劉唱白,劉 麗,劉星熠
(1 吉林大學(xué) 電子科學(xué)與工程學(xué)院,長春 130012;2 吉林大學(xué) 物理學(xué)院,長春 130012)
Al2O3摻雜ZnO微米花對(duì)丙酮超高靈敏度和優(yōu)異選擇性
劉唱白1,劉 麗2,劉星熠1
(1 吉林大學(xué) 電子科學(xué)與工程學(xué)院,長春 130012;2 吉林大學(xué) 物理學(xué)院,長春 130012)
利用水熱合成技術(shù),成功制備具有孔道的純ZnO微米花和Al2O3摻雜的ZnO(Al2O3-ZnO)微米花。通過X射線衍射(XRD)、掃描電鏡(SEM)、電子能譜(EDS)對(duì)樣品的形貌和結(jié)構(gòu)進(jìn)行表征。利用所得的純ZnO和Al2O3-ZnO樣品制備氣敏元件,并對(duì)其氣敏特性進(jìn)行研究。結(jié)果表明:在工作溫度為260℃時(shí),基于Al2O3-ZnO的氣敏元件對(duì)100×10-6的丙酮?dú)怏w的靈敏度約為82.8,約為同條件下基于純ZnO的氣敏元件對(duì)丙酮?dú)怏w靈敏度(18.0)的4.6倍,其響應(yīng)時(shí)間和恢復(fù)時(shí)間分別為3s和8s,是同條件下干擾氣體中靈敏度最高的乙醇?xì)怏w的靈敏度(26.2)的3.16倍,該元件具有優(yōu)異的選擇性,能成功區(qū)分具有相似性質(zhì)的丙酮和乙醇。此外,Al2O3-ZnO器件可檢測到0.25×10-6的丙酮?dú)怏w,其靈敏度約為3.1。
水熱法;丙酮;Al2O3-ZnO微米花;氣體傳感器
目前,氣體傳感器在空氣質(zhì)量檢測、環(huán)境監(jiān)控以及交通安全方面都起著重要的作用[1]?;诟鞣N金屬氧化物半導(dǎo)體材料的氣敏材料在檢測有毒有害和易燃易爆氣體方面有著廣泛的應(yīng)用[2,3]。在這些氧化物中ZnO是無毒、穩(wěn)定、低廉的n型半導(dǎo)體材料,是在氣體傳感器領(lǐng)域應(yīng)用最為廣泛的半導(dǎo)體氣敏材料之一[4]。近年來關(guān)于ZnO對(duì)各種氣體的敏感特性的研究很多[5-7]。但由于傳統(tǒng)的純的ZnO靈敏度低、響應(yīng)恢復(fù)慢、選擇性差等,所以其應(yīng)用受到限制。在氣體傳感領(lǐng)域,通常是對(duì)材料進(jìn)行低維化、孔道化以及摻雜金屬離子等改性技術(shù)來提高半導(dǎo)體氧化物ZnO納米材料的氣敏性能,許多金屬元素如Cu,Pd已經(jīng)被摻入ZnO納米材料中來增強(qiáng)氣敏特性[8,9]。Yu等[10]將Al摻入ZnO納米材料,發(fā)現(xiàn)其對(duì)500×10-6乙醇的靈敏度為34.1。Cho等[11]研究了納米管對(duì)乙醇的氣敏特性。結(jié)果表明,450℃下ZnO納米管對(duì)100×10-6的乙醇靈敏度為1184。
本工作通過簡單水熱法合成了具有孔道的純的ZnO微米花和Al2O3-ZnO微米花,研究其對(duì)丙酮的氣敏特性。發(fā)現(xiàn)基于Al2O3-ZnO微米花的氣敏元件具有快的響應(yīng)恢復(fù)時(shí)間,并且該元件具有優(yōu)異的選擇性,其能成功地區(qū)分化學(xué)性質(zhì)相似的丙酮和乙醇。
1.1 實(shí)驗(yàn)材料與制備
采用水熱法制備純ZnO及Al2O3摻雜的ZnO材料,分別以六水合硝酸鋅(Zn(NO3)2·6H2O)、九水合硝酸鋁(Al(NO3)3·9H2O)為鋅源和鋁源,以六亞甲基四胺(C6H12N4)為表面活性劑,以尿素(CO(NH2)2)為沉淀劑,均為分析純,實(shí)驗(yàn)用水為去離子水。
將0.014mol六水合硝酸鋅、0.01mol六亞甲基四胺、0.04mol尿素溶于100mL去離子水中,向混合液中摻雜0.00014mol的硝酸鋁,室溫下磁力攪拌一定時(shí)間使其充分混合,然后將所得混合液放入容積為130mL的高壓反應(yīng)釜中,旋緊密封后把反應(yīng)釜置于恒溫箱中加熱至100℃,恒溫5h,之后自然冷卻至室溫,得到白色沉淀。將產(chǎn)物離心收集,用去離子水清洗數(shù)次,最后在70℃下烘干,即得到具有孔道結(jié)構(gòu)的Al2O3-ZnO微米花樣品。在其他條件相同的情況下,上述混合液不加入硝酸鋁,按相同的步驟得到純ZnO樣品。
1.2 表征方法
用X射線衍射儀(D/max,CuKα,λ= 0.1542nm)分析樣品的結(jié)構(gòu);通過掃描電子顯微鏡(SEM,JEOL JSM-6700F)觀察形貌及尺寸;樣品的元素組成通過EDS能譜分析儀進(jìn)行檢測;元件的氣敏特性通過CGS-8智能氣敏分析系統(tǒng)進(jìn)行測試。
靈敏度為Ra/Rg,其中Ra和Rg為元件在空氣和被測氣體中的電阻值。定義響應(yīng)時(shí)間tr1為元件接觸被測氣體后,電阻由Ra變化到Ra-90% (Ra-Rg)所需要的時(shí)間;恢復(fù)時(shí)間tr2為元件脫離被測氣體后,電阻由Rg恢復(fù)到Rg+90%(Ra-Rg)所用的時(shí)間[4]。
2.1 SEM,XRD,EDS測試與分析
純ZnO和Al2O3-ZnO微米花的SEM形貌如圖1所示。可以看出,純ZnO和Al2O3-ZnO是由薄片組成的花狀結(jié)構(gòu),而且純ZnO的每個(gè)薄片又由幾個(gè)小薄片組成,這些花狀結(jié)構(gòu)的分布都是雜亂無序的,而且組成花狀的片狀結(jié)構(gòu)都是分層的,片與片之間有孔道,這樣的結(jié)構(gòu)有利于氣體的吸附。
圖1 純ZnO和Al2O3-ZnO微米花的SEM圖 (a),(b)純ZnO;(c),(d)Al2O3-ZnOFig.1 SEM images of pure ZnO and Al2O3-ZnO micro-flowers (a),(b)pure ZnO;(c),(d)Al2O3-ZnO
純ZnO和Al2O3-ZnO微米花的XRD圖譜如圖2所示??芍?,兩個(gè)圖譜的所有衍射峰與標(biāo)準(zhǔn)圖譜(JCPDF 75-0576)能很好地吻合,沒有其他雜質(zhì)峰的出現(xiàn),峰的形狀尖且窄,說明所得樣品結(jié)晶度很高。Al2O3-ZnO峰的強(qiáng)度要比純ZnO的弱。晶格常數(shù)a=0.3243nm,c=0.5195nm,屬于六方纖鋅礦結(jié)構(gòu)。
圖2 純ZnO和Al2O3-ZnO微米花的XRD圖譜Fig.2 XRD patterns of pure ZnO and Al2O3-ZnO micro-flowers
為了進(jìn)一步驗(yàn)證實(shí)驗(yàn)結(jié)果,對(duì)摻Al2O3后的ZnO微米花進(jìn)行EDS能譜分析,結(jié)果如圖3所示。發(fā)現(xiàn)在1.50keV附近出現(xiàn)了Al微弱的特征峰,表明在生長過程中有少量的Al2O3摻雜。
圖3 Al2O3-ZnO微米花的EDS能譜分析圖Fig.3 EDS spectrum of Al2O3-ZnO micro-flowers
圖4為Al2O3-ZnO微米花在標(biāo)準(zhǔn)狀態(tài)下的氮吸附-脫附等溫曲線,插圖為孔徑分布??芍?,微米花的孔徑多分布在30nm左右,等溫線呈II型,表明該Al2O3-ZnO材料以比較大孔結(jié)構(gòu)為主,比表面積為17.7m2/g 。一般情況下,比表面積越大,材料氣敏性越好,但對(duì)于較大孔材料,它們之間沒有必然的聯(lián)系,一些具有較小比表面積的較大孔材料擁有好的氣敏性[12,13]。
圖4 Al2O3-ZnO微米花的氮吸附-脫附等溫曲線(插圖為孔徑分布)Fig.4 Nitrogen adsorption and desorption isotherms of Al2O3-ZnO micro-flowers(inset shows the pore diameter distribution)
2.2 氣敏性能測試
將純ZnO和不同質(zhì)量分?jǐn)?shù)的Al2O3-ZnO(1%,2%,3%)樣品分別制成旁熱式的氣敏元件,測試其在不同工作溫度時(shí)對(duì)100×10-6丙酮?dú)怏w的靈敏度,結(jié)果如圖5所示??梢钥闯觯蜏貢r(shí)基于4種材料的氣敏元件對(duì)100×10-6丙酮?dú)怏w的靈敏度都是隨著溫度的上升而增高,當(dāng)工作溫度為260℃時(shí),所有氣敏元件的靈敏度都達(dá)到最大值,此后隨著工作溫度的升高靈敏度逐漸降低。純ZnO氣敏元件靈敏度最大值約為18.0,而Al2O3-ZnO氣敏元件中,2%Al2O3-ZnO氣敏元件的靈敏度最高,約為82.8,其約是純ZnO氣敏元件靈敏度的4.6倍。由此表明,Al2O3的摻雜能夠有效提高ZnO傳感器對(duì)丙酮的靈敏度。260℃即為基于ZnO和Al2O3-ZnO氣敏元件的最佳工作溫度。
圖5 不同工作溫度時(shí)純ZnO和Al2O3-ZnO微米花氣敏元件對(duì)100×10-6丙酮?dú)怏w的靈敏度Fig.5 Sensitivities of pure ZnO and Al2O3-ZnO micro-flowers gas sensors to 100×10-6 acetone gas at different working temperatures
將本工作基于Al2O3-ZnO丙酮傳感器的靈敏度同文獻(xiàn)[14-19](靈敏度分別為16.0,19.0,14.0,40.6,15.7,22.0)進(jìn)行了比較??梢园l(fā)現(xiàn),基于Al2O3-ZnO丙酮傳感器的靈敏度明顯高于其他傳感器的靈敏度,并且該傳感器還擁有較低的工作溫度。表明基于Al2O3-ZnO丙酮傳感器具有潛在的應(yīng)用價(jià)值。
響應(yīng)恢復(fù)特性是評(píng)價(jià)氣體傳感器性能的一個(gè)重要指標(biāo),快速的響應(yīng)恢復(fù)時(shí)間有利于傳感器的實(shí)際應(yīng)用。圖6為基于ZnO和Al2O3-ZnO的氣敏傳感器在260℃時(shí)對(duì)100×10-6丙酮?dú)怏w的響應(yīng)恢復(fù)特性曲線。可以看出,Al2O3的摻雜對(duì)ZnO氣敏元件的響應(yīng)恢復(fù)時(shí)間沒有產(chǎn)生明顯的影響。Al2O3-ZnO氣敏元件對(duì)100 ×10-6丙酮的響應(yīng)時(shí)間和恢復(fù)時(shí)間分別為3s和8s,該元件具有快的響應(yīng)恢復(fù)時(shí)間。
圖6 純ZnO和Al2O3-ZnO微米花氣敏元件對(duì)100×10-6丙酮?dú)怏w的響應(yīng)恢復(fù)曲線Fig.6 Response and recovery curves of pure ZnO and Al2O3-ZnO micro-flowers gas sensors to 100×10-6 acetone gas
純ZnO和Al2O3-ZnO微米花氣敏元件靈敏度與丙酮濃度的關(guān)系如圖7所示,插圖為丙酮?dú)怏w低濃度時(shí)的靈敏度變化曲線。可知,當(dāng)器件置于濃度為0.25×10-6, 10×10-6, 50×10-6, 100×10-6的丙酮?dú)怏w中時(shí),靈敏度分別達(dá)到了3.1, 13.5, 44.5和82.8。在0.25×10-6~300×10-6范圍內(nèi),靈敏度與濃度保持了良好的線性關(guān)系。當(dāng)丙酮?dú)怏w含量高于300×10-6時(shí),靈敏度隨著濃度的升高而緩慢增大,并在丙酮為40000×10-6時(shí)逐漸達(dá)到飽和,此時(shí)的靈敏度約為2240。值得注意的是, 元件對(duì)被測丙酮?dú)?/p>
圖7 純ZnO和Al2O3-ZnO微米花氣敏元件靈敏度與丙酮濃度的關(guān)系Fig.7 Sensitivities of pure ZnO and Al2O3-ZnO micro-flowers gas sensors as a function of acetone concentration
體具有很低的檢測極限,當(dāng)氣體為0.25 ×10-6時(shí),靈敏度約為3.1。
選擇性也是評(píng)價(jià)氣敏元件的重要指標(biāo)之一。工作溫度為260℃時(shí),基于Al2O3-ZnO微米花氣敏元件對(duì)幾種常見干擾氣體(乙醇、甲苯、氨氣、丁烷、氫氣、一氧化碳)的靈敏度如圖8所示??梢钥闯?,該元件對(duì)CO、H2、丁烷、NH3基本不敏感,對(duì)乙醇?xì)怏w的靈敏度相對(duì)較大,但是該元件對(duì)100×10-6的丙酮?dú)怏w的靈敏度為82.8,約為同條件下該元件對(duì)乙醇?xì)怏w靈敏度(26.2)的3.16倍。由于乙醇和丙酮具有相似的化學(xué)性質(zhì),因而一般的氣體傳感器很難區(qū)分[20]。而基于Al2O3-ZnO微米花氣敏傳感器能夠把丙酮和乙醇成功區(qū)分,因此,該傳感器具有優(yōu)異的選擇性。
圖8 純ZnO和Al2O3-ZnO微米花氣敏元件對(duì)不同氣體的靈敏度Fig.8 Sensitivities of pure ZnO and Al2O3-ZnO micro-flowers gas sensors to different gases
2.3 敏感機(jī)理
(1)
對(duì)于Al2O3-ZnO傳感器靈敏度的提升,Al2O3-ZnO氣敏材料具有孔道的花狀結(jié)構(gòu)起到了很大的作用。首先,大量薄片狀結(jié)構(gòu)組成的花狀ZnO具有較多的孔道,增強(qiáng)了Al2O3-ZnO傳感器的靈敏度。另外,Al2O3摻入ZnO后,ZnO氣敏材料表面的氧空位大量增加,這樣有利于吸附更多的氧分子在其表面,于是有更多的丙酮分子與之反應(yīng),進(jìn)而改善Al2O3-ZnO傳感器的氣敏性能。
(1)采用水熱法成功制備具有孔道結(jié)構(gòu)的微米花狀純ZnO和Al2O3-ZnO。
(2)以微米花狀純ZnO和Al2O3-ZnO為敏感材料制作氣體敏感元件。Al2O3-ZnO敏感元件對(duì)100×10-6丙酮的靈敏度為82.8,響應(yīng)時(shí)間和恢復(fù)時(shí)間分別為3s和8s,其靈敏度是純的ZnO敏感元件對(duì)同濃度丙酮靈敏度(18.0)的4.6倍,表明摻雜Al2O3的ZnO對(duì)丙酮具有超高靈敏度和快的響應(yīng)恢復(fù)時(shí)間。而且微米花狀A(yù)l2O3-ZnO元件還具有優(yōu)異的選擇性,其不但將丙酮從常見的干擾氣體中區(qū)分出來,還把丙酮從具有相似化學(xué)性質(zhì)的乙醇中區(qū)分開。
(3)Al2O3-ZnO器件對(duì)丙酮具有低的檢測下限,其對(duì)0.25×10-6丙酮?dú)怏w的靈敏度為3.1。Al2O3摻雜的ZnO微米花是一種很好的丙酮敏感材料。
[1] WANG C,WANG F F,FU X Q,et al.Adsorption-controlled transition of the electrical properties realized in Hematite (alpha-Fe2O3) nanorods ethanol sensing[J].Chinese Physics B,2011,20(5):050701.
[2] LI L M,DU Z F,WANG T H.Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum doping[J].Sensors and Actuators B:Chemical,2010,147(1):165-169.
[3] QI Q,ZHANG T,LIU L,et al.Improved NH3,C2H5OH,and CH3COCH3sensing properties of SnO2nanofibers by adding block copolymer P123[J].Sensors and Actuators B: Chemical,2009,141(1):174-178.
[4] ZHAO M G,WANG X C,CHENG J P,et al.Synthesis and ethanol sensing properties of Al-doped ZnO nanofibers[J].Current Applied Physics,2013,13(2):403-407.
[5] XU J Q,HAN J J,ZHANG Y,et al.Studies on alcohol sensing mechanism of ZnO based gas sensors[J].Sensors and Actuators B: Chemical,2008,132(1):334-339.
[6] GAO T,WANG T H.Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications[J].Applied Physics A,2005,80(7):1451-1454.
[7] BADADHE S S,MULLA I S.H2S gas sensitive indium-doped ZnO thin films:preparation and characterization[J].Sensors and Actuators B:Chemical,2009,143(1):164-170.
[8] ZHAO M G,WANG X C,NING L L,et al.Electrospun Cu-doped ZnO nanofibers for H2S sensing[J].Sensors and Actuators B:Chemical,2011,156(2):588-592.
[9] WEI S H,YU Y,ZHOU M H.CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method[J].Materials Letters,2010,64(21):2284-2286.
[10] YU L M,FAN X H,CAO L,et al.Gas sensing enhancement of aluminum-doped ZnO nanovase structure with many gas facile diffusivity paths[J].Applied Surface Science,2013,265:108-113.
[11] CHO S,KIM D H,LEE B S,et al.Ethanol sensors based on ZnO nanotubes with controllable wall thicknessviaatomic layer deposition,an O2plasma process and an annealing process[J].Sensors and Actuators B:Chemical,2012,162(1):300-306.
[12] JIA M J,SEIFERT A,BERGER M,et al.Hybrid mesoporous materials with a uniform ligand distribution:synthesis,characterization,and application in epoxidation catalysis[J].Chemistry of Materials,2004,16(5):877-882.
[13] LIU L,LIU C B,LI S C,et al.Honeycombed SnO2with ultra sensitive properties to H2[J].Sensors and Actuators B:Chemical,2013,177(2):893-897.
[14] LIU Y L,LI G Z,MI R D,et al.An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis[J].Sensors and Actuators B:Chemical,2014,191:537-544.
[15] KANG Y F,WANG L W,WANG Y S,et al.Construction and enhanced gas sensing performances of CuO-modified alpha-Fe2O3hybrid hollow spheres[J].Sensors and Actuators B:Chemical,2013,177:570-576.
[16] YANG F,SU H,ZHU Y,et al.Bioinspired synthesis and gas-sensing performance of porous hierarchical alpha-Fe2O3/C nanocomposites[J].Scripta Materialia,2013,68(11):873-876.
[17] HUANG J R,SHI C C,FU G J,et al.Facile synthesis of porous ZnO microbelts and analysis of their gas-sensing property[J].Materials Chemistry and Physics,2014,144(3):343-348.
[18] LUO X J,LOU Z,WANG L L,et al.Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors[J].New Journal of Chemistry,2014,38(1):84-89.
[19] WEN W,WU J M,WANG Y D.Large-size porous ZnO flakes with superior gas-sensing performance[J].Applied Physics Letters,2012,100(26):262111.
[20] WANG Z J,LI Z Y,LIU L,et al.A novel alcohol detector based on ZrO2-doped SnO2electrospun nanofibers[J].J Am Ceram Soc,2010,93(3):634-637.
[21] WANG D W,DU S S,ZHOU X,et al.Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres[J].Cryst Eng Comm,2013,15(37):7438-7442.
(本文責(zé)編:王 晶)
Ultrahigh Sensitivity and Excellent Selectivity of Al2O3-doped ZnO Micro-flowers to Acetone
LIU Chang-bai1,LIU Li2,LIU Xing-yi1
(1 College of Electronic Science & Engineering,Jilin University,Changchun 130012,China;2 College of Physics,Jilin University,Changchun 130012,China)
Pore spaced pure ZnO and Al2O3-doped ZnO(Al2O3-ZnO) micro-flowers were successfully synthesized by hydrothermal method. The microstructure, morphology and components were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS), respectively. Gas sensors were made to investigate the gas sensing properties. The results reveal that the sensor based on Al2O3-ZnO shows a high sensitivity to acetone. The sensitivity is 82.8 to 100×10-6acetone gas at 260℃, which is about 4.6 times larger than that of pure ZnO (18.0) at similar conditions. The response time and recovery time are about 3s and 8s, respectively. Al2O3-ZnO also shows an excellent selectivity. Its sensitivity to acetone is 3.16 times higher than that to ethanol, which has the highest sensitivity among interfering gases under the same conditions. Thus, Al2O3-ZnO sensors can successfully distinguish acetone and ethanol with similar properties. In addition, the lowest detection to acetone is about 0.25×10-6with theresponse is about 3.1.
hydrothermal method;acetone;Al2O3-ZnO micro-flower;gas sensor
10.11868/j.issn.1001-4381.2015.000417
TQ174
A
1001-4381(2017)02-0012-05
吉林省科技廳重點(diǎn)科技攻關(guān)項(xiàng)目資助(20140204027GX);青年科技創(chuàng)新基金資助項(xiàng)目(450060497053)
2015-04-15;
2016-09-19
劉麗(1968-),女,教授,博士,主要研究方向?yàn)槲⒓{功能材料及傳感器件,聯(lián)系地址:吉林省長春市前進(jìn)大街2699號(hào)吉林大學(xué)前衛(wèi)南區(qū)李四光實(shí)驗(yàn)樓(130012),E-mail:liwei99@jlu.edu.cn