• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal design of the aerodynamic parameters for a supersonic twodimensional guided artillery projectile

    2017-07-01 20:50:08KeLingZhengHungJingminZhng
    Defence Technology 2017年3期

    Ke Ling,Zheng Hung,Jing-min Zhng

    aXi'an Institute of Electromechanical Information Technology,Norinco Group,No.99 Jixiang Road,Xi'an 710065,Shaanxi,China

    bNo.208 Research Institute of China Ordnance Industries,1023 Changping,Beijing 102202,China

    Optimal design of the aerodynamic parameters for a supersonic twodimensional guided artillery projectile

    Ke Lianga,*,Zheng Huanga,Jing-min Zhangb

    aXi'an Institute of Electromechanical Information Technology,Norinco Group,No.99 Jixiang Road,Xi'an 710065,Shaanxi,China

    bNo.208 Research Institute of China Ordnance Industries,1023 Changping,Beijing 102202,China

    A R T I C L E I N F O

    Article history:

    Two-dimensional guided projectile

    Aerodynamic parameters

    Canard pro file

    Numerical simulation

    Optimal design

    An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction.The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability.The optimal design algorithm is developed to decide the pro files both of the steering and spinning canards, and their de flection angles are also simulated to meet the needs of trajectory correction capabilities. Finally,the aerodynamic ef ficiency of the speci fic canards is discussed according to the CFD simulations. Results that obtained here can be further applied to the exterior ballistics design.

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    As improving artillery projectile accuracy is obviously bene ficial for the fire ef ficiency,nowadays the precision-guided munitions are of interest to the Army as a means of both reducing collateral damage and increasing the chance of desired effect with the first round fired[1,2].

    In this paper,some fundamental studies on the structural and aerodynamic features for the guided projectile in the preliminary design of its exterior ballistics were discussed.There were many previous works that were contributed to the methods involved in this paper.Theodoulis et al.introduced the guidance and control modules for a class of spin-stabilized fin-controlled projectiles[[3-6],and the complete nonlinear dynamical model is developed and analyzed.Chang et al.analyzed the impact of the spin-rate on the forward section ofthe trajectory,their results indicated thatthe spin-rate property is in fluenced by the canards actuation[7-9].As the dual-spin guided projectiles are fundamentally less stable than the conventionalballistic spin-stabilized projectiles,Wernert et al. modelled and analyzed the stability conditions of the guided projectiles[10,11].Hamel,Youn,Sahu and et al.studied the aerodynamic characteristics of different kinds of trajectory correction projectiles[12-14].Those studies gave us the ideas to design, modeland analyze the complicated dynamics of the guidance and controlsystem ofthe guided projectile.In particular,they provided some helpful references to investigate the aerodynamic characteristics in the preliminary design.

    The purpose ofthis work is to design the controlcanards for the dual-spin two-dimensional guided projectile.An optimal design method was developed in this paper to obtain the aerodynamic parameters of the control canards for trajectory correction.Numerical simulations were performed to study the aerodynamic ef ficiency of the guided projectile with control canards.

    2.Model and method

    2.1.Model of the 2-D guided artillery projectile

    The two-dimensional guided projectile in this study includes a conventional 155 mm projectile body and a nose guidance component which is used for trajectory correction.The design model the two-dimensional guided projectile is shown in Fig.1. There are two pairs of canards fixed on the nose component of the projectile.The first pair of canards,called the steering canards,is mounted in the same direction on the nose componentto create liftforce.Meanwhile,the second pair of canards,named the spin canards,is differentially canted in a manner to create a suf ficient amount of moment to rotate the head component in an opposite direction of the projectile spin.

    2.2.Optimal design method

    In design of the Two-dimensional guided projectile,it is absolutely essential that the aerodynamic parameters for different canard wings'structures are analyzed and optimized.Therefore, the optimal aerodynamic con figuration can be obtained,and as well as the required correction forces and moments can be guaranteed.In detailed design,severaldesigned parameters,such as the wing area,the pro file,the aspectratio,the sweepback angle and the taper ratio,are indispensable for in fluencing the aerodynamic con figuration of the projectile.

    The general guideline of the wing area design is to provide the necessary trajectory correction ability as much as possible in the limited shape space.As the changes of aerodynamic con figuration are comparatively limited due to the restraints both from the shape of the projectile and the lift force of the canard wing,the study of the trajectory correction ability is focused on the calculations of additional force and additional moment about the projectile with corrective canards.By adding the additionalforces and moments to the equations ofmotion[15],the trajectory correction abilities with respect to the different wing areas can be investigated.

    There are two types of pro file that can be divided as the supersonic pro file and the subsonic pro file in application.For the frequently used supersonic pro files,such as diamond shape,lens shape,hexagon and blunt trailing edge,their features are simply shaped airfoils with sharp leading edges to cut down the shock wave.For the subsonic pro files,such as symmetric arc,asymmetric arc and laminar flow,they are usually streamlined with relatively smooth leading edges to enhance the leading-edge suctions and to reduce the atmospheric drags.

    While increasing the aspect ratio,generally,the slope of lift curve will be elevated.For a speci fic length of the wing root,both the span and the aspect ratio will be raised at the same time. However,the span must not exceed the caliber of the artillery.The length ofmean chord willdecrease while the friction willincrease, and the wave drag willalso increase for a low mach number during the supersonic flying.

    The sweepback angle willmainly impactthe resistance property of the projectile.The reasons for using the sweepback angle are to increase the criticalmach number,delay the shock wave,decrease the peak value ofthe drag coef ficient and make the drag coef ficient change smoothly with the increasing of the mach number.The taper ratio has less in fluence on aerodynamics of the projectile when the other geometric parameters had been finalized.

    Changing of any mentioned parameters above will affect its aerodynamic ef ficiency of the 2-D guided projectile.In order to obtain the optimalaerodynamic con figuration,both the constraint of the structural strength and the adjustment of the canard's aerodynamic shape should be considered.In this study,the optimal design algorithm is developed by coupling of the fluid and solid,as shown in Fig.2,which make sure the aerodynamic ef ficiency to be optimized under all the given requirements.

    From Fig.2,there are two types of parameters need to be optimized for selecting the canards,which are structure parameters and aerodynamic parameters.Meanwhile,there are strong connections between these two types of parameters.Firstly,we calculated the structure parameters,such as parameters of the pro file,by using engineering prediction methods,and made those results as the initial inputs of the optimization process.Then,the aerodynamic parameters are simulated and optimized to meet the trajectory correction capability of the guided projectile.During the optimizing process,both the structure parameters and aerodynamic parameters might be redesigned under their boundary conditions.And finally,the local optimal solution can be obtained as well as the canards can be selected.

    After the optimization method is used to obtain the pro files of steering or spinning canards,the relationship between the de flection angle of control surface and the angle of attack can benumerically simulated by CFD method.Then,the aerodynamic efficiency of the designed canards can be analyzed.

    3.Simulations and results

    Increasing of the wing area will be bene fit to improve the trajectory correcting capability of the aerodynamic controlling canards.However,it will be caused not only the loss of firing range but also the flight instability of the spinning projectile.In order to obtain the optimal aerodynamic shape of the canard,its aerodynamic ef ficiency should be simulated and analyzed to optimize the structure of the canards.Both the correction capability and the flightstability for the 2-D guided projectile were considered during the whole simulation process.

    3.1.Selecting for the canard pro file

    In the preliminary design,the engineering prediction methods [16,17]are used to getthe values ofthe aerodynamic characteristics from the determined structure parameters.There are eighttypes of pro files have been evaluated,and their structure speci fic parameters are shown in Table 1.By applying allthe pro files to the guided projectile,their aerodynamic characteristics can be obtained.And these parameters can be used as the initial inputs of the optimization process.The selecting criteria ofthe bestpro file are large liftto-drag ratio,little changes of pressure center and smallde flection angle.

    The requirements of the lifts for the steering canards and the spin moments for the spin canards were estimated from the simulations of the 6-DOF externalballistics model,as seen in Table 2. The values of the lifts and the spin moments with different Mach numbers must meet the capability of trajectory correction for the guided projectile on its entire ballistic trajectory.Therefore,it can be the finalcriterion to verify the capability ofthe designed canard.

    According to the capabilities both oflift force and spin moment, the No.8 canard pro file in Table 1 is selected as the best matching pro file to meet the demands of trajectory correction capabilities. Results of the comparison between the requirements and capabilities can be seen in Fig.3 and Fig.4.The required value curves in Figs.3 and 4 are obtained by using the curve fitting method from the data in Table 2.

    Simulation results of the aerodynamic parameters indicate that their capabilities willmeet the design requirements with an eleven degree de flection angle for the pair ofsteering canards and the plus or minus six degrees de flection angles for the spin canards.

    3.2.CFD numerical simulation

    UG is used to construct the three dimensionalmodelofthe 2-D guided projectile,and the Pointwise software also used for the CFD meshing.As seen in Fig.5,the boundaries of the computational domains for the external flow fields are setup with reference to the length of projectile.They are ten times of the length in the X direction,and four times of the length in the Y direction and Z direction.The meshing details at the head and tail of the projectile can be seen in Fig.6.The amount of total grids in this CFD simulation is around 9 million units.To insure the convergence of the results,the grid quality has been checked,and itshows the nice grid qualities with very low cellsquish and skewness.

    As shown in Fig.6,the coordinate system is de fined as follows: The origin ofthe coordinate is fixed atthe head ofthe projectile,the X axis is pointing to the projectile tail along its body,the Z axis is pointing to the direction of the normalforce which is verticalwith respect to the steering canards,and the Y axis is vertical with respect to the pair of the spin canards.

    The points of reference in the calculation are described as follows:The reference point to calculate the center of pressure coefficient,the center of Magnus pressure coef ficient,pitching moment coef ficient and yawing moment coef ficient is the apex of the head; the reference point to calculate pitch-damping moment coef ficient is the center of mass.

    Some other speci fic values that involved in the simulation can be found as below.Noted that the reference area is determined based on the projectile caliber.

    Reference area:S=0.01897 m2;

    Reference length:l=0.9365 m;

    Mach number:Ma=0.6,0.7,0.8,0.9,1,1.1,1.2,1.5,1.8,2,2.5,3;

    Angle of attack:α=0°,2°,4°,6°,8°.

    3.3.Calculating formulas

    The formulas for calculating the aerodynamic parameters are summarized in this section,and can be seen as bellow[16,18].

    Table 1 Structure parameters for eight types of pro files.

    Table 2 Requirements of the lift and spin moment.

    3.4.Aerodynamics coef ficients results

    FLUENT is used to calculate the aerodynamics coef ficients ofthe guided projectile that with the preferred canards.Results for different attack angles(α=0°,2°,4°,6°,8°)are shown from Figs.7-11.

    In Figs.7-11,it was shown that how the de flection angle affects with the normal force of the projectile under the speci fic attack angles and Mach numbers.From these results,the ef ficiency of the canards can be approximately evaluated when the de flection angle and the normalforce have a linear relationship.

    3.5.Ef ficiency analysis of the canards

    The aerodynamic ef ficiency of the control canards is analyzed from the results shown in Figs.7-11.When the Mach number is greater than one(Ma>1),the normalforce coef ficientofthe whole projectile is increasing linearly during the de flection angle of the steering canards growth.It is indicated that the aerodynamic ef ficiency of the canards had changed linearly in this supersonic segment.

    When the Mach number is equal to one(Ma=1),the normal force coef ficient is shown irregular alterations with respect to the changes ofboth the de flection angle ofcanards and the attack angle ofprojectile.The aerodynamic ef ficiency ofcanards is in fluenced by the angle of attack.For detailed discussion,(1)when a=0°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<15°;(2)whenα=2°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<15°; (3)whenα=4°and Ma=1,the normalforce coef ficient is raisinglinearly as the de flection angleδ<12°;(4)whenα=6°and Ma=1, the normal force coef ficient is raising linearly as the de flection angleδ<10°;(5)whenα=8°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<8°.

    When the Mach number is less than one(Ma<1),the normal force coef ficient is also demonstrated irregular variations by changing from both the de flection angle of canards and the attack angle ofprojectile.In this subsonic flightphase,the linear segments of the aerodynamic ef ficiency of canards are shortened during the angle ofattack growth.For further discussion,(1)whenα=0°and Ma<1,the normal force coef ficient is increased linearly while δ<12°;(2)whenα=2°and Ma<1,the normalforce coef ficient isincreased linearly whileδ<10°;(3)whenα=4°and Ma<1,the normalforce coef ficient is increased linearly whileδ<8°;(4)when α=6°and Ma<1,the normalforce coef ficientis increased linearly whileδ<4°;(5)whenα=8°and Ma<1,the normal force coefficient is weakened to be negative.

    4.Conclusions

    This study has shown some fundamental works in the preliminary design of exterior ballistics.An optimization method is developed to obtain the applicable aerodynamic parameters of the controlling canards for a 2-Dguided artillery projectile.The optimal canard pro file is designed to make the guidance component meet the needs oftrajectory correction capabilities.And on this basis the ef ficiency of the canards is simulated and analyzed.The results of the aerodynamic parameters obtained in this study could be the valuable inputs for the further design of exterior ballistics.

    While adding of the canards may improve the accuracy of the artillery projectile,the dynamicalstability ofthe spinning projectile willbe affected at the same time.Some basic suggestions from this study are:Firstly,the design of the canards must not destroy the spinning stability of the guided projectile during the entire time of flight;secondly,the accuracy of the guided projectile should be increased by optimizing the structure and aerodynamic parameters,not just by extending the size of the canards.

    [1]Grignon C,Cayzac R,Heddadj S.Improvement of artillery projectile accuracy, 23rd International Symposium on Ballistics,International Ballistics Committee,Tarrgona,Spain,2007,pp.747-754.

    [2]Fresconi F,Cooper G,Celmins I,DeSpirito J,Costello M.Flight Mechanics of a Novel Guided Spin-Stabilized Projectile Concept,AIAA Atmospheric Flight Mechanics Conference,Toronto,ON Canada,2010.

    [3]Theodoulis S,Gassmann V,Werner P,Dritsas L,Kitsios I,Tzes A.Guidance and control design for a class of spin-stabilized fin-controlled projectiles.J Guid Control,Dyn 2013;36(2):517-31.

    [4]S`eve F,Theodoulis S,Wernert P,Zasadzinski M,Boutayeb M.Pitch/Yaw Channels Control Design for a 155mm Projectile with Rotating Canards,using a H∞Loop-Shaping Design Procedure,AIAA Guidance,Navigation,and Control Conference,National Harbor,Maryland,2014.

    [5]Theodoulis S,Gassmann V,Brunner T,Wernert P.Robust Bank-to-Turn Autopilot Design for a Class of 155mm Spin-Stabilized Canard-Guided Projectiles,AIAA Atmospheric Flight Mechanics Conference,Boston,MA,2013.

    [6]Spagni J,Theodoulis S,Wernert P.Flight control for a class of 155 mm spinstabilized projectile with reciprocating canards,AIAA Guidance,Navigation, and Control Conference,Minneapolis,Minnesota,2012.

    [7]Chang SJ,Wang ZY,Liu TZ.Analysis of spin-rate property for dual-spin-stabilized projectiles with canards.JSpacecr Rockets 2014;51(3).985-966.

    [8]Chang S.J.Dynamic response to canard control and gravity for a dual-spin projectile.J Spacecr Rockets 2014;53(3):558-66.

    [9]Wang Y,Cheng J,Yu JY,Wang XM.In fluence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile.Def Technol 2016;12(2):124-8.

    [10]Wernert P.Stability analysis for canard guided dual-spin stabilized projectiles, AIAA Atmospheric Flight Mechanics Conference,Chicago,Illinois,2009.

    [11]Wernert P,Theodoulis S.Modeling and stability analysis for a class of 155 mm spin-stabilized projectiles projectiles with course correction fuse(CCF),AIAA Atmospheric Flight Mechanics Conference,Portland,OR,2011.

    [12]Hamel N,Gagnon E.CFD and parametric study on a 155 mm artillery shell equipped with a roll-decoupled course correction fuze,29th AIAA Applied Aerodynamics Conference,Honolulu,Hawaii,2011.

    [13]Youn E B,Silton S I.Numerical Study on Bending Body Projectile Aerodynamics,34th AIAA Applied Aerodynamics Conference,Washington,D.C., 2016.

    [14]Sahu J.Time-accurate computations of free-flight aerodynamics of spinning projectile with and without flow control,AIAA Atmospheric Flight Mechanics Conference,Keystone,Colorado,2006.

    [15]Costello M,Peterson A.Linear theory of a dual-spin projectile in atmospheric flight.J Guid Control,Dyn 2000;23(5):789-97.

    [16]Anderson D.J.Fundamentals of aerodynamics.3rd ed.New York:McGraw-Hill;2001.

    [17]Lei JM,Wu JS.Engineering prediction methods of aerodynamics characteristics for guided weapon.Beijing:Beijing Institute of Technology Press;2015.

    [18]Han ZP.Exterior ballistics of projectiles and rockets.Beijing:Beijing Institute of Technology Press;2008.

    24 January 2017

    *Corresponding author.

    E-mail addresses:liangke3039@163.com(K.Liang),huangzheng82369@163. com(Z.Huang),zjm_208suo@163.com(J.-m.Zhang).

    Peer review under responsibility of China Ordnance Society

    http://dx.doi.org/10.1016/j.dt.2017.05.003

    2214-9147/?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received in revised form 30 March 2017

    Accepted 10 May 2017

    Available online 10 May 2017

    波多野结衣高清作品| 亚洲专区中文字幕在线| 一级a爱片免费观看的视频| 亚洲av美国av| 一夜夜www| av女优亚洲男人天堂| 丰满人妻熟妇乱又伦精品不卡| 特级一级黄色大片| 中文字幕av成人在线电影| 美女大奶头视频| 国产精品99久久99久久久不卡| 亚洲精华国产精华精| 成人精品一区二区免费| 高潮久久久久久久久久久不卡| 中文字幕高清在线视频| 国产亚洲精品av在线| 色老头精品视频在线观看| 在线a可以看的网站| 麻豆成人av在线观看| 日韩欧美 国产精品| 亚洲真实伦在线观看| 午夜福利18| 国产私拍福利视频在线观看| 午夜a级毛片| 日韩欧美三级三区| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式 | 国产精品精品国产色婷婷| 欧美色视频一区免费| 最新美女视频免费是黄的| av天堂中文字幕网| 久久精品国产清高在天天线| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 嫁个100分男人电影在线观看| 内地一区二区视频在线| 黄色成人免费大全| 国产欧美日韩一区二区三| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 亚洲国产精品合色在线| 国产高清激情床上av| 日本a在线网址| 性欧美人与动物交配| 国产亚洲精品av在线| 97碰自拍视频| 丰满乱子伦码专区| 一边摸一边抽搐一进一小说| 小说图片视频综合网站| 国产精品电影一区二区三区| 亚洲欧美精品综合久久99| 亚洲男人的天堂狠狠| 狂野欧美白嫩少妇大欣赏| 很黄的视频免费| 亚洲久久久久久中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲无线观看免费| 成年版毛片免费区| 日本成人三级电影网站| 国产高清视频在线播放一区| 亚洲国产精品sss在线观看| 国产精品一及| 国产精品爽爽va在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 熟女人妻精品中文字幕| 婷婷丁香在线五月| 精品不卡国产一区二区三区| www.999成人在线观看| 精品一区二区三区视频在线 | 午夜免费观看网址| 亚洲最大成人手机在线| 日韩欧美国产在线观看| 一个人看的www免费观看视频| 色噜噜av男人的天堂激情| 欧美激情在线99| 婷婷丁香在线五月| 亚洲 欧美 日韩 在线 免费| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 欧美乱码精品一区二区三区| 五月伊人婷婷丁香| 成人无遮挡网站| 天堂影院成人在线观看| 国产免费一级a男人的天堂| 亚洲熟妇中文字幕五十中出| 国产视频内射| 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 亚洲精品影视一区二区三区av| 国产成人啪精品午夜网站| h日本视频在线播放| 国产欧美日韩一区二区三| 国产亚洲av嫩草精品影院| 啦啦啦观看免费观看视频高清| 人妻夜夜爽99麻豆av| 变态另类丝袜制服| 国内精品久久久久久久电影| 在线播放无遮挡| 午夜影院日韩av| 欧美一区二区亚洲| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| 精品国产三级普通话版| 欧美日韩乱码在线| 99久久无色码亚洲精品果冻| 亚洲成人中文字幕在线播放| 搞女人的毛片| 亚洲成人久久性| 欧美+亚洲+日韩+国产| 国产不卡一卡二| 国产成人福利小说| 一区二区三区免费毛片| 两人在一起打扑克的视频| 国产高清videossex| 国产精品国产高清国产av| 日本熟妇午夜| 亚洲精品一区av在线观看| АⅤ资源中文在线天堂| 国产精品久久视频播放| 国产成人av教育| 国产av麻豆久久久久久久| 亚洲精品在线美女| av欧美777| av在线天堂中文字幕| 国产精华一区二区三区| 高清在线国产一区| 国内精品一区二区在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 美女 人体艺术 gogo| 内地一区二区视频在线| 午夜日韩欧美国产| 国产99白浆流出| 欧美bdsm另类| 舔av片在线| 午夜精品在线福利| 校园春色视频在线观看| 亚洲国产欧美网| 欧美三级亚洲精品| 久久精品国产自在天天线| a级毛片a级免费在线| 毛片女人毛片| 亚洲国产中文字幕在线视频| 亚洲国产日韩欧美精品在线观看 | 久久午夜亚洲精品久久| 在线观看舔阴道视频| 亚洲国产精品999在线| 日本 欧美在线| 日本一本二区三区精品| 美女大奶头视频| 久久久久国内视频| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 日韩人妻高清精品专区| 国产精品女同一区二区软件 | av片东京热男人的天堂| h日本视频在线播放| 天堂动漫精品| 91麻豆av在线| 熟女电影av网| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| ponron亚洲| 超碰av人人做人人爽久久 | 日韩成人在线观看一区二区三区| 一本一本综合久久| 国产亚洲精品av在线| 久久亚洲精品不卡| aaaaa片日本免费| 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 麻豆国产97在线/欧美| 国产亚洲欧美98| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 欧美成人a在线观看| av专区在线播放| 日韩欧美精品v在线| 99久久无色码亚洲精品果冻| 亚洲人成电影免费在线| 国产欧美日韩精品亚洲av| 欧美性猛交黑人性爽| 啪啪无遮挡十八禁网站| 国内精品久久久久久久电影| 亚洲在线观看片| 欧美日本视频| 一区二区三区高清视频在线| 丰满人妻一区二区三区视频av | 国产精品美女特级片免费视频播放器| 日韩大尺度精品在线看网址| 国产亚洲精品久久久久久毛片| 一进一出好大好爽视频| 午夜亚洲福利在线播放| 在线看三级毛片| 国产亚洲精品综合一区在线观看| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 久久久色成人| 欧美最黄视频在线播放免费| 日韩欧美 国产精品| 国产精品三级大全| 1024手机看黄色片| 网址你懂的国产日韩在线| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 在线国产一区二区在线| 国产成年人精品一区二区| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| or卡值多少钱| 久久人妻av系列| 日韩欧美精品v在线| 久久九九热精品免费| 久久久久免费精品人妻一区二区| 宅男免费午夜| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 久久精品91无色码中文字幕| 久久久久免费精品人妻一区二区| 美女黄网站色视频| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| av女优亚洲男人天堂| 亚洲av中文字字幕乱码综合| 亚洲国产中文字幕在线视频| 校园春色视频在线观看| 99国产精品一区二区三区| avwww免费| а√天堂www在线а√下载| 内地一区二区视频在线| 一级黄色大片毛片| 亚洲av美国av| 在线观看日韩欧美| 看免费av毛片| 午夜福利高清视频| АⅤ资源中文在线天堂| 亚洲五月天丁香| 色综合欧美亚洲国产小说| 久久久久免费精品人妻一区二区| 精品久久久久久,| 欧美性猛交╳xxx乱大交人| 狂野欧美激情性xxxx| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品成人久久久久久| 亚洲av熟女| 国产成人啪精品午夜网站| 日本成人三级电影网站| 久久久久久久久久黄片| 亚洲av免费高清在线观看| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 高清日韩中文字幕在线| 黄色片一级片一级黄色片| 一个人看的www免费观看视频| 嫩草影院精品99| 欧美一级a爱片免费观看看| 少妇丰满av| 一级黄片播放器| 日本黄大片高清| 母亲3免费完整高清在线观看| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 国产综合懂色| 五月伊人婷婷丁香| 狂野欧美激情性xxxx| 在线观看av片永久免费下载| 真人一进一出gif抽搐免费| 老熟妇乱子伦视频在线观看| 亚洲av一区综合| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| 国产97色在线日韩免费| 大型黄色视频在线免费观看| 成人性生交大片免费视频hd| 精品一区二区三区视频在线观看免费| 精品久久久久久久末码| 国产黄片美女视频| 一个人观看的视频www高清免费观看| 九色国产91popny在线| 久久久久亚洲av毛片大全| 国产三级中文精品| 亚洲成人中文字幕在线播放| 超碰av人人做人人爽久久 | 狂野欧美激情性xxxx| 白带黄色成豆腐渣| 美女黄网站色视频| 51国产日韩欧美| 亚洲无线观看免费| 搡女人真爽免费视频火全软件 | 精品一区二区三区视频在线 | 欧美性感艳星| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区免费观看 | 在线十欧美十亚洲十日本专区| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| av福利片在线观看| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久末码| 婷婷精品国产亚洲av| 深爱激情五月婷婷| 中文资源天堂在线| 叶爱在线成人免费视频播放| 国产亚洲精品av在线| 久久香蕉国产精品| 看免费av毛片| 99在线人妻在线中文字幕| 尤物成人国产欧美一区二区三区| 国产高清视频在线播放一区| 成人三级黄色视频| 亚洲精品日韩av片在线观看 | 操出白浆在线播放| 婷婷精品国产亚洲av| 国产av不卡久久| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 欧美色欧美亚洲另类二区| 又黄又粗又硬又大视频| 午夜两性在线视频| 午夜a级毛片| 国模一区二区三区四区视频| 欧美色欧美亚洲另类二区| 日韩精品中文字幕看吧| 国产av不卡久久| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 丰满乱子伦码专区| 97超级碰碰碰精品色视频在线观看| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 国产97色在线日韩免费| 99视频精品全部免费 在线| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久 | 91字幕亚洲| 日本 欧美在线| a级一级毛片免费在线观看| 日韩欧美三级三区| 中文字幕久久专区| av欧美777| 精品熟女少妇八av免费久了| 国产精品永久免费网站| 国产成人av激情在线播放| 国产高潮美女av| 国产黄色小视频在线观看| 99久久综合精品五月天人人| 成年女人看的毛片在线观看| 精品久久久久久久毛片微露脸| 国产精品 欧美亚洲| 精品国产亚洲在线| 日韩欧美免费精品| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区 | 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 亚洲国产中文字幕在线视频| 亚洲真实伦在线观看| 久久九九热精品免费| 又黄又爽又免费观看的视频| 国产精品,欧美在线| 亚洲精品456在线播放app | 久久精品人妻少妇| 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 中文字幕av成人在线电影| 亚洲国产精品sss在线观看| 日本a在线网址| 午夜免费观看网址| 99久久精品国产亚洲精品| 欧美日韩综合久久久久久 | 国产日本99.免费观看| 在线观看免费视频日本深夜| 叶爱在线成人免费视频播放| 午夜精品一区二区三区免费看| 国产一区在线观看成人免费| 国产淫片久久久久久久久 | 怎么达到女性高潮| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 在线看三级毛片| 夜夜看夜夜爽夜夜摸| 久久婷婷人人爽人人干人人爱| 深夜精品福利| 欧美3d第一页| 中文字幕av成人在线电影| 久久亚洲真实| 亚洲中文日韩欧美视频| 深夜精品福利| 色av中文字幕| 精品人妻偷拍中文字幕| 欧美zozozo另类| netflix在线观看网站| 宅男免费午夜| 亚洲欧美精品综合久久99| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久 | 中文字幕久久专区| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 免费在线观看影片大全网站| 国产精品久久视频播放| 香蕉久久夜色| 国产一区二区激情短视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 熟妇人妻久久中文字幕3abv| 成人特级av手机在线观看| 国产成人a区在线观看| 久久这里只有精品中国| 免费在线观看成人毛片| 身体一侧抽搐| 午夜老司机福利剧场| 亚洲av五月六月丁香网| av视频在线观看入口| 国产熟女xx| 露出奶头的视频| 亚洲在线自拍视频| 国产精品,欧美在线| 99久国产av精品| 最好的美女福利视频网| 午夜激情欧美在线| 1000部很黄的大片| 亚洲精品久久国产高清桃花| 日韩欧美精品免费久久 | 成人特级黄色片久久久久久久| 欧美黑人巨大hd| 搞女人的毛片| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 白带黄色成豆腐渣| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 国产精品一及| 欧美中文综合在线视频| 亚洲精品日韩av片在线观看 | 国产探花极品一区二区| 九九热线精品视视频播放| 老司机在亚洲福利影院| 久久精品综合一区二区三区| 91在线观看av| 日韩av在线大香蕉| 欧美日韩黄片免| 热99re8久久精品国产| 国产野战对白在线观看| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 舔av片在线| 成人av在线播放网站| av福利片在线观看| av视频在线观看入口| 99久久99久久久精品蜜桃| 成年女人永久免费观看视频| 亚洲天堂国产精品一区在线| 大型黄色视频在线免费观看| 中文字幕精品亚洲无线码一区| 麻豆久久精品国产亚洲av| 久久久色成人| 免费在线观看影片大全网站| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| 一区二区三区免费毛片| 欧美日本视频| 国产成人福利小说| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 在线观看日韩欧美| 三级男女做爰猛烈吃奶摸视频| 母亲3免费完整高清在线观看| 婷婷亚洲欧美| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 成人特级av手机在线观看| 中文字幕久久专区| 亚洲18禁久久av| 国产高清三级在线| 国产精品免费一区二区三区在线| 亚洲精品乱码久久久v下载方式 | 亚洲国产色片| 悠悠久久av| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 麻豆成人av在线观看| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕 | 亚洲成人精品中文字幕电影| 99久久精品国产亚洲精品| 又粗又爽又猛毛片免费看| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 可以在线观看的亚洲视频| 国产乱人视频| 国内精品久久久久久久电影| 日本五十路高清| 免费在线观看亚洲国产| 国产男靠女视频免费网站| 欧美黄色淫秽网站| 国产成人系列免费观看| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜| 亚洲久久久久久中文字幕| 婷婷六月久久综合丁香| 国产综合懂色| 91麻豆精品激情在线观看国产| 欧美中文综合在线视频| 亚洲美女视频黄频| 精品人妻一区二区三区麻豆 | 日韩国内少妇激情av| 日本 av在线| 亚洲久久久久久中文字幕| 国产一区在线观看成人免费| 亚洲精品456在线播放app | 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 亚洲精品456在线播放app | 亚洲在线自拍视频| 少妇的逼好多水| 少妇的逼水好多| 亚洲性夜色夜夜综合| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 在线观看66精品国产| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 国产美女午夜福利| 中文字幕av成人在线电影| xxxwww97欧美| 亚洲精品成人久久久久久| 色尼玛亚洲综合影院| 国产精品一及| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 高清在线国产一区| 亚洲激情在线av| 日韩大尺度精品在线看网址| 午夜福利免费观看在线| 少妇的逼水好多| 日韩欧美免费精品| 黄色日韩在线| 性色avwww在线观看| 国产高潮美女av| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 亚洲av成人精品一区久久| 天堂动漫精品| 亚洲av中文字字幕乱码综合| 90打野战视频偷拍视频| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看 | 日韩欧美精品免费久久 | 人人妻,人人澡人人爽秒播| www国产在线视频色| avwww免费| xxx96com| a级毛片a级免费在线| 亚洲va日本ⅴa欧美va伊人久久| 久久精品91无色码中文字幕| 两个人的视频大全免费| 国产97色在线日韩免费| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 99国产综合亚洲精品| 精品福利观看| 亚洲国产色片| 免费av毛片视频| 内射极品少妇av片p| 久99久视频精品免费| 91麻豆精品激情在线观看国产| 日本熟妇午夜| 在线免费观看不下载黄p国产 | 欧美bdsm另类| 9191精品国产免费久久| 1024手机看黄色片| www.色视频.com| 免费看光身美女| 非洲黑人性xxxx精品又粗又长|