• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    2017-07-01 20:50:13Corriveau
    Defence Technology 2017年3期

    D.Corriveau

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    D.Corriveau*

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    A R T I C L E I N F O

    Article history:

    Aerodynamics

    Ballistics

    Trajectory

    BALCO

    NABK

    Ballistic computer

    Sniper system

    In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK)for the Canadian snipers,DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom(6-DOF)trajectory simulations for a set of relevant vignettes for the snipers,and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel(NABK)adapted to simulate small-arm ammunition trajectories.To conduct this study,DRDC Valcartier Research Centre used BALCO v1.0b.This paper presents(1)the process and the methodology employed to carry out the sniper direct fire solution study,(2)the modeling and the simulation of the sniper projectile,the approach used in calculating the firing solutions,and the results of direct fire simulations for the sniper vignettes,and(3)an analysis of firing solutions obtained with the BALCO engine versus those of NABK.The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

    Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The development of the NABK started in the nineties in what is now called the NATO Land Capability Group 3 Sub-Group 2. Members of this group elected for a standard,generic,and layered set of software modules for ballistic processing[1].The Ada computer language was selected given its wide acceptance and embedded application capability.The NABK was first released in 1995 for use in artillery and mortar technical fire control applications.It is currently used by more than ten NATO countries as the main ballistic engine for the artillery and mortar applications.The NABK is also planned for use by navalapplications as wellas in the next generation of fire support systems including guided artillery, mortars and direct fire applications such as fighting vehicles and tanks.

    Although the NABK has been a very successful ballistic engine for various types of weapon systems and for the development of firing tables[2][3],the small arms fire control for individual and crew served weapons ballistic solution is one area where the NABK is not well suited due to the unique requirements of the domain. Historically,fire controlsystems for smallarms presented a unique environment and requirements to the developer of technical fire controlsystems.Smallarms fire controlsystems are typically small in size which limited the available computer resources;CPUs are of lower power with correspondingly less processing capabilities;the amount of random access memory may also be limited.Operating systems used in small arms fire control systems are typically embedded real-time systems.This limits the choice of computer programming languages and compilers that support these systems and also places real-time requirements on the applications thatrun under the hardware and operating system.However,with the constant miniaturization of electronic components and the continually increasing computer power,the factors preventing the use of the NABK for small-arms fire control system have progressively been eliminated.

    With today's smartphone platform,it was demonstrated by the Canadian snipers that the computer power of these devices was suf ficientto run the NABK and instantly generate a ballistic solution for the snipers.Fig.1 shows the Canadian snipers NABK ballistic computer kit with the various sensor connectors and power pack.

    In this paper,the work performed to validate the use of NABK as a ballistic engine for the Canadian snipers ballistic computer is presented.Comparisons between the trajectory predicted by NABK and BALCO are presented for a typical 7.62 mm sniper projectile.Various engagement scenarios are investigated to con firm that NABK performs well for different environmental conditions and firing directions.The comparison of the results obtained from the two ballistic engines are made and discussed.

    2.NABK in brief

    The NATO Armament Ballistic Kernelis a 4-DOF modi fied point mass model.This is a compromise between a simple point mass model and a computationally intensive 6-DOF model.NABK is based on the mathematical model de fined by the NATO STANAG 4355[4]:The Modi fied Point Mass and Point Mass Equations of Motion.In the modi fied point mass model,the effects due to the spin rate ofa projectile are included contrary to a simple pointmass model.Thus,the equilibrium yaw angle in both the lateral and trajectory plane is taken into accountfor calculation ofthe driftand drag.The 4-DOF modi fied point mass model is the algorithm implemented in trajectory simulation programs NABK.The trajectory integration is carried out using the Runge-Kutta-Fehlberg integration scheme.This is a fourth order numerical integration scheme.The projectile and the environment can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric projectiles,isolated control surfaces,aerodynamic coef ficients described by polynomials;

    ·Inertia data:symmetric matrix of inertia;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·5-DoF for fin stabilized rocket

    3.BALCO in brief

    BALCO is a 6/7-DoF trajectory simulation program based on the mathematical model de fined by the NATO Standardization Recommendation 4618[5][6].The primary goal of BALCO is to compute high-fidelity trajectories for both conventional and precision-guided projectiles.The 6-DoF model is used to describe the motion of single rigid bodies.The 7-DoF model allows the description ofa projectile which consists oftwo coaxialrigid bodies that can spin independently.Actuators such as isolated control surfaces(e.g.fins or canards),thrusters or internal rollcontrol devices can optionally be attached to the rigid body.Controlling the state of these actuators offers a controlauthority on the trajectory. The 6/7-DoF equations of motion can be expressed in three differentframes,namely,body-fixed,zero rolland zero spin frames, depending on the contextofthe study.The trajectory integration is carried out using an accurate seventh-order Runge-Kutta scheme. The projectile,the environment and the optional guidance,navigation and controlcapabilities can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric or non-axisymmetric projectiles, isolated controlsurfaces,aerodynamic coef ficients described by multidimensional look-up tables or polynomials;

    ·Inertia data:symmetric or asymmetric matrix of inertia,userde fined timedependent inertia;

    ·Thrusters:user-de fined time-dependent 3D vector thrusts;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·Embedded actuators(open-or closed-loop flight control):isolated controlsurfaces,thrusters and internalrolling moment for dual-spin bodies;

    ·Guidance,navigation and control models implemented as external functions using a common communication interface (closed-loop flight control).

    4.Sniper ammunition model

    The sniper ammunition of used for this project is the NATO 7.62×51 mm,OTBT(Open Tip Boat Tail),168 gr,Match,which is simply referred to in this paper as the C175.The aerodynamic model for this round was developed using PRODAS(Fig.2)combined with some experimental firing radar traces.

    The aerodynamic coef ficients generated in PRODAS that are actualinputs to the BALCO modeland NABK modelare as follows: CD0,CD2,CD4,CLα0,CLα3,CMα,C Mq,C lp,C Nq,C Ypαand C M pα.

    The coef ficients CD0,CD2and CD4are used to calculate to total drag coef ficient taking into account the projectile's yaw as follows

    whereδ=sinαt.αtis the totalangle of attack.

    The lift force coef ficient CLαis often nonlinear as the yaw level varies.This behaviour is captured using the following relationship

    The pitching moment is directly related to the lift force.For small caliber projectiles,the pitching moment is usually positive. Therefore,ifthe nose ofthe projectile rises above the trajectory,the pitching momentwillactas to increase the yaw angle.The pitching moment relates to the pitching moment coef ficient as follows

    The pitch damping moment arises from the attenuation of pitching motion of a projectile due to the air resistance.The pitch damping moment relates to the pitch damping moment coef ficient as follows:

    where qtis the totalangular velocity.

    Similarly,the pitch damping force relates to the pitch damping force coef ficient as follows

    The spin damping moment opposes the spin of the projectile.It relates to the spin damping coef ficient as follows

    The Magnus force arises fromthe unequalpressures distribution on either side of a spinning body.This is the result of the viscous interaction between the spinning projectile body and the fluid.The Magnus force relates to the Magnus force coef ficient as follows

    Similarly,the Magnus moment is a function of the Magnus moment coef ficient given as

    5.Direct fire simulation comparison study

    In order to compare the direct fire solution of NABK with that obtained from the 6-DOF trajectory simulation code BALCO a set of 20 vignettes was developed.These vignettes represent typical firing conditions that could be encountered around the world by the snipers.The vignette locations are shown in the map presented in Fig.3.

    The vignettes spread locations all over the world,as shown as squares on the simple map of Fig.3.The vignettes also cover a relatively large range ofair temperatures(from-40°C to 49°C),air pressure(from 98.1 kPa to 103.6 kPa),relative humidity(from 0 to 100%),wind speed(from 0 to 30 km/h),gun altitude(from 0 to 3600 m),gun range(from 300 to 1200 m),angles of sight (from-533 to 355 mils),and propellant temperature(from-20°C to 70°C).The vignettes data are presented in Table 1 to Table 3.

    A vignette is a simulation scenario composed of de fining elements.Typically,one finds the following parameters in a vignette: geo-location and altitude of the shooter,shooter-target range, altitude of target,temperature and barometric pressure at the shooter location,relative humidity at the shooter position,wind speed and direction,ri fle azimuth from the North,and shootertarget slant angle.

    Simulation involves numerically running a model of the projectile,namely solving the equations of motion over time,preferably in the BALCO environment,under the conditions of interest, and then collecting the results,such as projectile position and velocity versus time,to cite a few.

    Brie fly,the projectile modelis characterized by the usual aerodynamic parameters[7].The parameters are obtained with PRODAS,leveraging the knowledge of the geometry of the projectile. Furthermore,some radar traces were used to re fine the aerodynamic model.The PRODAS aerodynamic model is implemented in BALCO.The 6-DOF numericalsimulations are run in BALCO.The trajectory of the projectile is obtained through the solution of the equations of motion;namely,a solution to a number ofdifferential equations calculated with classical Runge-Kutta methods.

    Table 1 Original vignettes 1 to 7.

    Table 2 Originalvignettes 8 to 15.

    Table 3 Original vignettes 16 to 20.

    As a minimum the following results were collected on the ri fle and projectile:quadrant elevation(QE),super elevation(SE),time of flight,velocity at impact,transonic entry distance,maximum ordinate,azimuth of fire(with and without Coriolis effect,and with and without wind),and drift angle(due to projectile spin,Coriolis effect,and wind,and due to a combination of those factors).These parameters are de fined in the report and their values obtained for the various vignettes are presented.

    The following elements are of particular importance for the sniper:super elevation,drift angle,and range to transonic entry. And as such,these variables are collected during the simulations.

    6.Approach

    The steps in the DRDC simulation study are shown in Fig.5.The six steps are carried out for each vignette.Then,results of the simulations are collected,metrics are calculated,and differences between NABK and BALCO are quanti fied and analysed.

    Once the projectile data is entered for a vignette,the information is valid and fixed for all vignettes.The vignette speci fic information on geometry,meteorologicalconditions,wind parameters, and geo location are extracted from the Excel table,and entered into the BALCO input script file.Using the tabular data associated with a vignette,one fills out the BALCO input file as follows:

    ·$ISO_Atmosphere_Correction_Data is entered as the triplet altitude[m],temperature[K],and pressure[Pa],

    ·$Wind_Data is entered as components in a Cartesian frame, with one component along x1(down-range),followed by a component along x2(vertical,always zero here),and finally a component along x3(cross-range),

    ·$Longitude_Latitude_Azimuth is entered as longitude(deg)and latitude(deg),complying with the sign convention used in this study,and as azimuth(deg)of fire(speci fically,the azimuth from the North entry of the vignette table data),in this order,

    ·$Initial_Position is entered as down range(m)of zero,height (m)above sea level as given in the vignette table,and cross range(m)of zero,in this order,as the position of the shooter (gun).

    Targetlocation is determined from the geometry ofthe vignette, using the vignette information on the slant angle,the height ofthe shooter,and the range to target.Actually,target height from sea levelis critical,as it serves in the evaluation ofthe drift angle.Fig.4 presents a generic geometry and basic calculations to obtain target height(y)from vignette parameters.

    The next step pertains to setting the QE,the initial conditions, the stopping conditions,and the format of the simulation output. Obtaining the QE value,by trial and error,that results in the projectile hitting the target is the iterative part of the approach.Using the tabular data associated with a vignette:

    ·$Initial_Time is set to zero,

    ·$Initial_Velocity is entered as the triplet of magnitude(m/s)of the projectile at firing obtained from the NABK data,followed by the de flection angle set to zero,and the elevation angle(QE)as the estimated value to reach the target,

    ·$Initial_Angular_Position is entered as 0,0,and 0(for aerodynamic roll angle,total angle of attack,and roll angle),

    ·$Initial_Angular_Velocity is entered as the spin rate(rad/s)of the projectile obtained with PRODAS(with NABK supplied projectile velocity magnitude at firing),and followed by zero pitch rate,and zero yaw rate,

    ·Stopping condition is$Trajectory_Limit entered as the range to target value for the vignette,

    ·$Print_Time_Step is entered as the appropriate value that gives enough increment in the output,and may vary from 0.0005 s to 0.01 s depending on the vignette and output results.

    With the aforementioned key parameter values identi fied and set,the simulations of a vignette may be run,as shown in Fig.5.

    As for the trialand error process associated with the QE value,a simulation is first run with the originally guessed QE value.One obvious choice for the firstguess on QE is the NABK QE value,which is available.The projectile location obtained at the downrange target position is then compared with that expected from the geometry ofthe shooter-target,with a computation as shown in Fig.4. Ifthe projectile does notend up at the correct targetaltitude within 2 decimalplaces in units of meters,at the target downrange value location,the QE is set to another value,and the simulation is run again.The process is repeated untila satisfactory projectile altitude at target is obtained.

    Note that several simulations are run for a given vignette and fixed(final)QE value to allow for post-processing calculations that isolate the effects of three variables on the drift angle:Coriolis effect,wind,and bullet spin.

    7.Results

    The results obtained with BALCO and NABK for the sniper vignettes are presented in Table 4 to Table 10.The variables used for performance evaluation and other variables,as required by the snipers,are shown in the tables.The columns are arranged such thatthe NABK and BALCO results are presented side by side for each vignette.

    Other variables of interest found in the results tables are as follows:projectile's time of flight,muzzle velocity(MV),velocity at impact(actually,when projectile is closest to target),transonic entry distance,maximum ordinate,and range to maximum ordinate.Range to maximum ordinate is the distance from the gun position to the horizontal coordinate of the location of the projectile when it reaches its highest altitude.

    8.NABK versus BALCO trajectory comparisons

    The objective of the veri fication and validation process is to demonstrate the accuracy of NABK solution so that it may be used with con fidence in a ballistic computer for the snipers.According to AIAA guidelines[8],the veri fication process determines if the programming and computational implementation of the conceptual model is correct.It examines the mathematics in the model through comparison with exact analytical results and checks for computer programming errors.As for the validation process,it determines if the computational simulation agrees with physical reality through comparison with experimental results.

    To compare the trajectory algorithms of NABK with that of BALCO,one may state a number ofobservations on the results using Table 11 to Table 14,in particular those tables featuring the differences in key variables.A detailed explanation of the results obtained with NABK is outside the scope of the analysis.

    For each vignette,the difference in NABK and BALCOQE inputs is smaller than or equal to 0.012°.The maximum value of 0.012°is obtained with vignette 19.If one omits vignette 19,the largest difference in QE is smaller than or equalto 0.0098°.The same observations can be made for SE.

    The maximum difference in magnitude of velocity at impact between NABK and BALCO for all vignettes is 2%.The maximum is obtained with vignette 19.If one discards this vignette,the maximum difference falls to 0.6%.

    The relatively large difference in NABK and BALCO QE inputs observed for vignette 19 can be explained in terms of the virtualtemperature.NABK simulations rely on the virtual temperature, which takes into account the relative humidity in the air.For most vignettes,the difference between the air temperature and the virtual temperature was relatively small or non-existent,thereforehad a minor impact on performance of the projectile.However, with vignette 19,one has a scenario with a very high temperature and high levelofhumidity.For vignette 19,the virtualtemperature was 53.6 deg C as compared with 44 deg C for the air temperature.The temperature is used to calculate the flight Mach numbers which in turn are used to extract the aerodynamic coef ficients. Thus for large temperature differences,one expects signi ficant discrepancies in the aerodynamic coef ficients,such as the dragcoef ficient.Furthermore,the difference in temperature is expected to signi ficantly impact velocity at the target with a relatively large separation between the shooter and the target.With vignette 19, the range was relatively long at 800 m.This only exacerbated the difference in projectile performance as obtained with NABK and BALCO.

    Table 4 Results for vignettes 1 and 2.

    Table 5 Results for vignettes 3,4 and 5.

    Table 6 Results for vignettes 6,7 and 8.

    Table 7 Results for vignettes 9,10 and 11.

    Table 8 Results for vignettes 12,13 and 14.

    Table 9 Results for vignettes 15,16 and 17.

    Table 10 Results for vignettes 18,19 and 20.

    Table 11 NABK-BALCO differences in QE,SE.

    The differences in total drift angles obtained with NABK and BALCO for all vignettes are shown in Table 13.The maximum difference is 0.13 mils,or 0.0073°,obtained with vignette 11,and the second largest is 0.09 mils,obtained with vignettes 4 and 5.The average NABK-BALCO difference in totaldrift angle is 0.04 mils.

    In case of projectile drift due to Coriolis effects,wind and bullet spin,the results of the comparison between NABK and BALCO are presented in Table 14.Magnitude of the difference between drift due to Coriolis obtained with NABK and BALCO is the largest for vignette 18(rounded value of 0.009 mils).Magnitude of the difference between drift due to projectile spin obtained with NABK and BALCO is the largest for vignette 2(rounded value of 0.027 mils).Magnitude ofthe difference between driftdue to wind effects obtained with NABK and BALCO is the largest for vignette 11

    (rounded value of 0.137 mils).The average difference NABK-BALCO in projectile drift due to Coriolis effects is 0.0012 mils,that due to projectile spin is 0.0034 mils,and that due to wind is 0.0422 mils (using rounded values for the calculation of the average).On average,wind has the largest impact on drift size among the three factors considered.

    Table 12 NABK-BALCO differences in velocity at impact.

    Table 13 NABK-BALCO differences in total drift angles.

    Table 14 NABK-BALCO differences in drift angles.

    9.Conclusion

    This reportprovides an assessmentofNATOArmaments Ballistic Kernel(NABK)firing solutions for a number of relevant sniper vignettes for the NATO 7.62×51 mm,OTBT,168 gr,Match ammunition.The work presented in this report is the first known validation of NABK data for sniper vignettes.The direct fire trajectory simulation study indicates that the results,mainly about the fire control inputs and the resulting drift,of the 6-degree-of-freedom simulations of the NATO 7.62×51 mm,OTBT,168 gr Match ammunition projectile in BALCO are in close agreement to those obtained with the 4-degree-of-freedom simulations in NABK for allthe vignettes investigated.The largest observed difference between the various parameters compared was 2%for the terminalvelocity in vignette 19.Typicaldifference in terminalvelocity was less than 0.5%.

    For the vignettes studied,the fire controlinputs for BALCO and NABK resulted,in practically the same impact point for both trajectory algorithms.Relying on the BALCO-NABK comparison results presented in this paper,it is concluded that NABK is suf ficiently accurate to predict the trajectory of direct fire smallcaliber projectiles.Therefore,the use of NABK for a sniper ballistic computer can be recommended.

    [1]Sowa,A.J.,“NATO Shareable Software Developing Into True Suite Supporting National Operational,Fire Control Systems”in proceedings of the 24th International Symposium on Ballistics,New Orleans,LA,September 22-26,2008.

    [2]Chusilp,P,Charubhun,Weerawut and Ridluan,A.,“Developing Firing Table Software for Artillery Projectiles using Iterative Search and 6-DOF Trajectory Model”,in proceedings of the 2nd TSME International Conference on Mechanical Engineering,Krabi,Thailand,October 19-21,2011.

    [3]Ortac,S.A.,Durak,U.,Kutluay,U.,Kucuk,K.and Candan,C.,“NABK Based Next Generation Ballistic Table Toolkit”,in proceedings of the 23rd International Symposium on Ballistics,Tarragona,Spain,April 16-20,2007.

    [4]The Modi fied Point Mass and Five Degrees of Freedom Trajectory Models.NATO STANAG 4355.Edition 3 2009.

    [5]Wey,P.,Corriveau,D.,Saitz,T.A.,de Ruijter,W.and Str¨omb¨ack,P.,“BALCO 6/7-DoF trajectory Model”in proceedings of the 29th International Symposium on Ballistics,Edinburgh,UK,May 9-13,2016.

    [6]The Six/Seven Degrees of Freedom Guided Projectile Trajectory Model.NATO STANREC 4618.Edition 1 January 2014.

    [7]McCoy RL.Modern Exterior Ballistics-the launch and flight dynamics of symmetric projectiles.Schiffer Military History;1999.

    [8]Guide for the veri fication and validation of computational fluid dynamics simulations.AIAA G-077-1998;1998.

    29 January 2017

    *Corresponding author.

    E-mail address:daniel.corriveau@drdc-rddc.gc.ca.

    Peer review under responsibility of China Ordnance Society

    http://dx.doi.org/10.1016/j.dt.2017.04.006

    2214-9147/Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

    Received in revised form 11 April 2017

    Accepted 24 April 2017

    Available online 27 April 2017

    国产99久久九九免费精品| xxx大片免费视频| 男人操女人黄网站| 亚洲,欧美,日韩| 无遮挡黄片免费观看| 亚洲欧美精品综合一区二区三区| 黄色怎么调成土黄色| 国产精品秋霞免费鲁丝片| 日韩人妻精品一区2区三区| 亚洲九九香蕉| 黄色一级大片看看| 欧美激情极品国产一区二区三区| 老汉色av国产亚洲站长工具| 黄色一级大片看看| 国产av精品麻豆| 狠狠婷婷综合久久久久久88av| 最近最新中文字幕大全免费视频 | 亚洲色图 男人天堂 中文字幕| 久久精品亚洲av国产电影网| 国产成人一区二区三区免费视频网站 | 黄色视频不卡| 午夜福利免费观看在线| a级片在线免费高清观看视频| 在线观看免费视频网站a站| tube8黄色片| 久久久久久久国产电影| 黄色视频在线播放观看不卡| 我要看黄色一级片免费的| 99九九在线精品视频| 我要看黄色一级片免费的| 欧美精品啪啪一区二区三区 | 欧美成人午夜精品| 每晚都被弄得嗷嗷叫到高潮| 丁香六月天网| 亚洲第一青青草原| 亚洲精品美女久久av网站| 99国产综合亚洲精品| 久久久久久久久久久久大奶| 午夜av观看不卡| 成人国产av品久久久| 国产xxxxx性猛交| 久久国产精品男人的天堂亚洲| 乱人伦中国视频| 欧美精品一区二区免费开放| 免费观看人在逋| 久久免费观看电影| 美女主播在线视频| 又粗又硬又长又爽又黄的视频| 黄片播放在线免费| 夜夜骑夜夜射夜夜干| 免费观看a级毛片全部| 免费高清在线观看日韩| 肉色欧美久久久久久久蜜桃| 国产免费福利视频在线观看| 亚洲人成电影观看| 一级毛片 在线播放| 亚洲国产中文字幕在线视频| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| av在线老鸭窝| 丁香六月天网| 欧美av亚洲av综合av国产av| 蜜桃在线观看..| 大陆偷拍与自拍| 男女下面插进去视频免费观看| 99香蕉大伊视频| 婷婷丁香在线五月| 日日爽夜夜爽网站| 在线观看www视频免费| 赤兔流量卡办理| 久久人妻福利社区极品人妻图片 | 亚洲 欧美一区二区三区| 丰满饥渴人妻一区二区三| 国产精品香港三级国产av潘金莲 | 亚洲成人手机| 激情视频va一区二区三区| 国产主播在线观看一区二区 | 曰老女人黄片| 久久久国产欧美日韩av| 免费在线观看完整版高清| 国产有黄有色有爽视频| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 午夜91福利影院| 性色av一级| 巨乳人妻的诱惑在线观看| 亚洲人成网站在线观看播放| 五月开心婷婷网| 男女边摸边吃奶| 日韩一卡2卡3卡4卡2021年| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 亚洲精品国产色婷婷电影| 91麻豆av在线| 国产激情久久老熟女| 国产精品一区二区免费欧美 | 免费av中文字幕在线| 久久久久视频综合| 日日摸夜夜添夜夜爱| 中文乱码字字幕精品一区二区三区| 建设人人有责人人尽责人人享有的| 久久久国产欧美日韩av| 亚洲精品美女久久av网站| 亚洲国产欧美一区二区综合| 日本vs欧美在线观看视频| 久久国产精品人妻蜜桃| 色婷婷久久久亚洲欧美| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 国产精品av久久久久免费| 精品一区二区三区四区五区乱码 | 看十八女毛片水多多多| 午夜激情久久久久久久| 国产成人欧美| 亚洲国产精品一区二区三区在线| 欧美精品av麻豆av| 日本五十路高清| 在线看a的网站| av一本久久久久| 婷婷成人精品国产| 男女免费视频国产| 精品第一国产精品| 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 国产片内射在线| 咕卡用的链子| 狂野欧美激情性bbbbbb| 久久久久久久精品精品| 咕卡用的链子| 自线自在国产av| 国产伦理片在线播放av一区| 欧美xxⅹ黑人| 别揉我奶头~嗯~啊~动态视频 | 在线av久久热| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 久久人妻福利社区极品人妻图片 | 丝瓜视频免费看黄片| 亚洲国产日韩一区二区| 亚洲国产精品一区二区三区在线| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 悠悠久久av| 亚洲男人天堂网一区| 久久99精品国语久久久| 制服人妻中文乱码| 一级黄色大片毛片| 久热这里只有精品99| 国产免费福利视频在线观看| 狂野欧美激情性xxxx| 欧美人与性动交α欧美软件| tube8黄色片| 肉色欧美久久久久久久蜜桃| 一本色道久久久久久精品综合| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| 精品久久久久久久毛片微露脸 | 午夜福利在线免费观看网站| 婷婷丁香在线五月| 成年av动漫网址| 黄频高清免费视频| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 成人黄色视频免费在线看| 人妻人人澡人人爽人人| 在线精品无人区一区二区三| 美女扒开内裤让男人捅视频| 亚洲精品一区蜜桃| 久久精品亚洲av国产电影网| 午夜福利影视在线免费观看| 在线天堂中文资源库| 女人精品久久久久毛片| 免费在线观看影片大全网站 | 黄色毛片三级朝国网站| 久久亚洲精品不卡| 久久精品久久久久久噜噜老黄| av不卡在线播放| 欧美老熟妇乱子伦牲交| 中文字幕色久视频| 久久久久久久国产电影| 天天躁夜夜躁狠狠久久av| 一级毛片女人18水好多 | 精品一区在线观看国产| 在线观看人妻少妇| 麻豆国产av国片精品| 亚洲自偷自拍图片 自拍| 尾随美女入室| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 老司机亚洲免费影院| 国产精品二区激情视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品在线美女| 国产女主播在线喷水免费视频网站| 50天的宝宝边吃奶边哭怎么回事| 久久精品熟女亚洲av麻豆精品| 国产精品一国产av| 一本大道久久a久久精品| 黄片小视频在线播放| 99热国产这里只有精品6| 亚洲精品日本国产第一区| 欧美人与善性xxx| 首页视频小说图片口味搜索 | 少妇裸体淫交视频免费看高清 | 欧美中文综合在线视频| 五月天丁香电影| 久久狼人影院| 电影成人av| www.熟女人妻精品国产| 97精品久久久久久久久久精品| 亚洲精品一二三| 日本av免费视频播放| 国产极品粉嫩免费观看在线| 90打野战视频偷拍视频| 亚洲国产av影院在线观看| 久久久久久久精品精品| 水蜜桃什么品种好| 波多野结衣av一区二区av| 精品一区二区三卡| 在线看a的网站| 中文欧美无线码| 国产精品一区二区在线不卡| 一级黄片播放器| 一本一本久久a久久精品综合妖精| 亚洲美女黄色视频免费看| 久久青草综合色| 亚洲 国产 在线| 国产一区二区激情短视频 | 波多野结衣一区麻豆| 国产99久久九九免费精品| 老司机靠b影院| 国产高清不卡午夜福利| 久久久久视频综合| 午夜激情av网站| 性高湖久久久久久久久免费观看| 国产成人av激情在线播放| 欧美在线黄色| 成人国语在线视频| 欧美成人精品欧美一级黄| 母亲3免费完整高清在线观看| 热re99久久国产66热| 18禁国产床啪视频网站| 多毛熟女@视频| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 9热在线视频观看99| 90打野战视频偷拍视频| 日日夜夜操网爽| av视频免费观看在线观看| 日韩一卡2卡3卡4卡2021年| 激情视频va一区二区三区| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 建设人人有责人人尽责人人享有的| 在线观看一区二区三区激情| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区久久| 日本欧美视频一区| 交换朋友夫妻互换小说| av一本久久久久| 免费在线观看影片大全网站 | 一级黄片播放器| 两个人免费观看高清视频| 嫁个100分男人电影在线观看 | 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 欧美人与性动交α欧美软件| 久久久精品免费免费高清| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 亚洲午夜精品一区,二区,三区| 精品久久久久久久毛片微露脸 | 午夜福利影视在线免费观看| 国产高清不卡午夜福利| 精品卡一卡二卡四卡免费| kizo精华| 久久久久精品国产欧美久久久 | 男女床上黄色一级片免费看| 国产高清国产精品国产三级| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| 国产野战对白在线观看| 少妇人妻久久综合中文| 亚洲伊人色综图| 国产熟女午夜一区二区三区| 超碰97精品在线观看| 日韩一本色道免费dvd| 人妻人人澡人人爽人人| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 国产精品二区激情视频| 精品一区二区三区av网在线观看 | 亚洲国产精品成人久久小说| 欧美97在线视频| 人成视频在线观看免费观看| 中文精品一卡2卡3卡4更新| 老司机影院成人| 国产av一区二区精品久久| 1024视频免费在线观看| 久久99热这里只频精品6学生| 亚洲国产精品国产精品| 亚洲黑人精品在线| 久久综合国产亚洲精品| 久久人人97超碰香蕉20202| 大话2 男鬼变身卡| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 欧美在线一区亚洲| 国产成人av激情在线播放| 涩涩av久久男人的天堂| 又大又爽又粗| 丝袜美足系列| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 国产精品久久久久久精品电影小说| 欧美黑人欧美精品刺激| 日韩制服骚丝袜av| 97精品久久久久久久久久精品| 国产三级黄色录像| 国产亚洲欧美精品永久| 亚洲av综合色区一区| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 亚洲精品自拍成人| 99热全是精品| 国产精品久久久久久人妻精品电影 | 交换朋友夫妻互换小说| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 女性被躁到高潮视频| 免费观看av网站的网址| 一区二区三区乱码不卡18| 久久女婷五月综合色啪小说| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 熟女av电影| 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲 | 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 亚洲av日韩在线播放| 久久久国产精品麻豆| 99久久精品国产亚洲精品| www日本在线高清视频| 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 久久人人爽人人片av| 色网站视频免费| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 啦啦啦中文免费视频观看日本| 另类精品久久| 女人久久www免费人成看片| 777米奇影视久久| 成年人午夜在线观看视频| 青春草视频在线免费观看| 一区二区av电影网| 亚洲欧美激情在线| 夫妻性生交免费视频一级片| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 免费看十八禁软件| 亚洲av片天天在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品一区蜜桃| 亚洲av日韩在线播放| 精品欧美一区二区三区在线| 丰满迷人的少妇在线观看| 成年动漫av网址| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| av国产久精品久网站免费入址| av有码第一页| 亚洲欧美日韩高清在线视频 | 一本色道久久久久久精品综合| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 国产精品一区二区在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| 只有这里有精品99| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 9色porny在线观看| 国产日韩欧美在线精品| 女警被强在线播放| 久久人人爽人人片av| 男女免费视频国产| 中文字幕高清在线视频| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 亚洲图色成人| 久久精品亚洲av国产电影网| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 国产91精品成人一区二区三区 | 久久精品国产亚洲av涩爱| 亚洲精品自拍成人| 视频区图区小说| 成在线人永久免费视频| 黑人猛操日本美女一级片| 久久人人97超碰香蕉20202| 最近最新中文字幕大全免费视频 | 欧美黑人精品巨大| 国产成人免费观看mmmm| 老司机靠b影院| 亚洲人成电影观看| 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看 | 午夜免费成人在线视频| 亚洲美女黄色视频免费看| 九色亚洲精品在线播放| 少妇裸体淫交视频免费看高清 | 考比视频在线观看| 色综合欧美亚洲国产小说| 在线观看人妻少妇| 日本av免费视频播放| 在线观看www视频免费| 精品熟女少妇八av免费久了| av在线老鸭窝| 欧美精品av麻豆av| 国产精品.久久久| 亚洲欧美一区二区三区久久| 伊人亚洲综合成人网| 国产亚洲av高清不卡| 日本午夜av视频| 99久久人妻综合| 可以免费在线观看a视频的电影网站| 日韩精品免费视频一区二区三区| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久男人| 在现免费观看毛片| 久久99精品国语久久久| 韩国精品一区二区三区| 大片电影免费在线观看免费| 欧美黑人欧美精品刺激| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人| 黄网站色视频无遮挡免费观看| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 99国产精品免费福利视频| 午夜日韩欧美国产| 高清黄色对白视频在线免费看| 一级a爱视频在线免费观看| 国产精品一国产av| 日本91视频免费播放| 黑人猛操日本美女一级片| 十八禁网站网址无遮挡| 最近手机中文字幕大全| 亚洲精品久久久久久婷婷小说| 亚洲国产成人一精品久久久| 国产精品人妻久久久影院| 亚洲视频免费观看视频| 热re99久久国产66热| 最近最新中文字幕大全免费视频 | 精品一区二区三区四区五区乱码 | 国产成人免费观看mmmm| 亚洲人成网站在线观看播放| 91精品国产国语对白视频| 51午夜福利影视在线观看| 亚洲熟女毛片儿| 久久久精品国产亚洲av高清涩受| 久久精品熟女亚洲av麻豆精品| 天堂8中文在线网| 大陆偷拍与自拍| 九色亚洲精品在线播放| 99热国产这里只有精品6| 国产又爽黄色视频| 色视频在线一区二区三区| 色网站视频免费| 九色亚洲精品在线播放| 日本一区二区免费在线视频| 国产淫语在线视频| 亚洲色图综合在线观看| 亚洲av日韩在线播放| 在线观看www视频免费| 免费不卡黄色视频| 两个人免费观看高清视频| 国产av国产精品国产| 黄频高清免费视频| 欧美日韩黄片免| 成人国产av品久久久| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 免费少妇av软件| 日韩中文字幕视频在线看片| 亚洲成人免费av在线播放| 久久久久视频综合| 国产日韩欧美在线精品| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人综合另类久久久| 纯流量卡能插随身wifi吗| 国产色视频综合| 午夜两性在线视频| 国产精品偷伦视频观看了| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯 | 亚洲欧美中文字幕日韩二区| 欧美激情高清一区二区三区| 欧美乱码精品一区二区三区| 亚洲九九香蕉| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 啦啦啦视频在线资源免费观看| 国产一区二区激情短视频 | 国产精品久久久久成人av| 丝袜美腿诱惑在线| 超碰成人久久| 国产女主播在线喷水免费视频网站| 老司机在亚洲福利影院| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 好男人电影高清在线观看| 免费不卡黄色视频| 国产在线观看jvid| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 啦啦啦在线免费观看视频4| 夫妻性生交免费视频一级片| 日韩免费高清中文字幕av| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区| 嫁个100分男人电影在线观看 | 欧美日韩一级在线毛片| 韩国精品一区二区三区| 一级毛片 在线播放| 国产淫语在线视频| av天堂久久9| 九草在线视频观看| 午夜福利视频精品| 一级片免费观看大全| 亚洲伊人色综图| 亚洲国产精品一区三区| 性色av乱码一区二区三区2| 欧美成人精品欧美一级黄| 国产激情久久老熟女| 女人久久www免费人成看片| 久久国产精品影院| 日韩大片免费观看网站| 尾随美女入室| 99国产精品一区二区三区| 波多野结衣一区麻豆| 精品一区二区三卡| 美女福利国产在线| 麻豆av在线久日| av在线app专区| 人人澡人人妻人| 国产成人精品久久久久久| 纯流量卡能插随身wifi吗| 男女高潮啪啪啪动态图| 欧美激情高清一区二区三区| 老司机靠b影院| 国产精品欧美亚洲77777| 精品国产一区二区三区久久久樱花| 亚洲精品在线美女| 高清av免费在线| 日韩熟女老妇一区二区性免费视频| 精品少妇一区二区三区视频日本电影| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av| 欧美精品亚洲一区二区| 少妇人妻久久综合中文| 亚洲成av片中文字幕在线观看| 亚洲午夜精品一区,二区,三区| 日本一区二区免费在线视频| 国产日韩欧美在线精品| 欧美大码av| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 亚洲欧美成人综合另类久久久| tube8黄色片| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 一本一本久久a久久精品综合妖精| xxxhd国产人妻xxx| 欧美日韩综合久久久久久| 下体分泌物呈黄色| 亚洲色图 男人天堂 中文字幕| av天堂在线播放| √禁漫天堂资源中文www| 十八禁网站网址无遮挡| 亚洲欧美清纯卡通| 18在线观看网站| www.自偷自拍.com| 一边亲一边摸免费视频|