• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      帶線性延遲項的Volterra積分方程研究(英文)

      2017-08-28 08:18:35鄭偉珊
      關(guān)鍵詞:中圖范數(shù)分類號

      鄭偉珊

      Abstract This paper is concerned about the Volterra integral equation with linear delay. First we transfer the integral interval [0,T] into interval [-1, 1] through the conversion of variables. Then we use the Gauss quadrature formula to get the approximate solutions. After that the Chebyshev spectral-collocation method is proposed to solve the equation. With the help of Gronwall inequality and some other lemmas, a rigorous error analysis is provided for the proposed method, which shows that the numerical error decay exponentially in the innity norm and the Chebyshev weighted Hilbert space norms. In the end, numerical example is given to confirm the theoretical results.

      Key words Chebyshev spectral-collocation method; linear delay; Volterra integral equations; error analysis

      中圖分類號 O242.2文獻標識碼 A文章編號 1000-2537(2017)04-0083-06

      摘 要 本文主要研究帶線性延遲項的Volterra型積分方程收斂情況. 首先通過線性變換, 我們將原先定義在[0,T]區(qū)間上帶線性延遲項的Volterra型積分方程轉(zhuǎn)換成定義在固定區(qū)間[-1,1]上的方程, 然后利用Gauss積分公式求得近似解, 進而再利用Chebyshev譜配置方法分析該方程的收斂性, 最終借助格朗沃不等式及相關(guān)引理分析獲得方程在L∞和L2ωc 范數(shù)意義下呈現(xiàn)指數(shù)收斂的結(jié)論. 最后給出數(shù)值例子, 驗證理論證明的結(jié)論.

      關(guān)鍵詞 Chebyshev譜配置方法; 線性延遲項; Volterra型積分方程; 誤差分析

      Equations of this type arise as models in many fields, such as the Mechanical problems of physics, the movement of celestial bodies problems of astronomy and the problem of biological population original state changes. They are also applied to network reservoir, storage system, material accumulation, different fields of industrial process etc, and solve a lot problems from mathematical models of population statistics, viscoelastic materials and insurance abstracted. The Volterra integral equation with linear delay is one of the important type of Volterra integral equations with great significance in both theory and applications. There are many methods to solve Volterra integral equations, such as Legendre spectral-collocation method[1], Jacobi spectral-collocation method[2], spectral Galerkin method[3-4], Chebyshev spectral-collocation method[5] and so on. In this paper, inspired by[5] and [6], we use a Chebyshev spectral-collocation method to solve Volterra integral equations with linear delay.

      References:

      [1] TANG T, XU X, CHENG J. On Spectral methods for Volterra integral equation and the convergence analysis[J]. J Comput Math, 2008,26(6):825-837.

      [2] CHEN Y, TANG T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel[J]. Math Comput, 2010,79(269):147-167.

      [3] WAN Z, CHEN Y, HUANG Y. Legendre spectral Galerkin method for second-kind Volterra integral equations[J]. Front Math China, 2009,4(1):181-193.

      [4] XIE Z, LI X, TANG T. Convergence analysis of spectral galerkin methods for Volterra type integral equations[J]. J Sci Comput, 2012,53(2):414-434.

      [5] GU Z, CHEN Y. Chebyshev spectral collocation method for Volterra integral equations[J]. Contem Math, 2013,586:163-170.

      [6] LI J, ZHENG W, WU J. Volterra integral equations with vanishing delay[J]. Appl Comput Math, 2015,4(3):152-161.

      [7] CANUTO C, HUSSAINI M, QUARTERONI A, et al. Spectral method fundamentals in single domains[M]. New York: Spring-Verlag, 2006.

      [8] SHEN J, TANG T. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.

      [9] MASTROIANNI G, OCCORSIO D. Optional system od nodes for Lagrange interpolation on bounded intervals[J]. J Comput Appl Math, 2001,134(1-2):325-341.

      [10] KUFNER A, PERSSON L. Weighted inequality of Hardys Type[M]. New York: World Scientific, 2003.

      [11] NEVAI P. Mean convergence of Lagrange interpolation[J]. Trans Amer Math Soc, 1984,282:669-698.

      猜你喜歡
      中圖范數(shù)分類號
      基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
      The Tragic Color of the Old Man and the Sea
      矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
      Connection of Learning and Teaching from Junior to Senior
      English Language Teaching in Yunann Province: Opportunities & Challenges
      A Study of Chinese College Athletes’ English Learning
      A Study on the Change and Developmentof English Vocabulary
      Translation on Deixis in English and Chinese
      一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
      The law of exercise applies on individual behavior change development
      黄骅市| 小金县| 辽阳县| 云和县| 济宁市| 丰镇市| 莱州市| 宣化县| 固阳县| 乌拉特中旗| 湟中县| 徐汇区| 福清市| 泰兴市| 泰州市| 杨浦区| 鹰潭市| 巴彦淖尔市| 惠安县| 五指山市| 思茅市| 祁门县| 根河市| 斗六市| 涪陵区| 抚松县| 麦盖提县| 老河口市| 合水县| 罗甸县| 长海县| 曲周县| 潼南县| 邢台市| 竹溪县| 海晏县| 定南县| 吉安县| 寿宁县| 昌平区| 开原市|