频| 大型av网站在线播放| 亚洲人成网站高清观看| 久久亚洲精品不卡| 又爽又黄无遮挡网站| 亚洲人成网站在线播放欧美日韩| 久久人妻福利社区极品人妻图片| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| 特级一级黄色大片| 久久香蕉国产精品| 久久热在线av| 两个人免费观看高清视频| 午夜老司机福利片| 欧美日韩黄片免| 日本免费a在线| 亚洲在线自拍视频| 久久精品aⅴ一区二区三区四区| bbb黄色大片| 777久久人妻少妇嫩草av网站| 国产欧美日韩精品亚洲av| 色av中文字幕| 久久久久亚洲av毛片大全| 日韩大码丰满熟妇| 亚洲最大成人中文| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 听说在线观看完整版免费高清| 亚洲欧洲精品一区二区精品久久久| av天堂在线播放| 久久久久九九精品影院| 免费无遮挡裸体视频| a级毛片a级免费在线| 成人18禁高潮啪啪吃奶动态图| 日韩欧美精品v在线| 欧美色视频一区免费| 曰老女人黄片| 91av网站免费观看| 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站 | 最近最新中文字幕大全电影3| 亚洲乱码一区二区免费版| 制服诱惑二区| 国产视频一区二区在线看| 黄频高清免费视频| 亚洲av成人一区二区三| 长腿黑丝高跟| 男女那种视频在线观看| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 亚洲av日韩精品久久久久久密| 黄色丝袜av网址大全| 午夜影院日韩av| 久9热在线精品视频| 亚洲欧美日韩东京热| 久久久久久国产a免费观看| 黄色丝袜av网址大全| 国产成人系列免费观看| 久久这里只有精品19| 国产99白浆流出| 日韩av在线大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 久久精品影院6| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 女警被强在线播放| 全区人妻精品视频| 两个人视频免费观看高清| 人人妻人人看人人澡| 免费在线观看完整版高清| 中出人妻视频一区二区| 在线视频色国产色| 欧美3d第一页| 日韩精品青青久久久久久| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 国产精品98久久久久久宅男小说| 免费人成视频x8x8入口观看| www日本在线高清视频| 国产精品日韩av在线免费观看| 欧美大码av| av在线播放免费不卡| 免费在线观看亚洲国产| 国产精品影院久久| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 久久久国产成人免费| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 国产精品98久久久久久宅男小说| 久久亚洲真实| 精品福利观看| 欧美日韩乱码在线| 亚洲专区字幕在线| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 国产一区二区在线av高清观看| xxx96com| 亚洲18禁久久av| 国产高清videossex| 色噜噜av男人的天堂激情| 99久久精品国产亚洲精品| ponron亚洲| 一本一本综合久久| 我的老师免费观看完整版| 俺也久久电影网| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 狠狠狠狠99中文字幕| 中文资源天堂在线| 久久人妻福利社区极品人妻图片| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 色综合婷婷激情| 久久香蕉国产精品| 精品久久久久久久人妻蜜臀av| 一二三四社区在线视频社区8| 天堂影院成人在线观看| 国产精品一及| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 脱女人内裤的视频| 久久久水蜜桃国产精品网| 亚洲在线自拍视频| АⅤ资源中文在线天堂| 黄色毛片三级朝国网站| 久久精品综合一区二区三区| 日韩欧美在线乱码| 亚洲九九香蕉| 日韩国内少妇激情av| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| av在线天堂中文字幕| 国产成人精品久久二区二区免费| 天天添夜夜摸| 香蕉久久夜色| а√天堂www在线а√下载| 又黄又粗又硬又大视频| 狠狠狠狠99中文字幕| 天天一区二区日本电影三级| 人成视频在线观看免费观看| av福利片在线观看| 日韩高清综合在线| 国产99白浆流出| 两性夫妻黄色片| 999久久久精品免费观看国产| 在线观看午夜福利视频| 午夜两性在线视频| 国产av又大| 老汉色∧v一级毛片| 国产av又大| 两个人的视频大全免费| 日韩有码中文字幕| 男人舔奶头视频| 在线观看免费午夜福利视频| 久久久久亚洲av毛片大全| 欧美大码av| 久久中文看片网| 最新美女视频免费是黄的| 香蕉av资源在线| 久久久久精品国产欧美久久久| 国产精品久久久人人做人人爽| www.精华液| 国产av一区二区精品久久| 国产av一区在线观看免费| 一进一出好大好爽视频| 成人18禁高潮啪啪吃奶动态图| 黄片小视频在线播放| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av在线有码专区| videosex国产| 观看免费一级毛片| 色在线成人网| 亚洲 国产 在线| 亚洲真实伦在线观看| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 日本黄色视频三级网站网址| 91av网站免费观看| 国产又黄又爽又无遮挡在线| ponron亚洲| 在线观看午夜福利视频| 国产成+人综合+亚洲专区| 亚洲国产欧洲综合997久久,| 亚洲精品国产一区二区精华液| 亚洲精品在线观看二区| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 日韩精品免费视频一区二区三区| 女警被强在线播放| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 免费看日本二区| 亚洲 国产 在线| 两性夫妻黄色片| 久久国产精品影院| 久久精品国产亚洲av高清一级| 精品久久久久久久人妻蜜臀av| 国产91精品成人一区二区三区| 国内精品久久久久久久电影| 美女免费视频网站| 天堂影院成人在线观看| 19禁男女啪啪无遮挡网站| 欧美高清成人免费视频www| 国产精品av久久久久免费| 国内精品一区二区在线观看| 高清毛片免费观看视频网站| 国产高清视频在线播放一区| 国产区一区二久久| 国产精品av视频在线免费观看| xxx96com| or卡值多少钱| 757午夜福利合集在线观看| 久久亚洲真实| 麻豆久久精品国产亚洲av| 黄色片一级片一级黄色片| 色在线成人网| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 日日夜夜操网爽| av在线天堂中文字幕| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 男人舔奶头视频| 久久草成人影院| 国产蜜桃级精品一区二区三区| 国产成人av激情在线播放| 91成年电影在线观看| 超碰成人久久| 男插女下体视频免费在线播放| 一区二区三区高清视频在线| 又爽又黄无遮挡网站| 久久精品国产亚洲av香蕉五月| 欧美在线一区亚洲| 小说图片视频综合网站| 久99久视频精品免费| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 深夜精品福利| 黑人操中国人逼视频| 精品免费久久久久久久清纯| 久久香蕉精品热| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 欧美大码av| 色综合站精品国产| 日韩精品中文字幕看吧| 一本一本综合久久| 亚洲乱码一区二区免费版| 午夜成年电影在线免费观看| 变态另类丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| 久久精品成人免费网站| 又粗又爽又猛毛片免费看| 久久久久国产一级毛片高清牌| 久久天堂一区二区三区四区| 波多野结衣巨乳人妻| 国产高清有码在线观看视频 | 亚洲国产欧洲综合997久久,| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 免费在线观看影片大全网站| 免费看日本二区| 国产私拍福利视频在线观看| 看片在线看免费视频| 欧美成人性av电影在线观看| 亚洲电影在线观看av| 国内精品久久久久久久电影| 久久这里只有精品中国| 国产精品野战在线观看| 久久久久久久精品吃奶| 免费在线观看影片大全网站| 免费看日本二区| 丰满人妻一区二区三区视频av | 欧美丝袜亚洲另类| 草草在线视频免费看| 免费观看精品视频网站| 少妇裸体淫交视频免费看高清| av福利片在线观看| 久久精品夜色国产| 亚洲美女视频黄频| 国产av麻豆久久久久久久| 91在线精品国自产拍蜜月| 天堂中文最新版在线下载 | 在线观看av片永久免费下载| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看| 精品少妇黑人巨大在线播放 | 免费观看精品视频网站| а√天堂www在线а√下载| 日本-黄色视频高清免费观看| 国产视频内射| 美女黄网站色视频| 麻豆成人av视频| 亚洲精品国产av成人精品| 神马国产精品三级电影在线观看| 亚洲第一电影网av| 国产一区二区三区在线臀色熟女| 亚洲成人av在线免费| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| av在线蜜桃| 国产一级毛片在线| 亚洲av成人av| 国产毛片a区久久久久| 亚洲国产色片| 少妇被粗大猛烈的视频| 99热精品在线国产| 免费人成视频x8x8入口观看| 国产精品综合久久久久久久免费| 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 成人高潮视频无遮挡免费网站| 1024手机看黄色片| 国产真实伦视频高清在线观看| 国产在线精品亚洲第一网站| 日本av手机在线免费观看| 午夜福利在线观看免费完整高清在 | 少妇的逼水好多| 18禁在线无遮挡免费观看视频| 国内精品美女久久久久久| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| www.av在线官网国产| 国产精品久久久久久精品电影小说 | 少妇丰满av| 国产激情偷乱视频一区二区| 亚洲婷婷狠狠爱综合网| 人人妻人人澡欧美一区二区| 又黄又爽又刺激的免费视频.| 免费看美女性在线毛片视频| 亚洲一区二区三区色噜噜| 精品日产1卡2卡| 国产一区二区在线av高清观看| h日本视频在线播放| 午夜激情福利司机影院| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 欧美色视频一区免费| 26uuu在线亚洲综合色| 99热精品在线国产| 亚洲精品影视一区二区三区av| 大型黄色视频在线免费观看| 九九爱精品视频在线观看| 日韩强制内射视频| 中文亚洲av片在线观看爽| 在线播放国产精品三级| 九九热线精品视视频播放| 国产老妇女一区| 女人被狂操c到高潮| 亚洲精品色激情综合| 国内精品一区二区在线观看| 最近的中文字幕免费完整| av免费在线看不卡| 国产成人freesex在线| 久99久视频精品免费| 国产成人91sexporn| 亚洲,欧美,日韩| 亚洲国产精品成人久久小说 | 国产精品麻豆人妻色哟哟久久 | 一级毛片久久久久久久久女| 身体一侧抽搐| 日本三级黄在线观看| 美女xxoo啪啪120秒动态图| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产99精品国产亚洲性色| 国产成人精品婷婷| .国产精品久久| 成年免费大片在线观看| АⅤ资源中文在线天堂| av天堂中文字幕网| 久久精品国产亚洲网站| 亚州av有码| 亚洲色图av天堂| 久久99热6这里只有精品| 亚洲国产欧洲综合997久久,| 欧美不卡视频在线免费观看| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 国产白丝娇喘喷水9色精品| 桃色一区二区三区在线观看| 99在线人妻在线中文字幕| av福利片在线观看| 久久草成人影院| 一级毛片电影观看 | 亚洲欧美精品专区久久| 青春草视频在线免费观看| 中国美女看黄片| 亚洲精品成人久久久久久| 国产成人午夜福利电影在线观看| 亚洲av免费高清在线观看| 久久精品夜夜夜夜夜久久蜜豆|