邵光輝,馮建挺,趙志峰,劉 鵬,李 澤,周寧娜
(1. 南京林業(yè)大學(xué)土木工程學(xué)院,南京 210037;2. 江蘇省水土保持與生態(tài)修復(fù)重點實驗室,南京 210037)
微生物砂漿防護粉土坡面的強度與抗侵蝕性影響因素分析
邵光輝1,2,馮建挺1,趙志峰1,2,劉 鵬1,2,李 澤1,周寧娜1
(1. 南京林業(yè)大學(xué)土木工程學(xué)院,南京 210037;2. 江蘇省水土保持與生態(tài)修復(fù)重點實驗室,南京 210037)
微生物砂漿表面防護處理是處理粉土邊坡?lián)P塵與水流侵蝕問題的新技術(shù)。采用微生物砂漿層對粉土表面進行防護處理試驗,通過微型貫入試驗、水穩(wěn)定性試驗以及模擬降雨沖刷試驗,分析了微生物砂漿防護層厚度、CaCl2和尿素混合膠結(jié)溶液濃度、噴灑處理遍數(shù)等參數(shù)變化對微生物砂漿表面防護層的強度、水穩(wěn)定性和土壤剝蝕率等性能的影響規(guī)律。結(jié)果表明,微型貫入儀可用于微生物砂漿表面防護層的強度測定,防護層的強度、水穩(wěn)定性隨膠結(jié)溶液濃度和噴灑處理遍數(shù)的增長而提高,最小有效厚度為5 mm。采用濃度為0.50 mol/L膠結(jié)溶液噴灑4遍,厚5 mm的防護層能夠達到貫入阻力310 kPa,防護強度比77.5,崩解率2.3%,浸水強度損失率5.4%,具備較高的強度和較好的抗崩解性與強度水穩(wěn)定性。粉土邊坡在微生物砂漿防護前后,土壤剝蝕率能夠從大于29.6降至6.8 g/(m2·s)以下。該研究表明,微生物砂漿層用于粉土表面防護具有較好的抗沖刷性;微生物誘導(dǎo)結(jié)晶的方解石形成包裹砂顆粒的膠結(jié)微結(jié)構(gòu),能夠使表面防護砂漿層具備良好的抗水流侵蝕性。
粉土;侵蝕;砂漿; 誘導(dǎo)碳酸鈣沉積;水穩(wěn)定性;土壤剝蝕率;防護工程
在中國東部沿海吹填造陸區(qū)和黃河下游流域地區(qū)廣泛分布的粉土具有結(jié)構(gòu)松散、易沖刷的特點[1],水土流失的防控一直是這些地區(qū)面臨的重要問題[2-3]。土顆粒間黏結(jié)力不足,難以抵抗水流剪切力是土壤侵蝕流失的重要原因[4],因此,增加土顆粒之間的黏結(jié)強度是提高土體抗侵蝕能力的重要手段,如向土中添加高分子聚合物能夠有效減少地表徑流和土壤流失[5-6]。而微生物固化松散土體是近年來發(fā)展起來的新技術(shù)[7],其基本原理是向松散土體中注入產(chǎn)脲酶微生物以及CaCl2和尿素的混合液,利用脲酶微生物促進尿素水解后產(chǎn)生CO32-,與Ca2+反應(yīng)生成CaCO3結(jié)晶,實現(xiàn)膠結(jié)松散土顆粒的目的。與當(dāng)前化學(xué)固化劑固土技術(shù)相比,具有環(huán)境污染少、低能耗、低排放的優(yōu)勢[8]。將微生物誘導(dǎo)方解石沉積(MICP)膠結(jié)松散砂形成的微生物砂漿[9]用于松散土體表面防護,以實現(xiàn)控制侵蝕的目的,是一項可能首先實現(xiàn)應(yīng)用的微生物固土技術(shù)[7,10],在水土保持領(lǐng)域具有重要的潛在應(yīng)用價值[11-12]。一些學(xué)者對此已經(jīng)開展了相關(guān)的嘗試,Bang等[13]研究發(fā)現(xiàn),將菌液及膠結(jié)溶液均勻噴灑于砂土表面可形成具有一定硬度的膠結(jié)薄層,從而有效提高固化土體的抗風(fēng)蝕性能。Dworatzek等[14]采用MICP技術(shù)對現(xiàn)場松散尾礦砂進行表面膠結(jié)固化,最終形成了2.5cm厚的堅硬膠結(jié)層,顯著提高了松散礦砂的抗侵蝕能力。Salifu等[12]基于MICP固化砂土抵抗潮汐水流侵蝕的試驗,認為MICP技術(shù)用于海岸邊坡防護很有發(fā)展?jié)摿Αs輝[15]通過室內(nèi)試驗對微生物噴灑表面膠結(jié)砂的硬度、抗水流沖刷性與植物生長適應(yīng)性開展了初步研究,結(jié)果表明在微生物表面固化的砂土中,黑麥草依然能夠出苗生長,微生物固砂層具備相應(yīng)的抗沖刷性和生態(tài)相容性。Jiang等[16-17]研究表明,采用微生物固化處理的砂-高嶺土混合物能大大降低被水流侵蝕帶走的固體顆粒質(zhì)量。粉土與砂土相比,具有土顆粒細小、礦物成分復(fù)雜、孔徑尺寸小的特點。雖然通過微生物拌和摻入[18]或注漿[19-20]方式能夠一定程度固化粉土,但強度提高有限[21]。同時,粉土較砂土毛細作用更為顯著,采用表面直接噴灑微生物方式對粉土邊坡表面固化防護難以獲得理想的效果。而采用微生物砂漿防護層提高粉土邊坡的抗侵蝕能力,是一種有發(fā)展?jié)摿Φ姆弁吝吰卤砻娣雷o新方法。
防護層的強度和穩(wěn)定性是決定其防護能力的重要因素。土體表面微生物砂漿防護層通常呈薄殼狀,在測定其強度時,難以制成標(biāo)準試件進行抗壓強度試驗。雖然一些學(xué)者也嘗試采用微小梁彎折試驗[22-23]、硬度計測定[15]等方法來評價殼狀微生物砂漿防護層的強度,但是,其測定與評價仍缺少統(tǒng)一的方法和標(biāo)準。防護層強度、水穩(wěn)定性與抗侵蝕性指標(biāo)之間的關(guān)系也尚待進一步明確。
本文采用產(chǎn)脲酶微生物砂漿層進行粉土表面防護試驗,針對粉土表面的微生物砂漿防護薄層的強度測定無統(tǒng)一方法和標(biāo)準、抗侵蝕有效性及其影響因素不明確的問題,提出利用微型貫入試驗測定微生物砂漿防護層強度,通過水穩(wěn)定性試驗以及模擬降雨沖刷試驗,分析各因素影響下微生物砂漿表面防護層的崩解性、強度水穩(wěn)定性和抗降雨沖刷性的變化規(guī)律。探討微生物砂漿用于粉土邊坡表面防護的有效性與適用性,為微生物固土防護技術(shù)應(yīng)用于粉土地區(qū)坡面防護和水土保持工程提供科學(xué)依據(jù)。
1.1 試驗土樣
粉土取自江蘇省東臺市沿海填海造陸地區(qū),水力吹填而成。具有低塑性、低強度、易流失的特點。塑性指數(shù)Ip=7.8,黏粒質(zhì)量分數(shù)低于4.17%,制樣干密度1.46 g/cm3。
用于防護層的砂是石英質(zhì)中砂,粒徑分布在<0.075、0.075~0.25、>0.25~0.5、>0.5~1.0 mm的土壤顆粒質(zhì)量分數(shù)分別為0.15%、9.19%、67.54%、23.12%。最大干密度是1.63 g/cm3,最小干密度是1.36 g/cm3。
1.2 微生物菌種與培養(yǎng)
本文所用菌種為巴氏芽孢桿菌(Sporosarcina pasteurii),來自德國菌種保藏中心(DSMZ33)。培養(yǎng)液為DSMZ推薦,每L培養(yǎng)液內(nèi)含有胰蛋白胨(Tryptone,Oxoid LP0042)15.0g,大豆蛋白胨(Neutralised Soya Peptone,Oxoid LP0044)5.0 g,NaCl分析純5.0 g,尿素20.0 g,并調(diào)節(jié)培養(yǎng)液pH值至7.3。將配制完成的培養(yǎng)液,置于高壓滅菌鍋內(nèi),121 ℃高溫蒸汽滅菌20 min。待冷卻后放置于4 ℃冰箱內(nèi)備用。
將菌種按體積比1∶200接種至新鮮培養(yǎng)液中,以30 ℃,125 r/min培養(yǎng)條件進行培養(yǎng)。以恒溫振蕩培養(yǎng)24 h后的菌液(OD600約為1.3)用于噴灑制備微生物砂漿。
1.3 膠結(jié)混合液
膠結(jié)溶液是CaCl2和尿素的混合溶液,為MICP過程提供必需的氮源和鈣源。尿素和CaCl2的濃度比為1∶1,按照0.25、0.50、0.75和1.00 mol/L濃度進行試驗。
2.1 微生物砂漿表面防護試驗
壓實粉土試樣的干密度為1.46×103kg/m3,滲透系數(shù)k=4.0×10-4cm/s,置于直徑19 cm的圓形鋁質(zhì)容器內(nèi),試樣厚15 cm。采用落雨法[24]將中砂覆蓋在粉土表面,中砂落距40 cm,對應(yīng)堆積密度為1.55×103kg/m3,滲透系數(shù)k=1.6×10-2cm/s。根據(jù)試驗方案,按照單位面積鋪砂質(zhì)量控制覆蓋的防護砂層厚度分別取2.5、5.0、7.5和10.0 mm。每個砂層厚度水平制備2個試樣開展平行試驗。在20 ℃環(huán)境溫度下,按照1 mL/cm2將菌液噴灑在中砂層上,讓菌液自由浸潤滲透入防護砂層,靜置1 h,使微生物菌體能夠充分吸附在砂顆粒表面。然后,按照1 ml/cm2將CaCl2和尿素膠結(jié)溶液噴灑在中砂層上,靜置6 h,使微生物菌與膠結(jié)溶液之間發(fā)生脲酶反應(yīng)并誘導(dǎo)CaCO3膠結(jié)物生成。按照上述步驟反復(fù)噴灑菌液和膠結(jié)溶液1~4遍,然后置于30 ?C的烘箱中風(fēng)干,最終在粉土表面形成微生物砂漿防護層。揭下微生物砂漿防護層,用軟刷去除其下表面浮土。每個試樣取3處采用游標(biāo)卡尺測量表面防護層厚度,以平均值h作為實測厚度,取防護層實測厚度與目標(biāo)厚度誤差小于5%的試驗組為有效組,進行后續(xù)分析。
2.2 微型貫入試驗
采用微型貫入試驗,以測頭貫入一定深度時的阻力作為防護層等效強度指標(biāo)。儀器采用PS-MPT-A型微型貫入儀。根據(jù)貫入阻力量程,分別選用圓錐形測頭(圖1a)和圓柱形測頭(圖1b)。圓錐形測頭錐角30°,標(biāo)準貫入深度10 mm;圓柱形測頭貫入端的底面為0.3 cm2圓面,標(biāo)準貫入深度6 mm,測量誤差±5%。
首先,測得未防護粉土貫入阻力作為基本貫入阻力S0,3組平行試驗均值得S0=4 kPa。作為對比,再測定具有微生物砂漿表面防護層的粉土表面貫入阻力,達到標(biāo)準貫入深度時(測頭實際已穿透微生物砂漿防護層并進入粉土一定深度)對應(yīng)的貫入阻力作為防護層貫入阻力Se。
圖1 測定防護層強度的微型貫入試驗Fig.1 Micro-penetration tests on surface protective covering strength
2.3 水穩(wěn)定性測定
微生物砂漿防護層的水穩(wěn)定性主要通過崩解率和浸水強度損失率來評價。崩解率反映土體由于浸水發(fā)生碎裂、散體的現(xiàn)象,作為評價土體可蝕性的指標(biāo)[25]。參考簡文彬等[26]提出的崩解率測試裝置與方法,揭取微生物砂漿防護層得到片狀樣,烘干稱重后裝入尼龍網(wǎng)袋浸水12 h,取出后烘干稱重,測定其在浸水前后的干質(zhì)量損失率作為崩解率。將具有表面防護的粉土完全浸沒在去離子水中,12 h后瀝干自由水,置于30 ℃的烘箱中風(fēng)干,再用微型貫入儀測定其等效強度,計算浸水前后強度損失率作為防護層強度水穩(wěn)定性的評價指標(biāo)。
2.4 降雨沖刷試驗
本文采用室內(nèi)模擬降雨沖刷試驗測定沖刷量,采用可調(diào)坡度沖刷槽,長、寬、高尺寸分別為1 400、300、60 mm。在槽內(nèi)鋪設(shè)40 mm厚壓實粉土(干密度為1.46×103kg/m3),按前文相同方法對粉土表面進行微生物砂漿防護后,置于模擬降雨裝置的孔板雨滴發(fā)生器下模擬邊坡降雨沖刷。降雨均勻系數(shù)[27]為0.92,降雨強度為6 mm/min。
模擬降雨沖刷試驗方案見表1,以分析不同防護層(膠結(jié)液濃度0.5 mol/L,噴灑4遍處理)厚度h、坡角β、降雨沖刷時間t等參數(shù)變化對粉土邊坡抗沖刷穩(wěn)定性的影響,評估微生物砂漿防護邊坡抵抗連續(xù)性強降雨的能力。降雨歷時為4到20 min,模擬中雨到大暴雨[28]。
表1 模擬降雨沖刷試驗方案Table 1 Experiments protocol of simulated rainfall erosion
2.5 試驗數(shù)據(jù)整理
1)防護強度比(R):表征防護層對粉土表層強度提高的程度。計算式為
式中Se為具有防護層的粉土表面貫入阻力,kPa;S0為無防護粉土表面的貫入阻力,kPa。
2)崩解率(A12h):微生物砂漿防護層浸水后的質(zhì)量損失率。計算式為
式中m0和mw分別為微生物砂漿防護層浸水12 h前后的烘干質(zhì)量,g。
3)強度損失率(C):具有微生物砂漿防護層的粉土浸水前后表面貫入阻力損失率,計算式為
式中Sw為具有微生物砂漿防護層的粉土浸水12 h后表面貫入阻力,kPa;
4)土壤剝蝕率(Dr):坡面徑流在單位時間、單位面積上所輸移出的泥沙質(zhì)量,計算式為[29]
式中Dr為土壤剝蝕率,g/(m2·s);M為測量時段t內(nèi)的產(chǎn)沙量,g;b為過水?dāng)嗝鎸挾?,m;L為坡長,m。
3.1 防護層強度
3.1.1 防護層厚度的影響
微生物誘導(dǎo)CaCO3結(jié)晶膠結(jié)的主要是粉土表面的中砂層,粉土并被膠結(jié),因此實際的防護層厚度主要由中砂層厚度決定。防護強度比與防護層厚度之間的關(guān)系見圖2a。防護強度比隨著防護層厚度的增加而增加。防護層厚度由2.5 mm變化到5.0 mm時,防護層貫入阻力由232增加到310 kPa,防護強度比由58.0增加到77.5,增加了33.6%,提高顯著(P=0.039 1)。而防護層厚度10.0比5.0 mm對應(yīng)的防護強度比僅提高了9.6%。結(jié)果表明,防護層厚度超過5.0 mm后,防護強度比提高不顯著。
3.1.2 噴灑遍數(shù)的影響
微生物菌液與膠結(jié)液的噴灑遍數(shù)直接影響防護層的強度(圖2b)。采用濃度0.5 mol/L的膠結(jié)液分別噴灑1~4遍形成的表面防護層(厚度5.0 mm)防護強度比R分別為27.0、58.0、71.5、78.3??梢?,防護強度比隨著噴灑處理遍數(shù)的增加而增加。噴灑第1~4遍過程中,單次噴灑對防護強度比提高值分別為27.0、30.0、23.5、6.8。噴灑遍數(shù)大于2遍以后,每增加1遍對防護層強度提高的貢獻越來越小。
3.1.3 膠結(jié)液濃度的影響
防護強度比與膠結(jié)液濃度的關(guān)系見圖2c。膠結(jié)液濃度越大,形成的防護層防護強度比R越大。在不同防護層厚度條件下,厚度5.0、7.5和10.0 mm的防護層強度比R變化規(guī)律比較一致,膠結(jié)液濃度大于0.5 mol/L后對其防護強度比R的提高貢獻不大。而厚度2.5 mm的防護層強度比R對膠結(jié)液濃度變化不敏感。從兼顧防護效果與節(jié)約材料用量角度考慮,采用濃度為0.5 mol/L的膠結(jié)液是比較合適的。
圖2 不同因素對防護強度比的影響Fig.2 Effect of different factors on protective strength ratio
3.2 表面防護層的水穩(wěn)定性
崩解率變化曲線見圖3,隨著噴灑遍數(shù)增加,防護層崩解率顯著下降(P<0.05)。在同樣噴灑遍數(shù)條件下,防護層厚度越大,崩解率越低。當(dāng)防護層厚度不小于5.0 mm時,噴灑4遍處理的防護層崩解率降低到接近于0。防護層厚度2.5 mm時,即使噴灑4遍,依然存在近20%的崩解率,水中易碎裂、散體。用微生物膠結(jié)液噴灑4遍且厚度不小于5.0 mm的防護層,才能夠具備較好的抗崩解性。
圖3 崩解率變化曲線Fig.3 Variation curves of disintegration rate
表2給出了不同防護層厚度下浸水前、后的貫入阻力與強度損失率。厚度2.5 mm的防護層強度損失率為74.8%,遠超過其他各組試樣。結(jié)果表明,要保證微生物砂漿層表面防護層有足夠的強度水穩(wěn)定性,其厚度應(yīng)當(dāng)不小于5.0 mm。
表2 表面防護層浸水前后強度變化量Table 2 Variation of strength before or after inundation for protective covering
3.3 表面防護層的抗沖刷穩(wěn)定性
微生物砂漿防護邊坡在降雨沖刷下的土壤剝蝕率如圖4a所示。當(dāng)防護層厚度為2.5 mm時,剝蝕率為26.7 g/(m2·s),只比裸露粉土邊坡(防護層厚度0 mm)降低了5.1 g/(m2·s),防護效果弱;當(dāng)防護層厚度為5 mm時,剝蝕率大幅降低到6.8 g/(m2·s),呈現(xiàn)出較好的抗沖刷防護能力;而當(dāng)防護層厚度為7.5和10.0 mm時,剝蝕率進一步降低,但是對防護層厚度增加不再敏感(P=0.663 8>0.05)。上述變化表明,當(dāng)微生物砂漿防護層厚度大于5.0 mm后,再增加防護層厚度對邊坡的抗沖刷能力的提高有限。
土壤剝蝕率與防護強度比的關(guān)系見圖4b。當(dāng)防護強度比大于60后,土壤剝蝕率隨防護強度比增大顯著減?。≒=0.022 4)。防護強度比達到80以上時,土壤剝蝕率低于5 g/(m2·s),防護層抗侵蝕作用顯著(P=0.002 6)。也表明微生物砂漿表面防護層的強度是保證其在降雨沖刷作用下不被剝蝕的重要基礎(chǔ)。
微生物砂漿防護邊坡和裸露粉土邊坡的土壤剝蝕率與坡角的關(guān)系見圖4c。相同降雨條件下,坡角變化對裸露粉土邊坡的沖刷影響很大,坡角越大,邊坡沖刷越嚴重,坡角10°對應(yīng)的剝蝕率為29.63 g/(m2·s),當(dāng)坡角大于20°后,剝蝕率有所增加,坡角25°時剝蝕率達到37.3 g/(m2·s)。而不同坡角下微生物砂漿防護邊坡的剝蝕率相差不大,分別為5.4、5.9、6.8和6.5 g /(m2·s)。表明微生物砂漿防護邊坡的抗沖刷性對坡角變化不敏感(P=0.099 7>0.05)。
不同降雨沖刷時間下微生物砂漿防護粉土邊坡的土壤剝蝕率如圖4d所示。當(dāng)降雨4、8和12 min時,微生物砂漿防護邊坡的剝蝕率隨降雨沖刷時間增長(R2=0.9758),分別為6.8、8.3和11.7 g/(m2·s);當(dāng)降雨沖刷時間大于16 min以后,剝蝕率減小,沖刷形成的防護層裂縫寬度基本穩(wěn)定,不再顯著擴展。降雨沖刷20 min時剝蝕率僅為3.6 g/(m2·s)。表明微生物砂漿防護邊坡對連續(xù)性強降雨沖刷具有一定的防護能力。
圖4 不同影響因素下的土壤剝蝕率變化曲線Fig.4 Variation curves of soil detachment ratio with different factors
4.1 MICP膠結(jié)結(jié)構(gòu)對防護層水穩(wěn)定性的影響
掃描電鏡分析獲得的5.0 mm厚微生物砂漿表面防護層中CaCO3膠結(jié)的微觀形貌見圖5。圖5a是噴灑1遍0.5 mol/L膠結(jié)液處理的微生物砂漿微結(jié)構(gòu),在砂顆粒表面分散分布有一些CaCO3晶體,晶體為復(fù)三方偏三角面方解石。因為膠結(jié)物含量低,且沒有形成有效聯(lián)結(jié),所形成的防護層崩解率大于55%。圖5b是噴灑3遍等濃度膠結(jié)液處理的微生物砂漿微結(jié)構(gòu),可見方解石晶體已局部聚集,連片覆蓋與砂顆粒表面,形成了一定的粒間膠結(jié),崩解率降低至11.6%。圖5c是噴灑4遍等濃度膠結(jié)液處理的微生物砂漿微結(jié)構(gòu),大量方解石晶體呈簇狀完全包裹住石英砂顆粒,形成包裹型膠結(jié),對應(yīng)的崩解率僅為2.3%,浸水強度損失率僅為5.4%。圖5d是包裹型膠結(jié)的石英砂顆粒從膠結(jié)體上剝離后呈現(xiàn)的斷面,膠結(jié)物與砂顆粒表面形成了有效的大面積聯(lián)結(jié)。試驗也表明,崩解率高的微生物砂漿防護層基本不具備抗沖刷能力。微生物誘導(dǎo)結(jié)晶的方解石形成包裹型膠結(jié)是防護砂漿層具備良好表面防護作用的微觀結(jié)構(gòu)基礎(chǔ)。
圖5 微生物砂漿表面防護層中CaCO3膠結(jié)的微觀形貌Fig.5 Microstructure of CaCO3cementing in microbial mortar surface protective covering
4.2 微生物砂漿防護層抗侵蝕機理
吳普特等[30]研究表明,雨滴擊濺不但可以破壞土壤結(jié)構(gòu),引起雨滴擊濺侵蝕,還可減少水流摩擦阻力,從而增加水流侵蝕動力。微生物砂漿防護層最上層表面為松散顆粒弱膠結(jié)結(jié)構(gòu),孔隙率大,且孔徑也很大。在雨滴濺蝕及徑流沖蝕作用下,首先發(fā)生部分弱膠結(jié)顆粒崩解與剝蝕,產(chǎn)物隨徑流遷移。所以在產(chǎn)流前期,剝蝕率隨時間有所增長,但同時對坡面流的阻滯作用也相對較強,入滲比例較大,徑流量小。隨著表面松散弱膠結(jié)砂粒的剝蝕,防護層中部的包裹型強膠結(jié)結(jié)構(gòu)砂粒逐漸裸露,因該部分微生物砂漿孔隙被膠結(jié)物填充較飽滿,其孔隙率與孔徑均較小,加之表面粗糙度下降,對坡面流的阻滯作用開始減弱,入滲比例顯著減小,徑流量加大,防護層的表層抗沖刷防護作用開始發(fā)揮。
Chu等[22]認為,MICP形成的微生物砂漿表面硬殼強度能夠達到35.9 MPa,雖然很薄,但是其強度足以在堤岸抗侵蝕和邊坡穩(wěn)定等工程中發(fā)揮作用。榮輝[15]對微生物砂漿防護(微生物與膠結(jié)液噴灑4遍和10遍處理)的30°坡角砂土邊坡進行坡面徑流直接沖刷試驗,土壤剝蝕率分別為9.3和5.6 g/(m2·s)。但是在坡面徑流量100 L/h沖刷下,在2 min內(nèi)即產(chǎn)生細溝、崩塌等現(xiàn)象,與本文試驗結(jié)果對比存在不小差異。其原因可從邊坡不同土質(zhì)的沖刷破壞模式進行分析。因為噴灑形成的微生物砂漿本身具有良好的滲透性[13],當(dāng)微生物砂漿防護層防護砂土邊坡時,防護層下的砂也具有良好的滲透性,在入滲飽和后,很容易在層下形成快速滲流,細小顆粒易被帶走,形成局部管涌掏空,進而發(fā)展為表面防護層脫空、塌陷,導(dǎo)致防護失效,破壞模式為層下滲流破壞,防護效果取決于防護層下砂土的抗?jié)B流侵蝕穩(wěn)定性。當(dāng)微生物砂漿防護層防護粉土邊坡時,因防護層下的粉土滲透系數(shù)遠小于砂土,坡面入滲比例小,防護層面下滲流微弱,坡面徑流占主導(dǎo)。所以表現(xiàn)為表層防護層先破壞,其后徑流才能繼續(xù)沖刷裸露粉土,造成防護失效,破壞模式為防護層強度破壞,防護效果取決于防護層本身的強度與穩(wěn)定性。文獻[15]還對噴灑微生物菌液與膠結(jié)液進行防護處理的30°坡角的細塵邊坡進行1 min雨強42.6 mm/min的超強降雨沖刷,土壤剝蝕率為17.1 g/(m2·s)。表明利用MICP直接噴灑處理細塵也能夠一定程度抵抗降雨沖刷,其防護層結(jié)構(gòu)為強度較低的MICP膠結(jié)細塵粒。相比較而言,本文采用粉土表面鋪砂形成的微生物砂漿防護層,能夠?qū)⑽⑸锷皾{的高強度與被防護邊坡粉土的低滲透性有機結(jié)合,發(fā)揮粉土減滲與防護層抗徑流沖刷的共同作用,以提高粉土坡面的抗侵蝕能力。
針對用于粉土表面防護的微生物砂漿防護層的強度、水穩(wěn)定性與抗侵蝕性問題,本文通過室內(nèi)指標(biāo)測試和模擬降雨沖刷試驗,研究了不同防護層參數(shù)和沖刷條件下微生物砂漿層強度、水穩(wěn)定性與抗侵蝕性變化規(guī)律,主要得到以下3點結(jié)論。
1)微型貫入儀可以用于微生物砂漿表面防護層的強度測定,防護層強度與水穩(wěn)定性隨厚度、處理遍數(shù)、膠結(jié)液濃度的提高而提高,其最小有效厚度為5 mm。采用微生物菌液與0.50 mol/L膠結(jié)液噴灑4遍處理,厚度5.0 mm的微生物砂漿防護層即能夠達到貫入阻力310 kPa,防護強度比77.5,崩解率2.3%,浸水強度損失率5.4%,具備較好的抗崩解性和強度水穩(wěn)定性。
2)微生物砂漿防護粉土邊坡較未防護邊坡的抗降雨沖刷性顯著提高,采用微生物菌液與0.50 mol/L膠結(jié)液噴灑4遍處理,厚度為5.0 mm的微生物砂漿防護前后土壤剝蝕率能夠從大于29.6降至6.8 g/(m2·s)以下。坡角變化對防護邊坡的土壤剝蝕率影響不大。微生物砂漿防護粉土邊坡能夠有效抵抗大暴雨侵蝕。
3)微生物砂漿防護粉土邊坡抗降雨沖刷的機理在于微生物砂漿的高強度與被防護邊坡粉土的低滲透性共同作用。微生物誘導(dǎo)結(jié)晶的方解石形成包裹砂顆粒的膠結(jié)微結(jié)構(gòu)是表面防護砂漿層具備良好抗水流侵蝕的基礎(chǔ)。
[1] 王海波,趙志峰,張?zhí)? 季節(jié)性凍融對滯洪區(qū)改良路基性能的影響[J]. 南京林業(yè)大學(xué)學(xué)報:自然科學(xué)版,2016(3):156-162. Wang Haibo, Zhao Zhifeng, Zhang Tian. Performance of improved soil subgrade under freeze-thaw cycles in flood retarding basin[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2016(3): 156-162. (in Chinese with English abstract)
[2] 徐東升. 黃河三角洲粉土的力學(xué)特性及改性研究[D]. 武漢:中國科學(xué)院研究生院(武漢巖土力學(xué)研究所),2010. Xu Dongsheng. Research on Mechanical Characteristics and Strengthen Method of Silt in Yellow River Delta[D]. Wuhan: Institute of Rock & Soil mechanics China Academy of Science, P.R. China, 2010. (in Chinese with English abstract)
[3] 王俠. 水土保持與黃河經(jīng)濟可持續(xù)發(fā)展[J]. 水土保持通報,1997(S1):80-84. Wang Xia. Soil conservation and sustained development of Yellow River economy[J]. Bulletin of Soil and Water Conservation, 1997(S1): 80-84. (in Chinese with English abstract)
[4] Foster G R, Huggins L F, Meyer L D. A laboratory study of rill hydraulics, II. Shear stress relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-804.
[5] 呂威,李淑芹,李法虎,等. 聚丙烯酰胺對凹凸型坡土壤侵蝕影響的室內(nèi)試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(10):122-128. Lü Wei, Li Shuqin, Li Fahu, et al. Laboratory study on soil erosion of loess convex and concave slopes with application of polyacrylamide[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 122-128. (in Chinese with English abstract)
[6] Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow erosion and infiltration[J]. Soil Science, 1994, 158(4): 274-282.
[7] Dejong J T, Soga K S, Kavazanjian E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4): 287-301.
[8] 錢春香,王安輝,王欣. 微生物灌漿加固土體研究進展[J].巖土力學(xué),2015,36(6):1537-1548. Qian Chunxiang, Wang Anhui, Wang Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese with English abstract)
[9] Zhang Y, Guo H X, Cheng X H. Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction & Building Materials, 2015, 77: 160-167.
[10] 何稼,楚劍,劉漢龍,等. 微生物巖土技術(shù)的研究進展[J].巖土工程學(xué)報,2016,38(4):643-653. He Jia, Chu Jian, Liu Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese with English abstract)
[11] 謝興華,談葉飛,吳濤. 一種環(huán)境友好型微生物-植物聯(lián)合護坡方法:102677683A[P]. 2012-09-19.
[12] Salifu E, Maclachlan E, Iyer K R, et al. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation[J]. Engineering Geology, 2015, 201(4): 96-105.
[13] Bang S C, Min S H, Bang S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geo-Engineering, 2011, 3(2): 27-37.
[14] Dworatzek S M, Gomez M G, Martinez B C, et al. Field-scale bio-cementation tests to improve sands[J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2014, 168(3): 1-11.
[15] 榮輝. 微生物水泥的研制及膠結(jié)機理[D]. 南京:東南大學(xué),2014. Rong Hui. Preparation and Binding Mechanism of Microbe Cement[D]. Nanjing: Southeast University, 2014. (in Chinese with English abstract)
[16] Jiang N, Soga K, Dawoud O. Experimental study of the mitigation of soil internal erosion by microbially induced calcite precipitation[C]// Proceedings of Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability. Atlanta, 2014: 1586-1595.
[17] Jiang N J, Soga K, Kuo M. Microbially Induced Carbonate Precipitation (MICP) for Seepage-Induced Internal Erosion Control in Sand-Clay Mixtures[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(3): 04016100.
[18] 許朝陽,張莉,周健. 微生物改性對粉土某些特性的影響[J].土木建筑與環(huán)境工程,2009,31(2):80-84. Xu Zhaoyang, Zhang Li, Zhou Jian. Effect of microorganisms on some engineering properties of silt[J]. Journal of Journal of Civil, Architectural & Environmental Engineering, 2009, 31(2): 80-84. (in Chinese with English abstract)
[19] Ng W S, Lee M L, Tan C K, et. al. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 1-11.
[20] Lee M L, Ng W S, Yasuo T. Stress-deformation and compressibility responses of bio-mediated residual soils[J]. Ecological Engineering, 2013, 60(2013): 142-149.
[21] 邵光輝,尤婷,趙志峰,等. 微生物注漿固化粉土的微觀結(jié)構(gòu)與作用機理[J]. 南京林業(yè)大學(xué)學(xué)報:自然科學(xué)版,2017,41(2):129-135. Shao Guanghui, You Ting, Zhao Zhifeng, et al. Microstructure and mechanism of microbial cementation silt treated by bio-grouting[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2017, 41(2): 129-135. (in Chinese with English abstract)
[22] Chu J, Stabnikov V, Ivanov, V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiology Journal, 2012, 29(6): 544-549.
[23] Chu J, Ivanov V, Stabnikov V, et al. Microbial method for construction of aquaculture pond in sand[J]. Geotechnique, 2013, 63(10): 871-875.
[24] Fretti C, Presti D C F L, Pedroni S. A pluvial deposition method to reconstitute well-graded sand specimens[J]. Geotechnical Testing Journal, 1995, 18(2): 292-298.
[25] 張抒. 廣州地區(qū)花崗巖殘積土崩解特性研究[D]. 武漢:中國地質(zhì)大學(xué),2009. Zhang Shu. A Study on Disintegration Behavior of Granite Residual Soil in Guangzhou[D]. Wuhan: China University of Geosciences, 2009. (in Chinese with English abstract)
[26] 簡文彬,陳文慶,鄭登賢. 花崗巖殘積土的崩解試驗研究[C]//中國土木工程學(xué)會第九屆土力學(xué)及巖土工程學(xué)術(shù)會議,北京:2003:297-300. Jian Wenbin, Chen Wenqin, Zheng Dengxian. Experimental study on the collapse of the granite residual soil[C]// Proceeding of 9th National Soil Mechanics and Geotechnical Engineering Academic-China Civil Engineering Society. Beijing: Tsinghua University, 2003: 297-300. (in Chinese with English abstract)
[27] 蘇溦娜,田一梅,高波,等. 人工模擬降雨裝置的設(shè)計及其參數(shù)率定[J]. 水土保持通報,2015,35(6):120-123. Su Weina, Tian Yimei, Gao Bo, et al. Design and calibration of an artificial rainfall simulator[J]. Bulletin of Soil andWater Conservation, 2015, 35(6): 120-123. (in Chinese with English abstract)
[28] 馬波,馬璠,李占斌,等. 模擬降雨條件下作物植株對降雨再分配過程的影響[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(16):136-146. Ma Bo, Ma Fan, Li Zhanbin, et al. Effect of crops on rainfall redistribution processes under simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 136-146. (in Chinese with English abstract)
[29] 張樂濤,高照良,田紅衛(wèi). 工程堆積體陡坡坡面土壤侵蝕水動力學(xué)過程[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(24):94-102. Zhang Letao, Gao Zhaoliang, Tian Hongwei. Hydrodynamic process of soil erosion in steep slope of engineering accumulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 94-102. (in Chinese with English abstract)
[30] 吳普特,周佩華. 黃土坡面薄層水流侵蝕試驗研究[J]. 土壤侵蝕與水土保持學(xué)報,1996,2(1):40-45. Wu Pute, Zhou Peihua. Research on the sheet flow erosion of loess surface[J]. Journal of Soil and Water Conservation, 1996, 2(1): 40-45. (in Chinese with English abstract)
Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering
Shao Guanghui1,2, Feng Jianting1, Zhao Zhifeng1,2, Liu Peng1,2, Li Ze1, Zhou Ningna1
(1. School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing 210037, China)
Microbial mortar protective covering is a new technology for controlling silt slope surface dust and water erosion. The anti-erosion performance of the protective covering depends to a large extent on the strength and stability of covering. However, the factors that govern the protective property of covering have not been fully studied. Based on microbial induced calcite precipitation (MICP) technology, the surface protective covering experiments were carried out to treat silt slope surface against rainfall erosion. Indoor model tests on silt surface protective covering by microbial mortar were performed to investigate the properties such as strength, water stability and anti-erosion. Sand was covered on dredger fill silt surface to form a thin layer, and then some Sporosarcina pasteurii and a kind of cementing solution containing a mixture of CaCl2 and urea were sprayed on the sand layer surface to obtain a crustose protective covering. The micro-penetration test was adopted to investigate the penetration resistances change of uncovered silt and protected silt covered with microbial mortar crust. The property of protective strength ratio measured by micro-penetration test was used to evaluate the strength of microbial mortar protective covering relative to uncovered silt surface. The collapse ratio and strength loss ratio were tested on the microbial mortar protective covering by immersed in water for 12 h to assess its water stability performance. The change laws of protective covering strength and water stability were drawn from different covering thickness, mixed cementing solution concentration of CaCl2and urea, and spraying times. On the basis of the tests of protective covering, the rainfall model experiments were conducted. A slope angle variable steel tank with the size of 1.4 m × 0.3 m× 0.06 m (length × width × height) was applied for holding test material and simulating the silt slope, which was subjected to strong rainfall scour under a rainfall simulating system. The soil detachment rates were investigated from the rainfall simulation experiment by changing slope angle from 5o to 25o and rainfall time from 4 to 20 min. The experimental results revealed that: 1) The minimum effective thickness of microbial mortar protective covering was 5 mm. The strength and water stability of protective covering increased with the cementing solution concentration, protective covering thickness and spraying times. 2) After treated 4 times with 0.50 mol/L cementing solution, a protective covering was formed, which had high strength, good anti-collapse property and excellent water stability. A 5 mm thick protective covering could reach penetration resistance of 310 kPa, protective strength ratio of 77.5, collapse ratio of 2.3%, and strength loss ratio of 5.4% when immersed in water. 3) Compared with untreated silt slope, the treated silt slope reduced soil detachment rate from over 29.6 g/(m2·s) to under 6.8 g/(m2·s). The soil detachment rate of treated silt slope was between 5.4 and 6.8 g/(m2·s) and insensitive to the slope angle. Under 20 min heavy rainfall scouring, the soil detachment rate of treated silt slope was only 3.6 g/(m2·s). The microbial mortar protective covering presented significant anti-erosion capacity. 4) The strength of protective covering and the permeability of substratum silt had coupling effect on the anti-erosion mechanism of microbial mortar protective covering. The coarse and porous covering played an important role in resisting raindrop splash and surface flow erosion by the high strength of crust. Meanwhile, the low permeability of silt under the covering resisted piping and suffusion erosion. The anti-erosion effectiveness of protective covering was dominated by the microbial mortar crust strength. For effective microbial mortar protection, at the microstructure level it was essential that the cement calcite from MICP formed surrounding cementation structure around soil particles surface. The results provide valuable information for applying MICP technology on silt slope anti-erosion.
silt; erosion; mortar; microbially induced carbonate precipitation (MICP); water stability; soil detachment rate; protective engineering
10.11975/j.issn.1002-6819.2017.11.017
S157.1
A
1002-6819(2017)-11-0133-07
邵光輝,馮建挺,趙志峰,劉 鵬,李 澤,周寧娜. 微生物砂漿防護粉土坡面的強度與抗侵蝕性影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):133-139.
10.11975/j.issn.1002-6819.2017.11.017 http://www.tcsae.org
Shao Guanghui, Feng Jianting, Zhao Zhifeng, Liu Peng, Li Ze, Zhou Ningna. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 133-139. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.017 http://www.tcsae.org
2016-12-09
2017-04-20
國家自然科學(xué)基金項目(51578293);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(PAPD2015);國家大學(xué)生實踐創(chuàng)新訓(xùn)練計劃項目(201510298005Z)作者簡介:邵光輝,男,湖北武漢人,博士,副教授,主要研究方向為微生物巖土工程、軟土特性與地基處理。南京 南京林業(yè)大學(xué)土木工程學(xué)院,210037。Email:gh_shao@njfu.edu.cn。