• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      木質(zhì)素化學(xué)催化解聚研究新進(jìn)展

      2017-08-07 05:50:32張學(xué)銘吳苗許鳳
      林業(yè)工程學(xué)報(bào) 2017年4期
      關(guān)鍵詞:木質(zhì)素選擇性溶劑

      張學(xué)銘,吳苗,許鳳

      (北京林業(yè)大學(xué)材料科學(xué)與技術(shù)學(xué)院,北京100083)

      木質(zhì)素化學(xué)催化解聚研究新進(jìn)展

      張學(xué)銘,吳苗,許鳳*

      (北京林業(yè)大學(xué)材料科學(xué)與技術(shù)學(xué)院,北京100083)

      木質(zhì)素作為木質(zhì)纖維素三大組分之一,是自然界中芳香環(huán)含量最多的天然高分子聚合物?;诨瘜W(xué)催化手段將其定向轉(zhuǎn)化為化學(xué)品及材料,實(shí)現(xiàn)木質(zhì)素高值轉(zhuǎn)化及利用,替代不可再生的化石資源,已經(jīng)成為國內(nèi)外重大熱門研究領(lǐng)域之一。為此,筆者對木質(zhì)素化學(xué)催化降解轉(zhuǎn)化方面的研究成果進(jìn)行了綜述,并對未來的研究方向進(jìn)行了展望?;诓煌呋磻?yīng)機(jī)理,總結(jié)了催化還原和氧化降解體系,闡述了不同體系中使用的還原劑、氧化劑,對不同體系的反應(yīng)機(jī)理及生成產(chǎn)物進(jìn)行了闡述;同時(shí),介紹了木質(zhì)素化學(xué)降解常用的溶劑(水、有機(jī)溶劑、離子液體)和催化劑(液體酸、堿、固體酸、復(fù)合型催化劑)??偨Y(jié)認(rèn)為,目前開發(fā)催化效率高、選擇性好及低成本催化體系仍然是木質(zhì)素定向催化轉(zhuǎn)化研究的重點(diǎn)發(fā)展方向。

      木質(zhì)素;降解;催化劑;還原;氧化

      利用生物質(zhì)轉(zhuǎn)化為高附加值的材料及化學(xué)品并替代不可再生的化石資源,已經(jīng)成為全球重大熱門研究課題之一,受到廣泛關(guān)注[1]。生物質(zhì)的主要組分包括纖維素(40%~50%)、半纖維素(25%~35%)和木質(zhì)素(15%~20%)[2],三大組分通過分子內(nèi)和分子間復(fù)雜的鍵合結(jié)構(gòu)成復(fù)雜的木質(zhì)纖維復(fù)合體。木質(zhì)素是植物細(xì)胞壁的重要組成成分之一,是地球上最豐富的芳香族天然高分子化合物。它是由3種甲氧基化程度不同的4-羥基-肉桂醇(對香豆醇、松柏醇和芥子醇)經(jīng)氧化聚合產(chǎn)生的天然高聚物[3-4],基本單元間連接鍵的類型主要包括β-O-4′,β-β′、β-5′等,含量最高的為β-O-4′連接鍵(45%~60%)[5]。同時(shí),木質(zhì)素分子含有眾多種類的活性官能基,如羥基、甲氧基、羰基、羧基等,易被化學(xué)修飾,具有可再生、可降解、無毒等優(yōu)點(diǎn)。因此,利用木質(zhì)素可以生產(chǎn)許多潛在的高值產(chǎn)品,比如低成本的碳纖維[6]、工程塑料、熱塑彈性體、聚合膜和泡沫[7],以及近些年備受關(guān)注的超級電容器[8]和芳香類化學(xué)品等[9]。然而,木質(zhì)素自身結(jié)構(gòu)單元的復(fù)雜性和成鍵機(jī)制多樣性仍舊是阻礙木質(zhì)素的高值化利用的關(guān)鍵障礙[10-11]。因此,針對木質(zhì)素高值轉(zhuǎn)化過程中存在的瓶頸問題,本文主要綜述了木質(zhì)素化學(xué)降解轉(zhuǎn)化為化學(xué)品的研究進(jìn)展。

      利用化學(xué)法降解木質(zhì)素,可以高得率、高選擇性地得到目標(biāo)芳香族產(chǎn)物[12]。從反應(yīng)體系組成來分析,化學(xué)降解重點(diǎn)考慮溶劑和催化劑的選擇,溶劑主要包括水、有機(jī)溶劑、離子液體三大溶劑體系;而催化劑從最初的液體酸、堿、固體酸,發(fā)展至目前常用的自行合成的復(fù)合型催化劑(如:有機(jī)/無機(jī)的金屬復(fù)合催化劑等)。根據(jù)催化反應(yīng)機(jī)理來劃分,木質(zhì)素化學(xué)催化降解的反應(yīng)主要可以分為裂化、水解、催化還原和催化氧化反應(yīng)[12]。在這四大反應(yīng)中,由于還原和氧化反應(yīng)的目標(biāo)產(chǎn)物較易控制,因此受到更廣泛關(guān)注。相比較而言,還原反應(yīng)主要生成一些簡單的芳香族化合物,而氧化反應(yīng)趨向生成含有一些功能基的復(fù)雜化合物。因此,本文主要對溶劑與催化劑選擇、還原和氧化過程、生成產(chǎn)物反應(yīng)機(jī)理等方面進(jìn)行分析。

      1 木質(zhì)素化學(xué)降解常用溶劑

      在3類溶劑體系中,由于水作為最環(huán)保、經(jīng)濟(jì)的綠色溶劑深受研究者關(guān)注,因此,有關(guān)水熱降解方面的研究最為廣泛。根據(jù)處理的溫度及壓力差別,水熱降解反應(yīng)主要包括三大類:汽化(>600℃)、裂解(370~530℃,0.1~0.5 MPa)和液化(230~330℃,5~20 MPa)[13]。Karag?ze和Yuan等[14-15]研究了生物質(zhì)的低溫水熱液化的可能性及對硫酸鹽木質(zhì)素液體油得率的影響,發(fā)現(xiàn)在反應(yīng)溫度為180℃時(shí),生物油的得率隨反應(yīng)時(shí)間的延長而增加,與此同時(shí),加入Ca(OH)2有助于提高液化產(chǎn)物的得率。Pińkowska等[16]探討了在亞臨界和超臨界水條件下溫度對堿木質(zhì)素降解的影響,發(fā)現(xiàn)溫度的升高促進(jìn)了木質(zhì)素的解聚和再聚合。研究者不僅對水熱條件下液體產(chǎn)物有所研究,同時(shí),對生成的固體焦炭也進(jìn)行了探索。Sasaki等[17]研究了堿木質(zhì)素在近臨界和超臨界水中得到的主要液體產(chǎn)物為單體化合物,也發(fā)現(xiàn)了在降解過程中,焦炭功能基的分布發(fā)生了很大變化;Hu等[18]研究了黑液中木質(zhì)素在280~365℃反應(yīng)下焦炭的物理形態(tài)、得率、熱穩(wěn)定性和功能基的變化,發(fā)現(xiàn)在330℃條件下獲得的焦炭具有最大的比表面積和孔隙度,同時(shí)X射線檢測表明較高溫度條件下制備的焦炭具有較高的結(jié)晶度。Yang等[19]研究了玉米芯木質(zhì)素的水熱降解,分析了溫度和時(shí)間對五大降解產(chǎn)物(氣體、揮發(fā)性有機(jī)化合物、水溶性油、重油和固體殘?jiān)?的影響,結(jié)果表明,得到的重油可以用于酚醛樹脂的合成,但水熱降解得到的液體產(chǎn)物種類較多,不易分離提純及后續(xù)利用,因此存在一定局限。

      除水熱體系降解外,一些學(xué)者采用有機(jī)溶劑對木質(zhì)素進(jìn)行降解,研究較多的為醇類,醇溶劑的使用具有以下優(yōu)點(diǎn):1)醇的存在可促進(jìn)木質(zhì)素降解為可回收的液體燃料;2)木質(zhì)素和低分子量的木質(zhì)素產(chǎn)物可以較好地溶解在醇-水介質(zhì)中,避免再聚合;3)低沸點(diǎn)醇易于后續(xù)分離和回收利用。因此,醇-水共混溶劑得到了廣泛關(guān)注。Ye等[20]對乙醇-水混合溶液中水熱解聚棉桿木質(zhì)素進(jìn)行了研究,發(fā)現(xiàn)所得產(chǎn)物主要以雜環(huán)和酚型結(jié)構(gòu)為主,且反應(yīng)條件(時(shí)間、溫度及乙醇濃度)對液體產(chǎn)物均有較大影響;Cheng等[21]先后研究了生物質(zhì)在亞/超臨界醇和醇-水混合溶劑中的高效液化降解,認(rèn)為50%的醇水混合溶液可以使生物質(zhì)有效液化,獲得的生物油產(chǎn)物主要以酚型化合物及其衍生物為主,其次為醛、長鏈酮及醇和有機(jī)酸等化合物。Hu和Ni等[22-23]對毛竹生物質(zhì)在乙醇溶劑中的反應(yīng)進(jìn)行了研究,得到木質(zhì)素轉(zhuǎn)化成酚的優(yōu)化條件,同時(shí)避免了纖維素和半纖維素的轉(zhuǎn)化,并解析了木質(zhì)素側(cè)鏈C—C鍵斷裂的機(jī)理。除乙醇外,其他有機(jī)溶劑也被嘗試應(yīng)用。Saisu等[24]分析木質(zhì)素在超臨界水-苯酚混合溶劑中轉(zhuǎn)化的結(jié)果表明,苯酚能夠促進(jìn)木質(zhì)素分解為低分子片斷,但苯酚可與降解產(chǎn)物反應(yīng),生成烷基苯酚。Yuan等[25]研究了稻草在乙醇-水和2-異丙醇-水溶液中的亞/超臨界液化,結(jié)果表明當(dāng)2-異丙醇與水溶液體積比為1∶1時(shí),所獲的生物油最大得率為39.7%。同時(shí),Jiang等[26]利用水-四氫呋喃溶劑將玉米芯殘?jiān)心举|(zhì)素高得率、高選擇性地轉(zhuǎn)化成了單酚類化合物。

      近年來,研究發(fā)現(xiàn)離子液體具有較好的溶解纖維素能力,為生產(chǎn)各種新的化合物提供了平臺[27]。同時(shí),一些學(xué)者對木質(zhì)素在離子液體中的降解過程及機(jī)理也進(jìn)行了研究[28-29]。Cox等[30]分析了相同陽離子不同陰離子的離子液體對木質(zhì)素模型物的降解,發(fā)現(xiàn)反應(yīng)不僅與離子液體的酸性有關(guān),同時(shí)也與陰離子的性質(zhì)有關(guān)(圖1)[30],而Hart等[31]就離子液體中陰、陽離子對木質(zhì)素溶解性的影響進(jìn)行了研究,發(fā)現(xiàn)陽離子的影響遠(yuǎn)大于陰離子。Zakzeski等[32]研究了不同提取木質(zhì)素和木質(zhì)素模型物在離子液體、過渡金屬和分子氧存在下的氧化降解反應(yīng),對反應(yīng)溫度、氧壓和NaOH的用量等因素均進(jìn)行了探究,發(fā)現(xiàn)六水氯化鈷在所用的離子液體中對氧化反應(yīng)較為有效。除離子液體與水混合外,還有一些離子液體共混溶劑逐漸被用于生物質(zhì)降解反應(yīng),如二甲亞砜[33],但離子液體成本高仍是限制其廣泛使用的瓶頸問題之一。在3種體系中,水熱體系由于其經(jīng)濟(jì)、環(huán)保的特點(diǎn)最具發(fā)展前景,但在處理過程中如何避免焦炭生成是需要解決的主要問題。

      圖1 離子液體中β-O-4′芳基醚的斷裂機(jī)理Fig. 1 Mechanism of β-O-4′ aryl ether bond cleavage in ionic liquids

      2 木質(zhì)素化學(xué)降解常用催化劑

      木質(zhì)素催化轉(zhuǎn)化為化學(xué)品是當(dāng)前研究的熱點(diǎn)領(lǐng)域之一。催化劑的存在可提高木質(zhì)素的轉(zhuǎn)化率,抑制木質(zhì)素大分子縮合及焦炭的生成。一般情況下,催化劑會選擇性地?cái)嗔涯举|(zhì)素單元之間連接鍵,從而能夠高選擇性獲得某一類特定化合物。普通的催化劑有液體酸,如H2SO4、HCl、H3PO4等,這些液體酸的催化活性較高,但大量使用消費(fèi)較高,因?yàn)樵撨^程會導(dǎo)致設(shè)備嚴(yán)重被腐蝕,且廢酸的分離和中和成本高[34]。同時(shí),堿催化劑(KOH和NaOH)在木質(zhì)素降解過程中也表現(xiàn)出較好效果,該過程被稱為堿性催化解聚[35-37]。近年來,諸多學(xué)者致力于開發(fā)用于生物質(zhì)解聚的固體催化劑,如全氟磺酸、大孔樹脂、磺酸化的無定形碳、介孔二氧化硅、H形沸石(HZSM-5)和雜多酸,甚至金屬氧化物(如γ-Al2O3)[38-41],其中固體的Br?nsted酸被認(rèn)為是一種有效的催化劑[42]。有研究使用酸性金屬鹽作為催化劑,如金屬氯化物[43],研究表明FeCl3、CuCl2和 AlCl3為斷裂愈創(chuàng)木基(G)-愈創(chuàng)木基(G)單元間β-O-4′鍵的有效催化劑。在FeCl3和CuCl2共存時(shí),溫度為150℃、反應(yīng)時(shí)間為120 min條件下 GG(愈創(chuàng)木基-愈創(chuàng)木基單元)的轉(zhuǎn)化率為100%,約70%的β-O-4′鍵被水解轉(zhuǎn)化為愈創(chuàng)木酚;而單獨(dú)使用AlCl3做催化劑時(shí),在GG結(jié)構(gòu)中約80%的β-O-4′鍵被水解,同時(shí)也證實(shí)了AlCl3在斷裂紫丁香基(V)-愈創(chuàng)木基(G)的β-O-4′鍵時(shí)比FeCl3和CuCl2更有效。在使用AlCl3作催化劑,反應(yīng)溫度為150℃、反應(yīng)時(shí)間240 min時(shí), VG(紫丁香基-愈創(chuàng)木基單元)約有75%的β-O-4′鍵被水解,表明該種酸性催化劑的催化活性與金屬氯化物水解原位形成的HCl有關(guān)[44]。

      除上述催化劑,還有各種重金屬催化劑、賦予金屬功能的離子液體和基于鐵、鈷、鎳的復(fù)合催化劑等。近年來,自行合成的復(fù)合催化劑頗受關(guān)注,主要包括有機(jī)或無機(jī)的金屬復(fù)合催化劑,如Ni/C,Cu/MgO-Al2O3、Ni-SIPr等[45-47]。Ye等[48]研究了酶解玉米稈木質(zhì)素的溫和水解(溫度200~250℃),在使用Ru/C,Pt/C或 Pd/C作催化劑時(shí),產(chǎn)物中主要組分為4-乙基苯酚(3.1%)和4-乙基愈創(chuàng)木酚(1.4%)。Toledano等[49]將金屬納米粒子鎳(Ni)、鈀(Pd)、鉑(Pt)和釕(Ru)負(fù)載在Al-SBA-15上,在微波條件下對有機(jī)溶劑木質(zhì)素進(jìn)行了處理,結(jié)果表明,采用Ni或Pd作為催化劑時(shí),主要產(chǎn)物為鄰苯二甲酸二乙酯。Song等[50]研究了在常用的醇類溶劑中添加Ni/C催化劑降解木質(zhì)素的效果,發(fā)現(xiàn)在該過程中Ni基催化劑可提高反應(yīng)活性和選擇性,在木質(zhì)素轉(zhuǎn)化率為50%時(shí)生成單體酚的選擇性最高可達(dá)97%,同時(shí),該催化劑能夠通過磁性分離循環(huán)回收,并具有較好的循環(huán)回用能力。因此,復(fù)合型的金屬催化劑,不僅可使反應(yīng)在較溫和的條件下進(jìn)行,而且還能夠提高催化劑的選擇性、穩(wěn)定性和效率,同時(shí)可回收再用,具有廣闊的應(yīng)用前景。

      3 木質(zhì)素催化還原降解

      木質(zhì)素的還原降解易于生成一些簡單的芳香族化學(xué)品,因此氫解是目前從木質(zhì)素中生產(chǎn)酚類較有前景的方法。與熱裂解相比,氫解的凈轉(zhuǎn)化率及單體酚得率更高,同時(shí)生成的焦炭更少。氫解過程為利用高溫加壓的分子氫在適當(dāng)催化劑存在條件下,對木質(zhì)素進(jìn)行解聚和加氫脫氧。Meier等[51]研究了氣體氫環(huán)境下使用NiMo鋁硅酸鹽催化劑對木質(zhì)素進(jìn)行催化氫解,獲得的液體油得率為65%,發(fā)現(xiàn)氫氣壓力對轉(zhuǎn)化率有顯著影響,隨氫壓從5 MPa升至14 MPa,輕質(zhì)油的得率從20%增至57%,而酚類組分從7.0%增至12.3%,同時(shí)氫的存在還能夠抑制焦炭的生成。Thring等[52]的研究結(jié)果表明,增加氫壓不僅能提高凈轉(zhuǎn)化率,而且可顯著降低殘?jiān)?,相似的結(jié)果也被Meier等[53]發(fā)現(xiàn),當(dāng)氫壓從5 MPa增至14 MPa時(shí),剩余殘?jiān)繌?2.0%降為1.9%。

      基于安全等方面考慮,也有研究者選用其他可替代的液體氫解試劑。目前已有一些文獻(xiàn)報(bào)道利用甲酸作為氫解試劑進(jìn)行木質(zhì)素降解、氫解反應(yīng)[54-55],不僅可減少木質(zhì)素縮合,還能夠促進(jìn)木質(zhì)素還原產(chǎn)物的生成。在一定反應(yīng)條件下,甲酸加熱后會完全分解為CO2和活性氫,與木質(zhì)素甲氧基的氧結(jié)合可生成水(圖2)[54]。

      括號內(nèi)為T值,調(diào)整后的R2為0.2240,F(xiàn)值為7.35,并在5%顯著水平下通過檢驗(yàn)。由結(jié)果可知資本產(chǎn)出彈性α=0.6454,勞動產(chǎn)出彈性為0.3546。因?yàn)槎A差分后,弱化了常數(shù)項(xiàng),所以常數(shù)項(xiàng)并不顯著。將α值代入(3)式,即可得全要素生產(chǎn)率的增長率,結(jié)果見表2。

      因解聚和加氫脫氧同

      時(shí)進(jìn)行,所以該溶劑分解反應(yīng)可以一步生成低氧含量的單體。除甲酸外,一些可提供還原氫的醇、四氫化萘等也被用于木質(zhì)素氫解,既作為溶劑也作為供氫體。Davoudzadeh等[56]采用苯酚做溶劑,利用四氫化萘對木質(zhì)素進(jìn)行氫解,并與木質(zhì)素的裂解進(jìn)行對比,結(jié)果表明氫解后的液體得率提高顯著。Kudsy等[57]也對四氫化萘在氫解過程中的作用進(jìn)行了探討,添加四氫化萘增加了酚類化合物的得率,但對氣體產(chǎn)率沒有顯著影響。

      圖2 甲酸存在時(shí)木質(zhì)素的分解和脫甲氧基過程Fig. 2 Scheme of lignin decomposition and demethoxylation in the presence of formic acid

      除還原劑外,在反應(yīng)過程中添加不同的催化劑能夠提高木質(zhì)素氫解的程度,從而進(jìn)一步提高目標(biāo)產(chǎn)物的得率。近年來,研究者們已提出了各種利用均相、異相、有機(jī)或無機(jī)還原性催化劑促進(jìn)氫解的反應(yīng)。Sergeev等[58]闡述了一種用Ni(COD)2和N-雜環(huán)碳烯原位合成的催化劑高效實(shí)現(xiàn)木質(zhì)素模型物選擇性斷裂連接鍵的方法。堿的加入可抑制芳環(huán)的氫解,該方法能夠適用于大量的含取代基的二芳醚,對帶有吸電子基的底物效果最好。用不帶穩(wěn)定配體的鎳作前驅(qū)體,也可以實(shí)現(xiàn)富電子芳醚的有效斷裂,同時(shí)產(chǎn)生鎳的納米粒子[59]。與二芳基底物相比,芳基烷基醚鍵裂解速率較低。使用氘示蹤的烷基芳基醚的研究結(jié)果表明,底物斷裂的機(jī)理為鎳對芳環(huán)體系的配位引起C—O的嵌入和β-H消除,釋放出甲醛,產(chǎn)生芳基-鎳氫化物,最后經(jīng)還原消除生成了脫氧的芳香族化合物(圖3)[58-60]。

      圖3 鎳基催化體系下木質(zhì)素二芳醚模型物的裂解Fig. 3 Diaryl ether lignin model compounds cleaved by nickel catalyst systems

      一種異相的Pd/C/Zn催化劑可導(dǎo)致木質(zhì)素模型物中β-芳基醚鍵的斷裂[61],在催化劑用量(質(zhì)量分?jǐn)?shù))為5%、氫壓為2 MPa 的甲醇溶劑中,木質(zhì)素二聚體模型物β-O-4′醚鍵發(fā)生斷裂,生成的丙基愈創(chuàng)木酚和愈創(chuàng)木酚得率為85%,還有少量醇的副產(chǎn)物;在上述條件下還探索了高聚合度木質(zhì)素模型物的氫解,結(jié)果表明得到的丙基愈創(chuàng)木酚和愈創(chuàng)木酚為主要產(chǎn)物,得率分別為56%和44%(圖4)[61]。

      圖4 使用Zn/Pd/C催化劑時(shí)β-芳基醚鍵的氫解斷裂Fig. 4 β-aryl ether hydrogenolysis over a Zn/Pd/C catalyst

      在各類還原性催化劑中,金屬催化劑備受關(guān)注。單金屬催化劑較早被研究應(yīng)用,一般分為貴金屬和非貴金屬催化劑。貴金屬通常負(fù)載在一些載體上,如活性炭、二氧化硅、氧化鋁,以提高分散性。研究表明,在乙醇/水溶液中,溫度為275℃,氫壓為2 MPa,使用Ru/C、Pd/C和Pt/C催化劑反應(yīng)1.5 h,可以從玉米稈和竹子木質(zhì)素中高選擇性地得到4-乙基酚類[62]。雖然貴金屬催化劑效果較好,但價(jià)格昂貴,而且會引起苯環(huán)氫化,降低芳香化合物的得率。因此,非貴金屬如Fe、Cu和Ni也被作為木質(zhì)素氫解的催化劑。異相的FeMoP催化劑對于芳基醚和酚的氫解,特別是β-O-4′化合物具有較高選擇性[63]。

      近年來,研究發(fā)現(xiàn)添加第二種金屬形成雙金屬催化劑有益于改進(jìn)催化劑的幾何和電子特性,兩種金屬的協(xié)同作用可以提高催化活性、選擇性及穩(wěn)定性。多種Ni基雙金屬催化劑能夠在水中將β-O-4′模型物氫解成2-苯氧基-1-苯乙醇產(chǎn)物。與單組份Ni催化劑相比,NiAu、NiRu、NiRh和NiPd增強(qiáng)了催化效果,可顯著提高催化活性及選擇性。在測試的雙金屬催化劑中,NiAu的效果最好,但單金屬Au催化劑在氫解中完全無效(圖5)[64]。通過優(yōu)化,Ni7Au3可使β-O-4′模型物在溫和條件下(水相,130℃,氫壓1 MPa,1 h)定量轉(zhuǎn)化得到87%的單體得率。

      圖5 使用純Ni和雙金屬NiM催化劑的二聚體和單體得率Fig. 5 Dimer and monomer yields for pure Ni and bimetallic NiM catalysts

      4 木質(zhì)素催化氧化降解

      木質(zhì)素由于羥基、芳基醚鍵的存在能夠發(fā)生氧化和氧化裂解,基于不同反應(yīng)條件,木質(zhì)素通過氧化降解反應(yīng)可生成一些芳香醛、酮或羧酸類化合物,有益于木質(zhì)素進(jìn)一步工業(yè)化利用。目前,可利用的氧化劑有很多種,但由于過度氧化,要在保持較高轉(zhuǎn)換價(jià)值的同時(shí)得到選擇性高的產(chǎn)物仍面臨巨大挑戰(zhàn),因此氧化型催化劑得到了廣泛研究和應(yīng)用。

      最為常用的氧化劑是氣體氧。此外,硝基苯、金屬氧化物、過氧化氫等也是較受關(guān)注的氧化劑。Xiang等[62]研究了在水相介質(zhì)中使用過氧化氫對木質(zhì)素進(jìn)行非催化氧化裂解。在堿性和酸性環(huán)境中,主要產(chǎn)物均包括單體和二羧酸,但所需反應(yīng)條件不同。在堿性條件下木質(zhì)素更易溶解,在溫度為120℃、反應(yīng)時(shí)間為5 min時(shí),通過過氧化氫降解能使轉(zhuǎn)化率達(dá)到98%;而在酸性條件下,溫度為160℃、反應(yīng)時(shí)間為10 min時(shí),產(chǎn)物最高得率為97.4%。同時(shí),在堿性環(huán)境下產(chǎn)物中較多乙二酸和甲酸;而在酸性環(huán)境下多產(chǎn)生甲酸和乙酸,但產(chǎn)物中香草醛、紫丁香醛或其他芳香醛、酸含量較少,這表明過氧化氫氧化作用較強(qiáng)。

      相比較而言,硝基苯、金屬氧化物和氧氣是較溫和的氧化劑,能保留木質(zhì)素芳環(huán)并生產(chǎn)芳香醛。采用硝基苯作氧化劑的研究結(jié)果表明,使用硫酸鹽木質(zhì)素轉(zhuǎn)化為香草醛的得率約為13%~14%[65-66]。硝基苯雖然是有效的氧化劑,但也為致癌物,因此,Masingale等[67]研究了用Cu2+、Fe3+或組合的金屬有機(jī)結(jié)構(gòu)作為氧化劑以代替木質(zhì)素氧化中的硝基苯。此外,研究表明,使用分子氧作為氧化劑,可從水解的木質(zhì)素、堿木質(zhì)素和硫酸鹽木質(zhì)素中分別得到14.4%,8.0%和3.5%的醛結(jié)構(gòu)[68],同時(shí)隨氧壓增加,水解木質(zhì)素的催化氧化可得到更多醛結(jié)構(gòu)。然而,研究發(fā)現(xiàn)在酸性條件下利用分子氧進(jìn)行木質(zhì)素氧化是不合理的。如Gon?alves等[69]在酸性條件下進(jìn)行了有機(jī)溶劑木質(zhì)素的催化氧化反應(yīng),結(jié)果表明醛的得率較低,因此目前研究較多的為木質(zhì)素的堿性氧化,Tarabanko等[70]提出了木質(zhì)素堿性氧化成香草醛的機(jī)理,如圖6所示。

      圖6 木質(zhì)素堿性氧化成香草醛的反應(yīng)機(jī)理Fig. 6 Reaction mechanism for vanillin formation during alkaline oxidation of lignin

      Badamali等[73]闡述了微波輻射條件下,以介孔MCM-41、HMS、SBA-15和無定形氧化硅作為催化劑,過氧化氫為氧化劑和乙腈為溶劑來氧化4-羥基-3-甲氧基苯乙醇的方法。結(jié)果表明,在30 min輻射后,該體系中生成了香草乙酮、香草醛和2-甲氧基苯醌,并發(fā)現(xiàn)其中無定形氧化硅活性很強(qiáng),但缺乏選擇性(圖7)[73]。

      Tonucci等[74]對不同光催化體系實(shí)現(xiàn)木質(zhì)素脂肪族C—C鍵的選擇性斷裂并保留芳環(huán)進(jìn)行了研究,結(jié)果表明,兩種商業(yè)的鈣基和氨基木質(zhì)素衍生物在H2O2存在條件下主要生成了香草醛和松柏醛,同時(shí),松柏醇、苯酚、2-羥基苯甲醇和水楊醛也被檢測到。Hanson等[75]分析了釩基催化劑對木質(zhì)素鍵的選擇性斷裂。在二醇模型體系中的研究表明,在有氧條件下能夠?qū)崿F(xiàn)鍵的裂解,同時(shí)其他模型物也可發(fā)生氧化斷裂,且苯基取代基促進(jìn)了反應(yīng)[76]。Son等[77]報(bào)道了用催化劑[V1]可實(shí)現(xiàn)β-O-4′鍵有效斷裂,同時(shí)其他釩催化劑也被發(fā)現(xiàn)可引起木質(zhì)素模型物連接鍵選擇性斷裂[78]。采用13C示蹤木質(zhì)素二聚模型物發(fā)現(xiàn),釩催化劑能夠引發(fā)不同位置的氧化鍵裂[79]。釩催化劑[V2]打斷了芐基的C—C鍵,生成了2,6-二甲氧基苯醌和相應(yīng)的醛,相反,釩催化劑[V1]導(dǎo)致了C—O鍵的選擇性斷裂。此外,研究還發(fā)現(xiàn)使用催化劑[V2]打斷芐基的C—C鍵僅限于酚型的底物(圖8)[77-79]。

      圖7 介孔氧化硅催化氧化4-羥基-3-甲氧基苯乙醇Fig. 7 Oxidation of apocynol over mesoporous silica catalysts

      圖8 兩種不同的釩基催化劑對β-O-4′木質(zhì)素模型物的選擇性氧化斷裂Fig. 8 Selective oxidative cleavage of a β-O-4′ lignin model using two different vanadium based catalysts

      5 展 望

      木質(zhì)素是由苯丙烷基以C—O或C—C鍵結(jié)合形成的三維網(wǎng)狀結(jié)構(gòu),富含芳環(huán)的結(jié)構(gòu)特性使得木質(zhì)素成為制備芳香類化學(xué)品的重要原料,基于化學(xué)催化手段將其高效轉(zhuǎn)化為高值產(chǎn)品具有廣泛研究前景。盡管有關(guān)木質(zhì)素催化降解方面的研究已取得了顯著進(jìn)展,但該領(lǐng)域研究尚存在諸多未解決的問題,學(xué)者探索的多種木質(zhì)素催化降解催化劑和反應(yīng)體系,普遍存在反應(yīng)條件苛刻(高溫和高壓)、反應(yīng)轉(zhuǎn)化率低、目標(biāo)產(chǎn)物選擇性差等缺點(diǎn);在溶劑選擇方面,水熱體系由于其經(jīng)濟(jì)、環(huán)保的特點(diǎn)最具發(fā)展前景,但在處理過程中如何避免焦炭生成是急需解決的問題;而催化劑仍以過渡金屬及貴金屬為主,價(jià)格昂貴且容易失活。因此,如何開發(fā)高效低成本催化劑,利用溫和反應(yīng)體系,在保證產(chǎn)物得率和選擇性的同時(shí),不損失催化劑的穩(wěn)定性和活性,是木質(zhì)素大分子高效轉(zhuǎn)化與利用所面臨的較大挑戰(zhàn)。

      [ 1 ]GUO D J, CHEN F, KENTARO I. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. Plant Cell, 2001, 13:73-88.

      [ 2 ]WANG H, BLOCK L E, ROGERS R D. Catalytic conversion of biomass in ionic liquids[J]. RSC Catalysis, 2014(15):1-19.

      [ 3 ]BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Physiology, 2003, 54:519-546.

      [ 4 ]ZHONG R Q, MORRISON W H, HIMMELSBACH D S. Essential role of caffeoyl coenzyme a O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiol, 2000, 124:563-577.

      [ 5 ]SAIDI M, SAMIMI F, KARIMIPOURFARD D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2014, 7(1):103-129.

      [ 6 ]王翔, 蔣帥南, 陳敏智, 等. 木質(zhì)素基碳纖維研究進(jìn)展[J]. 林業(yè)工程學(xué)報(bào), 2016, 1(1):83-87. WANG X, JIANG S N, CHEN M Z, et al. Review of research progress on lignin-based carbon fibers[J]. Journal of Forestry Engineering, 2016, 1(1):83-87.

      [ 7 ]RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization:improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185):1246843.

      [ 8 ]ZHANG L, YOU T, TIAN Z, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22):13918-13925.

      [ 9 ]PANDEY M P, KIM C S. Lignin depolymerization and conversion:a review of thermochemical methods[J]. Chemical Engineering & Technology, 2011, 34(1):29-41.

      [10]CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nature Biotechnology, 2007, 25:759-761.

      [11]FU C, MIELENZ J R, XIAO X. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass[J]. Proceedings of the National Academy of Sciences, 2011, 108:3803-3808.

      [12]CHATEL G, ROGERS R D.Review:oxidation of lignin using ionic liquids:an innovative strategy to produce renewable chemicals[J]. ACS Sustainable Chemistry and Engineering, 2013, 2(3):322-339.

      [13]ZHOU X F. Conversion of kraft lignin under hydrothermal conditions[J]. Bioresource Technology, 2014, 170:583-586.

      [14]KARAG?Z S, BHASKAR T, MUTO A, et al. Low-temperature hydrothermal treatment of biomass:effect of reaction parameters on products and boiling point distributions[J]. Energy & Fuels, 2004, 18(1):234-241.

      [15]YUAN Z, CHENG S, LEITCH M, et al. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresource Technology, 2010, 101(23):9308-9313.

      [17]SASAKI W M, GOTO M.Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(9):1609-1619.

      [18]HU J, SHEN D, WU S,et al. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106:118-124.

      [19]YANG S, YUAN T Q, LI M F, et al. Hydrothermal degradation of lignin:products analysis for phenol formaldehyde adhesive synthesis[J]. International Journal of Biological Macromolecules, 2015, 72:54-62.

      [20]YE Y, FAN J, CHANG J. Effect of reaction conditions on hydrothermal degradation of cornstalk lignin[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94:190-195.

      [21]CHENG S, D’CRUZ I, WANG M, et al. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy & Fuels, 2010, 24(9):4659-4667.

      [22]HU L, LUO Y, CAI B,et al. The degradation of the lignin inPhyllostachysheterocyclacv.pubescensin an ethanol solvothermal system[J]. Green Chemistry, 2014, 16(6):3107-3116.

      [23]NI Y, HU Q. Alcell lignin solubility in ethanol-water mixtures[J]. Journal of Applied Polymer Science, 1995, 57(12):1441-1446.

      [24]SAISU M, SATO T, WATANABE M,et al. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy & Fuels, 2003, 17(4):922-928.

      [25]YUAN X Z, LI H, ZENG G M,et al. Sub-and supercritical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture[J]. Energy, 2007, 32(11):2081-2088.

      [26]JIANG Z, HE T, LI J,et al. Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity[J]. Green Chemistry, 2014, 16(9):4257-4265.

      [27]YU H M, HU J, FAN J, et al. One-pot conversion of sugars and lignin in ionic liquid and recycling of ionic liquid[J]. Industrial & Engineering Chemistry Research, 2012, 51:3452-3457.

      [28]COX B J, EKERDT J G. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst[J]. Bioresource Technology, 2012, 118:584-588.

      [29]DAI J, PATTI A F, SAITO K. Recent developments in chemical degradation of lignin:catalytic oxidation and ionic liquids[J]. Tetrahedron letters, 2016,57(45):4945-4951.

      [30]COX B J, JIA S, ZHANG Z C,et al. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids:Hammett acidity and anion effects[J]. Polymer Degradation and Stability, 2011, 96(4):426-431.

      [31]HART W E, HARPER J B, ALDOUS L. The effect of changing the components of an ionic liquid upon the solubility of lignin[J]. Green Chemistry, 2015, 17(1):214-218.

      [32]ZAKZESKI J, JONGERIUS A L, WECKHUYSEN B M.Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids[J]. Green Chemistry, 2010, 12(7):1225-1236.

      [33]ANDANSON J M, BORDES E, DEVéMY J, et al. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids[J]. Green Chemistry, 2014, 16(5):2528-2538.

      [34]ZHOU C H, XIA X, LIN C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11):5588-5617.

      [35]MILLER J E, EVANS L, LITTLEWOLF A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J]. Fuel, 1999, 78(11):1363-1366.

      [36]WATANABE M, INOMATA H, OSADA M, et al. Catalytic effects of NaOH and ZrO2for partial oxidative gasification of n-hexadecane and lignin in supercritical water[J]. Fuel, 2003, 82(5):545-552.

      [37]NENKOVA S, VASILEVA T, STANULOV K. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass[J]. Chemistry of Natural Compounds, 2008, 44(2):182-185.

      [38]VYVER S V D, PENG L, GEBOERS J, et al. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J]. Green Chemistry, 2010, 12(9):1560-1563.

      [39]HEGNER J, PEREIRA K C, DEBOEF B, et al. Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis[J]. Tetrahedron Letters, 2010, 51(17):2356-2358.

      [40]SUGANUMA S, NAKAJIMA K, KITANO M, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups[J]. Journal of the American Chemical Society, 2008, 130(38):12787-12793.

      [41]TIAN J, WANG J, ZHAO S, et al. Hydrolysis of cellulose by the heteropoly acid H3PW12O40[J]. Cellulose, 2010, 17(3):587-594.

      [42]DHEPE P L, OHASHI M, INAGAKI S, et al. Hydrolysis of sugars catalyzed by water-tolerant sulfonated mesoporous silicas[J]. Catalysis Letters, 2005, 102(3-4):163-169.

      [43]WU M, ZHAO D H, PANG J H, et al. Separation and characterization of lignin obtained by catalytic hydrothermal pretreatment of cotton stalk[J]. Industrial Crops and Products, 2015, 66:123-130.

      [44]JIA S, COX B J, GUO X, et al. Hydrolytic cleavage ofβ-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides[J]. Industrial & Engineering Chemistry Research, 2010, 50(2):849-855.

      [45]SONG Q, CAI J, ZHANG J, et al. Hydrogenation and cleavage of the CO bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst[J]. Chinese Journal of Catalysis, 2013, 34(4):651-658.

      [46]STRASSBERGER Z, ALBERTS A H, LOUWERSE M J, et al. Catalytic cleavage of ligninβ-O-4 link mimics using copper on alumina and magnesia-alumina[J]. Green Chemistry, 2013, 15(3):768-774.

      [47]SAWATLON B, WITITSUWANNAKUL T, TANTIRUNGROTECHAI Y, et al. Mechanism of Ni N-heterocyclic carbene catalyst for C—O bond hydrogenolysis of diphenyl ether:a density functional study[J]. Dalton Transactions, 2014, 43(48):18123-18133.

      [48]YE Y, ZHANG Y, FAN J, et al. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis[J]. Bioresource Technology, 2012, 118:648-651.

      [49]TOLEDANO A, SERRANO L, PINEDA A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis:catalyst screening[J]. Applied Catalysis B:Environmental, 2014, 145:43-55.

      [50]SONG Q, WANG F, CAI J, et al. Lignin depolymerization(LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6(3):994-1007.

      [51]MEIER D, ANTE R, FAIX O. Catalytic hydropyrolysis of lignin:influence of reaction conditions on the formation and composition of liquid products[J]. Bioresource Technology, 1992, 40(2):171-177.

      [52]THRING R W, BREAU J. Hydrocracking of solvolysis lignin in a batch reactor[J]. Fuel, 1996, 75(7):795-800.

      [53]MEIER D, BERNS J, GRüNWALD C, et al. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of organocell lignin[J]. Journal of Analytical and Applied Pyrolysis, 1993, 25:335-347.

      [54]XU W, MILLER S J, AGRAWAL P K, et al. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid[J]. Chemsuschem, 2012, 5(4):667-675.

      [55]TOLEDANO A, SERRANO L, BALU A M, et al. Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds[J]. Chemsuschem, 2013, 6(3):529-536.

      [56]DAVOUDZADEH F, SMITH B, AVNI E, et al. Depolymerization of lignin at low pressure using Lewis acid catalysts and under high pressure using hydrogen donor solvents[J]. Holzforschung, 1985, 39(3):159-166.

      [57]KUDSY M, KUMAZAWA H, SADA E. Pyrolysis of kraft lignin in molten ZnCl2-KCl media with tetralin vapor addition[J]. The Canadian Journal of Chemical Engineering, 1995, 73(3):411-415.

      [58]SERGEEV A G, HARTWIG J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332:439-443.

      [59]SERGEEV A G, WEBB J D, HARTWIG J F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(50):20226-20229.

      [60]KELLEY P, LIN S, EDOUARD G, et al. Nickel-mediated hydrogenolysis of C—O bonds of aryl ethers:what is the source of the hydrogen?[J]. Journal of the American Chemical Society, 2012, 134(12):5480-5483.

      [61]PARSELL T H, OWEN B C, KLEIN I, et al.Cleavage and hydrodeoxygenation(HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chemical Science, 2013, 4(2):806-813.

      [62]XIANG Q, LEE Y Y. Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide[J]. Applied Biochemistry and Biotechnology, 2000, 84(1-9):153-162.

      [63]RENSEL D J, ROUVIMOV S, GIN M E, et al. Highly selective bimetallic FeMoP catalyst for C-O bond cleavage of aryl ethers[J]. Journal of Catalysis, 2013, 305:256-263.

      [64]ZHANG J, ASAKURA H, VAN RIJN J, et al. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chemistry, 2014, 16(5):2432-2437.

      [65]MATHIAS A L, RODRIGUES A E. Production of vanillin by oxidation of pine kraft lignins with oxygen[J]. Holzforschung, 1995, 49(3):273-278.

      [66]VILLAR J C, CAPEROS A, GARCA-OCHOA F. Oxidation of hardwood kraft-lignin to phenolic derivatives. Nitrobenzene and copper oxide as oxidants[J]. Journal of Wood Chemistry and Technology, 1997, 17(3):259-285.

      [67]MASINGALE M P, ALVES E F, BOSE S K, et al. An oxidant to replace nitrobenzene in lignin analysis[J]. Bioresources, 2009, 4(3):1139-1146.

      [68]XIANG Q, LEE Y Y. Production of oxychemicals from precipitated hardwood lignin[J]. Applied Biochemistry and Biotechnology, 2001, 91:71-80.

      [69]GON?ALVES A R, SCHUCHARDT U. Oxidation of organosolv lignins in acetic acid [C].∥ Twentieth Symposium on Biotechnology for Fuels and Chemicals. Clifton, New Jersey: Humana Press, 1999:127-132.

      [70]TARABANKO V E, PETUKHOV D V, SELYUTIN G E. New mechanism for the catalytic oxidation of lignin to vanillin[J]. Kinetics and Catalysis, 2004, 45(4):569-577.

      [71]PAN K, TIAN M, JIANG Z H, et al. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2nanotube arrays[J]. Electrochimica Acta, 2012, 60:147-153.

      [72]SHIRAISHI T, TAKANO T, KAMITAKAHARA H, et al. Studies on electrooxidation of lignin and lignin model compounds. Part 1:direct electrooxidation of non-phenolic lignin model compounds[J]. Holzforschung, 2012, 66(3):303-309.

      [73]BADAMALI S K, LUQUE R, CLARK J H, et al. Unprecedented oxidative properties of mesoporous silica materials:towards microwave-assisted oxidation of lignin model compounds[J]. Catalysis Communications, 2013, 31:1-4.

      [74]TONUCCI L, COCCIA F, BRESSAN M, et al. Mild photocatalysed and catalysed green oxidation of lignin:a useful pathway to low-molecular-weight derivatives[J]. Waste and Biomass Valorization, 2012, 3(2):165-174.

      [75]HANSON S K, BAKER R T, GORDON J C, et al. Aerobiccxidation of pinacol by vanadium(V) dipicolinate complexes:evidence for reduction to vanadium(III)[J]. Journal of the American Chemical Society, 2008, 131(2):428-429.

      [76]HANSON S K, BAKER R T, GORDON J C, et al. Aerobic oxidation of lignin models using a base metal vanadium catalyst[J]. Inorganic Chemistry, 2010, 49(12):5611-5618.

      [77]SON S, TOSTE F D. Non-Oxidative vanadium-catalyzed C—O bond cleavage:application to degradation of lignin model compounds[J]. Angewandte Chemie International Edition, 2010, 49(22):3791-3794.

      [78]ZHANG G, SCOTT B L, WU R, et al. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands[J]. Inorganic Chemistry, 2012, 51(13):7354-7361.

      [79]HANSON S K, WU R, SILKS L A. C-C or C-O bond cleavage in a phenolic lignin model compound:selectivity depends on vanadium catalyst[J]. Angewandte Chemie International Edition, 2012, 51(14):3410-3413.

      Recent development on conversion of lignin intoaromatics based on catalytical depolymerization

      ZHANG Xueming, WU Miao, XU Feng*

      (CollegeofMaterialsScienceandTechnology,BeijingForestryUniversity,Beijing100083,China)

      Lignin is one of the three main components of lignocellulose and the most abundant natural aromatic polymer on the earth. Potentially lignin can be converted into high-value aromatic chemicals to replace the nonrenewable fossil resources by catalytical degradation. This research area has become one of the hottest topics in the related field. In this review, recent developments regarding the catalytical degradation of lignin are summarized. The types of reducing agents, oxidizing agents used in the catalytic reduction and oxidation reaction of lignin were discussed based on the mechanisms of catalytical reaction. The mechanism and aromatic products of these reaction systems were also summarized. Moreover, common solvents and catalysts used in lignin chemical degradation were discussed in detail. Finally, future outlook regarding the conversion of lignin into high-value chemicals were discussed. The development and synthesis of highly efficient and selective as well as cost efficient catalysts are the key points to break the bottleneck of this research field.

      lignin; degradation; catalyst; reduction; oxidation

      2016-11-28

      2017-01-14

      國家杰出青年科學(xué)基金(31225005);國家自然科學(xué)基金(31470606)。

      張學(xué)銘,男,教授,研究方向?yàn)樘烊划a(chǎn)物改性及有機(jī)合成。通信作者:許鳳,女,教授。E-mail:xfx315@bjfu.edu.cn

      TQ35

      A

      2096-1359(2017)04-0001-09

      猜你喜歡
      木質(zhì)素選擇性溶劑
      Keys
      低共熔溶劑在天然產(chǎn)物提取中的應(yīng)用
      硝呋太爾中殘留溶劑測定
      云南化工(2021年11期)2022-01-12 06:06:18
      木質(zhì)素增強(qiáng)生物塑料的研究進(jìn)展
      上海包裝(2019年8期)2019-11-11 12:16:14
      選擇性聽力
      一種改性木質(zhì)素基分散劑及其制備工藝
      天津造紙(2016年1期)2017-01-15 14:03:29
      液液萃取/高效液相色譜法測定豆干與腐竹中溶劑黃2及溶劑黃56
      一種新型酚化木質(zhì)素胺乳化劑的合成及其性能
      選擇性應(yīng)用固定物治療浮膝損傷的療效分析
      選擇性執(zhí)法的成因及對策
      县级市| 内丘县| 芜湖市| 睢宁县| 渭源县| 夏河县| 泰顺县| 宜宾县| 鄂托克前旗| 沙湾县| 双鸭山市| 阿坝县| 屏东县| 通河县| 平江县| 临夏市| 萝北县| 女性| 马鞍山市| 普安县| 通渭县| 石狮市| 庆城县| 五河县| 彭山县| 武清区| 澎湖县| 友谊县| 宁远县| 民县| 随州市| 胶南市| 灌南县| 清苑县| 吴忠市| 清新县| 阜南县| 巴彦县| 砀山县| 阳谷县| 贡山|