• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于介電頻譜技術(shù)的甜瓜品種無(wú)損檢測(cè)

      2017-06-27 01:31:07王轉(zhuǎn)衛(wèi)趙春江孔繁榮翁小鳳
      關(guān)鍵詞:甜瓜正確率頻譜

      王轉(zhuǎn)衛(wèi),趙春江,商 亮,孔繁榮,翁小鳳

      ?

      基于介電頻譜技術(shù)的甜瓜品種無(wú)損檢測(cè)

      王轉(zhuǎn)衛(wèi)1,趙春江2※,商 亮1,孔繁榮1,翁小鳳1

      (1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100; 2. 國(guó)家農(nóng)業(yè)信息化工程技術(shù)研究中心,北京 100097)

      研究應(yīng)用介電頻譜技術(shù)實(shí)現(xiàn)對(duì)甜瓜的無(wú)損、快速及準(zhǔn)確分類。以陜西楊凌某4家大棚外形相似的“紅閻良”、“新早蜜”、“208”及“瑪瑙”等4類成熟甜瓜為研究對(duì)象,采用矢量網(wǎng)絡(luò)分析儀測(cè)量共246個(gè)樣品在20 MHz~4 500 MHz的介電頻譜。用Kennard-Stone 方法劃分校正集與驗(yàn)證集,分別建立支持向量機(jī)(support vector machine,SVM)和極限學(xué)習(xí)機(jī)(extreme learning machine,ELM)種類判別模型,并比較全頻譜(full frequencies,F(xiàn)F)、連續(xù)投影算法(successive projection algorithm,SPA)和主成分分析(principal component analysis,PCA)等不同預(yù)處理方法對(duì)模型精度的影響。結(jié)果表明:1)所建6個(gè)判別模型驗(yàn)證集總正確率均大于96%,均可用于甜瓜種類的判別。2)對(duì)比3種預(yù)處理方法,F(xiàn)F完好地保留了樣品的原始信息,2種判別模型的驗(yàn)證集總正確率都達(dá)到了100%,但由于存在干擾信息導(dǎo)致模型穩(wěn)定性不好;PCA方法選擇能代表原譜信息99.99%的前10個(gè)主成分信息用來(lái)建模,能有效簡(jiǎn)化模型,但驗(yàn)證集每個(gè)模型均有誤判,兩種判別模型總正確率分別為96.72%及98.36%;SPA從202個(gè)變量中提取17個(gè)特征變量參與建模,驗(yàn)證模型整體穩(wěn)定性較其他兩種好,總正確率分別達(dá)到96.72%和100%。3)綜合考慮判別模型的驗(yàn)證集總正確率及模型穩(wěn)定性,SPA-ELM模型判別效果最好,驗(yàn)證集總正確率達(dá)到100%,更適用于基于介電頻譜的甜瓜種類判別。因此,基于甜瓜的介電頻譜,通過(guò)支持向量機(jī)和極限學(xué)習(xí)機(jī)方法可以成功區(qū)分甜瓜種類,為甜瓜的無(wú)損檢測(cè)及分類研究提供了一種新方法。

      介電特性;支持向量機(jī);模型;甜瓜;極限學(xué)習(xí)機(jī);分類

      0 引 言

      甜瓜()是葫蘆科中品種最豐富的物種之一,包含許多的變異類型,果實(shí)性狀與品質(zhì)變化比較大。根據(jù)胡建斌等[1]對(duì)于中國(guó)甜瓜種質(zhì)資源形態(tài)性狀遺傳多樣性分析,中國(guó)不同地區(qū)甜瓜種質(zhì)類型及果實(shí)性狀差異明顯。實(shí)際上同一地區(qū)、不同品種之間品質(zhì)上也會(huì)存在明顯差異。甜瓜作為陜西省的一大特色水果,品種較多,品質(zhì)各有不同,因此分類研究對(duì)于甜瓜的種植、培育及指導(dǎo)消費(fèi)者選購(gòu)都有重要意義。

      目前國(guó)內(nèi)外對(duì)于甜瓜的研究多集中在甜瓜病毒和甜瓜含糖量等領(lǐng)域,如 Nagata等[2]對(duì)黃化病毒的研究,Verzera等[3]對(duì)甜瓜果實(shí)甜度的快速定量測(cè)定,Dull等[4-7]利用光譜手段研究甜瓜糖度,姚永波[8]利用LCR測(cè)試儀無(wú)損檢測(cè)甜瓜的糖度,而對(duì)于甜瓜的分類研究較少。文獻(xiàn)顯示Stepansky等[9]曾采用計(jì)算機(jī)視覺(jué)技術(shù)研究甜瓜的分類方法,但這種方法效率較低,而且主要是從外觀來(lái)實(shí)現(xiàn)分類,而實(shí)際中外觀相似的甜瓜品質(zhì)差異也可能會(huì)很大。因此,利用現(xiàn)代檢測(cè)技術(shù),結(jié)合甜瓜內(nèi)部品質(zhì)對(duì)其進(jìn)行分類研究很有必要。由于農(nóng)產(chǎn)品的生理變化會(huì)反映在其介電參數(shù)上,所以通過(guò)檢測(cè)介電參數(shù)可以用來(lái)判斷農(nóng)產(chǎn)品的品質(zhì)變化情況。基于終端開(kāi)路同軸探頭技術(shù)的介電頻譜檢測(cè)方法被廣泛應(yīng)用于測(cè)量液體或含濕量比較高的半固體材料的介電特性[10],因此可用于對(duì)甜瓜種類的識(shí)別檢測(cè)。

      國(guó)外早在20世紀(jì)70年代就已經(jīng)開(kāi)始利用水果介電特性對(duì)其品質(zhì)進(jìn)行快速測(cè)試,目前美國(guó)、歐洲等發(fā)達(dá)國(guó)家在這方面的研究已非常深入。如Soltani等[11]研究了香蕉的介電特性,并成功預(yù)測(cè)了香蕉的成熟度。國(guó)內(nèi)學(xué)者基于介電特性在果品的無(wú)損檢測(cè)及分類方面也有一些研究[12-15],郭文川等[16]將介電特性應(yīng)用于番茄、蘋果等的品種識(shí)別研究,對(duì)番茄的品種識(shí)別率達(dá)到了81%,對(duì)紅富士和紅星蘋果的識(shí)別率達(dá)到了91%。谷靜思[17]利用介電特性結(jié)合人工神經(jīng)網(wǎng)絡(luò)能準(zhǔn)確識(shí)別桃和油桃的品種。

      隨著人工神經(jīng)網(wǎng)絡(luò)技術(shù)的發(fā)展,誤差反向傳播網(wǎng)絡(luò)、徑向基網(wǎng)絡(luò)、支持向量機(jī)、極限學(xué)習(xí)機(jī)等機(jī)器學(xué)習(xí)模型以其學(xué)習(xí)能力強(qiáng),預(yù)測(cè)精度高,建模效果穩(wěn)定等優(yōu)點(diǎn)被廣泛應(yīng)用于譜數(shù)據(jù)的分析中[18-20]。本研究以成熟甜瓜為研究對(duì)象,采集20~4 500 MHz頻率間甜瓜的介電頻譜,結(jié)合支持向量機(jī)及極限學(xué)習(xí)機(jī)建模方法,研究甜瓜種類判別問(wèn)題,以期為甜瓜的品質(zhì)無(wú)損檢測(cè)與分類研究提供參考。

      1 材料與方法

      1.1 試驗(yàn)樣品

      本研究用試驗(yàn)樣品于試驗(yàn)前1 d分別采摘自陜西楊凌某4家農(nóng)戶大棚瓜地,品種分別為種植量較大的“紅閻良”、“新早蜜”、“208”及“瑪瑙”。采摘時(shí)綜合考慮陽(yáng)面、陰面及是否貼地等對(duì)果實(shí)品質(zhì)的影響。中熟型厚皮甜瓜開(kāi)花后一般35 d左右即可上市,本研究用試驗(yàn)樣品是開(kāi)花后40 d的成熟甜瓜。4類樣品(分別簡(jiǎn)稱為v1,v2,v3及v4)數(shù)量分別為91,80,41和34個(gè),樣品總數(shù)246個(gè)。所有樣品外形相似(類球形)、大小相近(500 g左右)、無(wú)損傷且表皮顏色均勻。采摘后的樣品存放在室溫(24±2)℃實(shí)驗(yàn)室,測(cè)試前將樣品擦凈晾干并編號(hào)。

      1.2 儀器及數(shù)據(jù)處理軟件

      E5071C型矢量網(wǎng)絡(luò)分析儀、85070E末端開(kāi)路同軸探頭及85070C軟件(Agilent Technologies,馬來(lái)西亞),Matlab(R2011a,Math Works,馬薩諸塞州,美國(guó)),Unscrambler v10.2(CAMO,奧斯陸,挪威)等。

      1.3 測(cè)試步驟

      圖1所示為甜瓜介電特性測(cè)量系統(tǒng)示意圖。首先預(yù)熱E5071C型矢量網(wǎng)絡(luò)分析儀,然后按步驟校準(zhǔn)儀器并設(shè)定測(cè)量范圍[21]。校準(zhǔn)完成即可測(cè)量甜瓜樣品的介電特性。本研究是在甜瓜樣品赤道位置附近相隔大約90°均勻選取4個(gè)測(cè)量點(diǎn),將樣品橫放在小型支架上,提升支架使樣品測(cè)量點(diǎn)表皮與垂直向下的探頭緊密接觸,順序測(cè)量4個(gè)測(cè)點(diǎn)的介電頻譜數(shù)據(jù),以4點(diǎn)處的平均值作為該甜瓜樣品的最終測(cè)量結(jié)果。

      本研究中,每個(gè)甜瓜樣品的總變量數(shù)為202個(gè),其中'(相對(duì)介電常數(shù))對(duì)應(yīng)的101個(gè)值為該樣品的前101個(gè)變量,''(介質(zhì)損耗因數(shù))對(duì)應(yīng)的101個(gè)值為該樣品的后101個(gè)變量。

      1.4 數(shù)據(jù)分析及處理方法

      1.4.1 樣品集劃分方法

      本研究采用經(jīng)典的Kennard-Stone(KS)方法進(jìn)行樣品集的劃分。該方法基于樣品介電譜差異選擇轉(zhuǎn)換集樣品的劃分方法,劃分結(jié)果是將介電譜差異較大的樣品選入校正集,將其余相近樣品歸入驗(yàn)證集,保證代表性強(qiáng)的樣品全部劃入校正集,進(jìn)而最大程度地使校正集樣品分布均勻。KS 方法被普遍應(yīng)用在譜數(shù)據(jù)的定性分析領(lǐng)域[22-23]。

      1.4.2 介電譜預(yù)處理方法

      本研究中預(yù)處理方法選擇主成分分析(principal component analysis, PCA)和連續(xù)投影算法(successive projection algorithm, SPA),并與不做預(yù)處理的全頻譜(full frequencies,F(xiàn)F)信息下的判別模型做對(duì)比研究。PCA是一種面向模式分類的數(shù)據(jù)降維方法,是在保證盡可能多地反映原始信息的基礎(chǔ)上,用較少的一些主成分代替原來(lái)較多的分析元素,從而達(dá)到簡(jiǎn)化模型的目的,目前已被廣泛應(yīng)用到譜數(shù)據(jù)壓縮、圖像處理等領(lǐng)域。SPA是一種前向循環(huán)的變量選擇方法,能降低模型復(fù)雜度,有效消除各變量間的線性相關(guān)影響,使優(yōu)選變量更具有代表性[24-26]。

      1.4.3 建模方法

      本研究選取兩種建模方法,分別為支持向量機(jī)(support vector machine, SVM)和極限學(xué)習(xí)機(jī)(extreme learning machine, ELM)。SVM作為一種非線性網(wǎng)絡(luò)校正方法,可以有效提高建模效率,較好解決小樣本、非線性問(wèn)題。ELM方法具有學(xué)習(xí)速度快、泛化性能好等特點(diǎn),在模式識(shí)別和非線性擬合等方面具有明顯優(yōu)勢(shì)[27-31]。

      2 結(jié)果與分析

      2.1 甜瓜的介電特性

      圖2所示為4種甜瓜在不同頻率下的介電特性變化曲線,可以看出所有甜瓜樣品的介電參數(shù)隨頻率變化規(guī)律類似。其中,相對(duì)介電常數(shù)' 均隨頻率增大而減?。ㄒ?jiàn)圖2a),且在低頻段減小迅速,在200 MHz以后減小明顯緩慢;介質(zhì)損耗因數(shù)'' 隨頻率的增大先減小,而在1 000 MHz以后稍有增大(圖2b)。另外,從圖2中可以看出,不同品種甜瓜間介電參數(shù)存在種類差異,特別是在低頻段,大部分品種間差異明顯,因此,基于甜瓜介電特性可以對(duì)其進(jìn)行分類研究。但圖2a顯示,v1、v3的' 曲線重疊較嚴(yán)重;圖2b顯示,高頻段所有甜瓜的''曲線重疊較嚴(yán)重,所以僅通過(guò)介電參數(shù)頻率曲線難以實(shí)現(xiàn)種類的完全識(shí)別,還需借助合適的數(shù)學(xué)分析方法來(lái)解決,本研究在介電譜數(shù)據(jù)基礎(chǔ)上,通過(guò)合理的樣本劃分,并結(jié)合不同的數(shù)據(jù)預(yù)處理方法及建模方法來(lái)提高總體識(shí)別率。

      2.2 校正集與驗(yàn)證集的劃分

      樣品集的有效合理劃分對(duì)于模型的建立至關(guān)重要,也將直接影響模型的適用性與預(yù)測(cè)精度。如果可以在樣品集中選取具有代表性的樣品作為校正集,則會(huì)使模型的預(yù)測(cè)效果及穩(wěn)定性大幅提升。為此,本研究基于Matlab軟件平臺(tái),根據(jù)4類數(shù)量分別為91,80,41和34的甜瓜樣品原始介電頻譜,采用KS方法將樣品按照大約3:1的比例劃分為校正集與驗(yàn)證集。劃分結(jié)果見(jiàn)表1。

      2.3 PCA預(yù)處理

      應(yīng)用Matlab 2011a中的princomp()函數(shù)對(duì)樣品的原始介電譜進(jìn)行主成分分析,所得前10個(gè)主成分的累積貢獻(xiàn)率見(jiàn)表2。從表2中可以看出:前6個(gè)主成分的累積貢獻(xiàn)率已達(dá)到99.926%,即前6個(gè)主成分所攜帶的信息量已反映了原始頻譜99.9%以上的信息,但若選取過(guò)少的主成分可能會(huì)丟失少部分有效信息,影響最終建模效果。因此,為保證更少損失原始介電譜的有效信息,并使數(shù)據(jù)處理效率較高且模型運(yùn)算相對(duì)簡(jiǎn)單,本研究選取累積貢獻(xiàn)率達(dá)到99.99%以上的前10個(gè)主成分用于后續(xù)種類識(shí)別模型的建立。

      表1 Kennard-Stone樣品集劃分結(jié)果

      表2 前10個(gè)主成分的累積貢獻(xiàn)率

      2.4 SPA預(yù)處理

      應(yīng)用SPA對(duì)甜瓜介電頻譜進(jìn)行特征頻率選取。SPA方法提取的特征頻率數(shù)目取決于校正集的交叉驗(yàn)證均方根誤差(root mean square error,RMSE)值,RMSE隨特征變量數(shù)的增加而不斷減小,以其不再顯著減小時(shí)的變量數(shù)作為最佳特征變量數(shù)。本研究中設(shè)定特征頻率數(shù)范圍為3~30,RMSE變化曲線如圖3所示,當(dāng)頻率個(gè)數(shù)大于17時(shí),RMSE不再顯著減小,據(jù)此優(yōu)選出17個(gè)特征頻率變量。所選特征頻率及對(duì)應(yīng)的介電參數(shù)見(jiàn)表3。

      表3 SPA選取的17個(gè)特征頻率

      2.5 支持向量機(jī)及極限學(xué)習(xí)機(jī)訓(xùn)練參數(shù)選擇

      選取逼近速度快,效率高的徑向基核函數(shù)用于支持向量機(jī)建模[32]。用十折交叉驗(yàn)證方法確定SVM的懲罰因子()和松弛變量()。首先將參數(shù)、的范圍設(shè)為2×10-8~2×108,利用網(wǎng)格搜索法進(jìn)一步確定精細(xì)范圍為2×10-4~2×104,最終確定和的取值。本研究中ELM網(wǎng)絡(luò)的激活函數(shù)選定sig函數(shù),隱層節(jié)點(diǎn)數(shù)根據(jù)多次重復(fù)試驗(yàn)確定。初始權(quán)值隨機(jī)確定,一般可以通過(guò)增加重復(fù)建模次數(shù)來(lái)提高模型的穩(wěn)定性[33]。

      經(jīng)全頻譜(full frequencies,F(xiàn)F)、PCA與SPA預(yù)處理后分別建立的SVM、ELM種類判別模型的各參數(shù)選取結(jié)果見(jiàn)表4。

      表4 SVM及ELM模型參數(shù)

      2.6 甜瓜種類識(shí)別效果比較分析

      通過(guò)KS法劃分校正集與驗(yàn)證集,在FF、PCA和SPA預(yù)處理后,應(yīng)用SVM及ELM方法分別設(shè)計(jì)甜瓜種類判別模型,對(duì)品種1~4(v1~v4)的判別結(jié)果如表5所示。結(jié)果顯示,6種判別模型的驗(yàn)證集總正確率最小為96.72%,最大達(dá)到100%,總正確率大于96%,說(shuō)明這6種模型均可用于此4種甜瓜的種類判別。其中對(duì)v2的判別正確率最高,沒(méi)有誤判,這與圖2中v2品種介電參數(shù)相對(duì)較大的結(jié)果相一致;其他3種均有不同數(shù)目的誤判現(xiàn)象。由于驗(yàn)證集介電參數(shù)范圍相對(duì)比較集中,導(dǎo)致大部分模型校正集誤判數(shù)大于驗(yàn)證集誤判數(shù)。在后續(xù)研究中,可以進(jìn)一步驗(yàn)證并完善模型。

      表5 SVM和ELM的甜瓜種類判別結(jié)果

      從表5中可看出,在6種判別模型中,F(xiàn)F-SVM,F(xiàn)F-ELM及SPA-ELM 3種模型的總驗(yàn)證正確率均達(dá)到100%,其中SPA-ELM校正模型最穩(wěn)定,只對(duì)一個(gè)品種有誤判,說(shuō)明此模型更適合用于甜瓜種類的判別。

      對(duì)比3種不同預(yù)處理方法,F(xiàn)F完好地保留了樣品的全部信息,驗(yàn)證總正確率最高,但因?yàn)榇嬖谠肼暩蓴_、數(shù)據(jù)重疊等問(wèn)題,導(dǎo)致模型整體穩(wěn)定性不是最好;PCA方法從原始數(shù)據(jù)中篩選出前10個(gè)主要成分信息作為輸入變量,能有效簡(jiǎn)化模型,但每個(gè)模型對(duì)驗(yàn)證集都有誤判,所以總正確率不高;SPA方法從原始數(shù)據(jù)中提取出17個(gè)主要特征變量參與建模,驗(yàn)證結(jié)果整體比較穩(wěn)定,總正確率較高。對(duì)比SVM和ELM 2種建模方法,都是將問(wèn)題被動(dòng)映射到高維空間做分類,但SVM核函數(shù)決定了唯一的映射方式,而ELM映射方式很多,且ELM的訓(xùn)練速度更快,所以ELM模型整體效果更好。

      3 結(jié) 論

      本研究基于介電頻譜無(wú)損檢測(cè)技術(shù),對(duì)“紅閻良”、“新早蜜”、“208”及“瑪瑙”等4種成熟甜瓜樣品分別建立了支持向量機(jī)(support vector machine, SVM)和極限學(xué)習(xí)機(jī)(extreme learning machine, ELM)2種分類判別模型,并分別比較了全頻譜(full frequencies,F(xiàn)F)、主成分分析(principal component analysis, PCA)和連續(xù)投影算法(successive projection algorithm, SPA)等3種不同數(shù)據(jù)預(yù)處理方法對(duì)簡(jiǎn)化模型、提高模型準(zhǔn)確度及穩(wěn)定性的影響。結(jié)論如下:

      1)所建模型驗(yàn)證集總正確率均大于96%,表明基于介電頻譜技術(shù)對(duì)成熟甜瓜進(jìn)行無(wú)損分類研究方法可行。由于不同種類甜瓜即使外形相似,也會(huì)存在內(nèi)部品質(zhì)方面的差異,體現(xiàn)在糖度、含水率、硬度等指標(biāo)的不同,而這些品質(zhì)指標(biāo)的差異又反映在不同頻率點(diǎn)處的介電參數(shù)不同上,即介電譜有差異。所以基于介電譜數(shù)據(jù)可以實(shí)現(xiàn)對(duì)不同種類甜瓜的無(wú)損、準(zhǔn)確識(shí)別。

      2)對(duì)比全頻譜FF、PCA降維及SPA提取特征變量等3種方法所建模型,結(jié)果表明均可用于甜瓜分類研究的數(shù)據(jù)預(yù)處理。其中,F(xiàn)F方法總驗(yàn)證正確率達(dá)到100%,但模型較復(fù)雜;PCA方法總驗(yàn)證正確率分別達(dá)到96.72%和98.36%,總正確率不是最高;SPA方法總驗(yàn)證正確率分別達(dá)到96.72%和100%,且校正模型相比較最穩(wěn)定,更適用于介電頻譜的預(yù)處理工作。

      3)與其他模型相比,SPA-ELM分類效果最好,總驗(yàn)證正確率達(dá)到100%,且只對(duì)一個(gè)品種有誤判,說(shuō)明SPA-ELM模型更適合用于介電頻譜下甜瓜的分類研究。

      4)將介電頻譜無(wú)損檢測(cè)技術(shù)與SVM算法、ELM人工神經(jīng)網(wǎng)絡(luò)方法相結(jié)合,成功地應(yīng)用于成熟甜瓜的分類研究中,說(shuō)明介電頻譜無(wú)損判別甜瓜種類方法可行,分類準(zhǔn)確度較高,為甜瓜的無(wú)損檢測(cè)及分類、分級(jí)提供了一種新方法,并為介電頻譜在果品內(nèi)部品質(zhì)檢測(cè)及分類研究方面的應(yīng)用提供了新的理論基礎(chǔ)。

      [1] 胡建斌,馬雙武,簡(jiǎn)在海,等. 中國(guó)甜瓜種質(zhì)資源形態(tài)性狀遺傳多樣性分析[J]. 植物遺傳資源學(xué)報(bào),2013,14(4):612-619.

      Hu Jianbin, Ma Shuangwu, Jian Zaihai, et al. Analysis of genetic diversity of Chinese melon (L.) germplasm resources based on morphological characters[J]. Journal of Plant Genetic resources, 2013, 14(4): 612-219. (in Chinese with English abstract)

      [2] Nagata T, Dutra L S, Oliveira P A, et al. Analysis of the triple gene block sequence in an important melon pathogen, melon yellowing-associated virus[J]. Journal of General Plant Pathology, 2010, 76(4): 268-272.

      [3] Verzera A, Dima G, Tripodi G, et al. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace-dolid-phase microextraction and gas chromatography-mass spectrometry[J]. Food Analytical Methods, 2011, 4(2): 141-149.

      [4] Dull G G, Birth G S, Smittle D A, et al. Near infrared analysis of soluble solids in intact cantaloupe[J]. Journal of Food Science, 2006, 54(2): 393-395.

      [5] Dull G G, Birth G S, Leffler R G. Exiting energy distribution in honeydew melon irradiated with a near infrared beam[J]. Journal of Food Quality, 1989, 12(12): 377-381.

      [6] Dull G G, Leffler R G, Birth G S. Near-infrared spectrophotometry for measurement of soluble solids in intact honeydew melons[J]. Hortscience A Publication of the American Society for Horticultural Science, 1990, 25(9): 1132-1136.

      [7] Dull G G, Leffler R G, Birth G S, et al. Instrument for nondestructive measurement of soluble solids in honeydew melons[J]. Transaction of the ASAE, 1990, 35(2): 735-737.

      [8] 姚永波. 基于介電特性的甜瓜糖度無(wú)損檢測(cè)[D]. 烏魯木齊: 新疆大學(xué),2012.

      Yao Yongbo. Nondestructive Inspection of Melon's Sugar Content Based on Dielectric Properties[D]. Urumchi: Xinjiang University, 2012. (in Chinese with English abstract)

      [9] Stepansky A, Kovalski I, Perl-Treves R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation[J]. Plant Systematics and Evolution, 1999, 217(3): 313-332.

      [10] 郭文川,朱新華. 國(guó)外農(nóng)產(chǎn)品及食品介電特性測(cè)量技術(shù)及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(2):308-312.

      Guo Wenchuan, Zhu Xinhua. Foreign dielectric property measurement techniques and their applications in agricultural products and food materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 308-312. (in Chinese with English abstract)

      [11] Soltani M, Alimardani R, Omid M. Evaluating banana ripening status from measuring dielectric properties[J]. Journal of Food Engineering, 2011, 105(4): 625-631.

      [12] 胥芳,計(jì)時(shí)鳴,張立彬,等. 水果電特性的無(wú)損檢測(cè)在水果分選中的應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(2):53-56.

      Xu Fang, Ji Shiming, Zhang Libin, et al. Nondestructive inspection of dielectric property of fruit and its application in classifying fruit quality[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(2): 53-56. (in Chinese with English abstract)

      [13] 陳克克. 水果介電特性及其與品質(zhì)關(guān)系的研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2009.

      Chen Keke. Study on Dielectric Properties of Fruits and Their Relationships With Qualities[D]. Yangling:Northwest A&F University, 2009. (in Chinese with English abstract)

      [14] 劉文超,廖宇蘭,崔萬(wàn)春,等. 基于介電特性的水果無(wú)損檢測(cè)技術(shù)的應(yīng)用分析[J]. 食品研究與開(kāi)發(fā),2011,32(6):90-93.

      Liu Wenchao, Liao Yulan, Cui Wanchun, et al. The applicated analysis of nondestructive determination in fruit based on dielectric properties[J]. Food Research and Development, 2011, 32(6): 90-93. (in Chinese with English abstract)

      [15] 黃良妹,李曉龍,馬惠玲. 紅富士果實(shí)內(nèi)部品質(zhì)的電學(xué)法無(wú)損檢測(cè)[J]. 食品研究與開(kāi)發(fā),2013,12(5):74-79.

      Huang Liangmei, Li Xiaolong, Ma Huiling. Non-destructive detection with electric basis on internal qualities of Fuji apple fruit[J]. Food research and development, 2013, 12(5): 74-79. (in Chinese with English abstract)

      [16] 郭文川,郭康權(quán),朱新華. 介電特性在番茄和蘋果品種識(shí)別中的應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(8):130-132.

      Guo Wenchuan, Guo Kangquan, Zhu Xinhua. Application of dielectric properties in identifying species of tomatoes and apples[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(8): 130-132. (in Chinese with English abstract)

      [17] 谷靜思. 基于介電頻譜/近紅外光譜技術(shù)檢測(cè)采后桃和油桃的品質(zhì)及品種[D]. 楊凌:西北農(nóng)林科技大學(xué),2014.

      Gu Jingsi. Identifying Qualities and Varieties of Postharvest Peaches and Nectarines by Using Dielectric Spectra/ Near-Infrared Spectra Technology[D]. Yangling:Northwest A&F University, 2014. (in Chinese with English abstract)

      [18] Yao Y, Wang C, Liu H, et al. Biomass compositional analysis using sparse partial least squares regression and near infrared spectrum technique[J]. Spectroscopy and Spectral Analysis, 2015, 35(7): 1864-1869.

      [19] Zhao M, Downey G, O’Donnell C P. Exploration of microwave dielectric and near infrared spectroscopy with multivariate data analysis for fat content determination in ground beef[J]. Food Control, 2016, 3(10): 3414-3418.

      [20] Hertrampf A, Sousa R M, Menezes J C, et al. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124(5): 246-253.

      [21] 郭文川,商亮,王銘海,等. 基于介電頻譜的采后蘋果可溶性固形物含量無(wú)損檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(9):132-137.

      Guo Wenchuan, Shang Liang, Wang Minghai, et al. Soluble solids content detection of postharvest apples based on frequency spectrum of dielectric parameters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 132-137. (in Chinesewith English abstract)

      [22] 王銘海. 獼猴桃、桃和梨品質(zhì)特性的近紅外光譜無(wú)損檢測(cè)模型優(yōu)化研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2013.

      Wang Minghai. Study on Optimal Model for Nondestructive Detection of Kiwifruit, Peach and Pear Quality Characteristic by NIR Spectroscopy[D]. Yangling: Northwest A&F University, 2013, (in Chinese with English abstract)

      [23] 劉偉,趙眾,袁洪福,等. 光譜多元分析校正集和驗(yàn)證集樣本分布優(yōu)選方法研究[J]. 光譜學(xué)與光譜分析,2014,34(4):947-951.

      Liu Wei, Zhao Zhong, Yuan Hongfu, et al. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 947-951. (in Chinese with English abstract)

      [24] 劉韜,田洪祥,郭文勇. 主成分分析在某型柴油機(jī)光譜數(shù)據(jù)分析中的應(yīng)用[J]. 光譜學(xué)與光譜分析,2010,30(3):779-782.

      Liu Tao, Tian Hongxiang, Guo Wenyong. Application of PCA to diesel engine oil spectrometric analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 779-782. (in Chinese with English abstract)

      [25] 洪涯,洪添勝,代芬,等. 連續(xù)投影算法在砂糖橘總酸無(wú)損檢測(cè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2):380-384.

      Hong Ya, Hong Tiansheng, Dai Fen, et al. Successive projections algorithm for variable selection in nondestructive measurement of citrus total acidity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 380-384. (in Chinese with English abstract)

      [26] 郭文川,林碧瑩. 牛奶含水率介電譜結(jié)合化學(xué)計(jì)量學(xué)檢測(cè)方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):249-254.

      Guo Wenchuan,Lin Biying. Detecting moisture content of cow’s milk using dielectric spectra and chemometrics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 249-254. (in Chinesewith English abstract)

      [27] 商亮. 基于介電譜無(wú)損檢測(cè)蘋果品質(zhì)及種類[D]. 楊凌:西北農(nóng)林科技大學(xué),2015.

      Shang Liang. Nondestructive Detection of Apples' Quality and Varieties by Dielectric Spectra[D]. Yangling:Northwest A&F University, 2015. (in Chinese with English abstract)

      [28] Huang G, Zhu Q, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.

      [29] Huang G, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man and Cybernetics Society, 2012, 42(2): 513-529.

      [30] Deng C, Huang G, Xu J, et al. Extreme learning machines: new trends and applications[J]. Science China (Information Sciences), 2015, 58(2): 1-16.

      [31] 章鳴嬛,陳瑛,沈瑛,等. 人工神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)性能比較及其在DMD疾病識(shí)別中的應(yīng)用[J]. 上海理工大學(xué)學(xué)報(bào),2016,38(4):346-351.

      Zhang Minghuan, Chen Ying, Shen Ying, et al. Comparative study on the performances of ANN and SVM and their application in the identification of DMD disease[J]. J. University of Shanghai for Science and Technology, 2016, 38(4): 346-351. (in Chinese with English abstract)

      [32] 商亮,谷靜思,郭文川. 基于介電特性及ANN的油桃糖度無(wú)損檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(17):257-264.

      Shang Liang, Gu Jingsi, Guo Wenchuan. Non-destructively detecting sugar content of nectarines based on dielectric properties and ANN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 257-264. (in Chinese with English abstract)

      [33] 孟田源,王轉(zhuǎn)衛(wèi),遲茜,等. 基于高光譜成像技術(shù)生長(zhǎng)發(fā)育后期蘋果糖度的無(wú)損檢測(cè)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016, 44(6):228-234.

      Meng Tianyuan, Wang Zhuanwei, Chi Qian, et al. Non-destructive prediction of soluble solids content in apples at late development period based on hyperspectral imaging[J]. Journal of Northwest A&F University: Natural Science Edition, 2016, 44(6): 228-234. (in Chinese with English abstract)

      Nondestructive testing of muskmelons varieties based on dielectric spectrum technology

      Wang Zhuanwei1, Zhao Chunjiang2※, Shang Liang1, Kong Fanrong1, Weng Xiaofeng1

      (1.,,712100,;2.,100097,)

      To classify muskmelons quickly and accurately based on dielectric spectroscopy, dielectric properties of 4 kinds of melons (a total of 246) were measured with network analyzer over the frequency range from 20 to 4 500 MHz. The samples were selected from 4 different greenhouses in Yangling, Shaanxi Province, which had similar shape and size, and had no injury and disease. All samples were divided into calibration set and validation set with a ratio of about 3:1 based on Kennard-Stone method. Methods of support vector machine (SVM) and extreme learning machine (ELM) were applied to establish discriminative models of muskmelons. We chose 2 different variable selecting methods as pre-processing methods before modeling. One method was principal component analysis (PCA) for data dimension reduction, and the other was successive projections algorithm (SPA) for characteristic variables selecting. The model validating effects after the processing of PCA and SPA were used to compare with that with no pre-processing; besides, directly modeling with full frequencies (FF) spectra data was also adopted. The results were shown as below: 1) All discriminative models under FF, PCA and SPA methods could be used for classifying muskmelons. The total correct rate of each validation set reached over 96%, and the ELM modeling method was better than SVM method as a whole. 2) The models based on the FF method retained all original information of the frequency spectra data, so it had the highest validation correct rate, up to 100%. But its stability and reliability were not good enough because of the existing interference information. Under the PCA method, the accumulating contribution rate of the former 10 principal components extracted from all variables approached to 99.99%, which well reflected original information while simplifying the model in some degree and improved performance of models, however, the results were not very stable and the total correct rate of 2 models was much lower than others, up to 96.72% and 98.36% respectively. Seventeen characteristic variables were selected by the SPA from all 202 variables for modeling, which not only simplified the model and improved its performance, but also had the higher accuracy. Therefore, the SPA method was more suitable for the variables selecting based on dielectric spectrum. 3) In all models, SPA-ELM had the minimum misjudgments and the highest total correct rate, which was more suitable for classifying muskmelons according to dielectric frequency spectra. Therefore, it’s feasible to classify muskmelons based on dielectric spectrum by the modeling methods of SVM and ELM. It also shows that the dielectric spectrum technology can be used to do more research on muskmelon classification and grading, and provides the new theory and methods for future research about nondestructive detection of muskmelons.

      dielectric properties; support vector machine; models; muskmelon; extreme learning machine; classification

      10.11975/j.issn.1002-6819.2017.09.038

      O657

      A

      1002-6819(2017)-09-0290-06

      2016-12-19

      2017-01-17

      國(guó)家科技支撐計(jì)劃(2015BAD19B03)和陜西省農(nóng)業(yè)科技攻關(guān)項(xiàng)目(2016NY170)聯(lián)合資助

      王轉(zhuǎn)衛(wèi),女,陜西富平人,講師,主要從事農(nóng)產(chǎn)品無(wú)損檢測(cè)技術(shù)與應(yīng)用研究。楊凌西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,712100。Email:wzw630@126.com

      趙春江,男,研究員,博士,主要從事農(nóng)業(yè)信息技術(shù)與精準(zhǔn)農(nóng)業(yè)技術(shù)體系研究。北京國(guó)家農(nóng)業(yè)信息化工程技術(shù)研究中心,100097。Email:zhaocj@nercita.org.cn

      王轉(zhuǎn)衛(wèi),趙春江,商 亮,孔繁榮,翁小鳳. 基于介電頻譜技術(shù)的甜瓜品種無(wú)損檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):290-295. doi:10.11975/j.issn.1002-6819.2017.09.038 http://www.tcsae.org

      Wang Zhuanwei, Zhao Chunjiang, Shang Liang, Kong Fanrong, Weng Xiaofeng. Nondestructive testing of muskmelons varieties based on dielectric spectrum technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 290-295. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.038 http://www.tcsae.org

      猜你喜歡
      甜瓜正確率頻譜
      甜瓜的重量
      一種用于深空探測(cè)的Chirp變換頻譜分析儀設(shè)計(jì)與實(shí)現(xiàn)
      門診分診服務(wù)態(tài)度與正確率對(duì)護(hù)患關(guān)系的影響
      一種基于稀疏度估計(jì)的自適應(yīng)壓縮頻譜感知算法
      薄皮甜瓜新品種墾甜1號(hào)的選育
      生意
      品管圈活動(dòng)在提高介入手術(shù)安全核查正確率中的應(yīng)用
      生意
      認(rèn)知無(wú)線電頻譜感知技術(shù)綜述
      我喜歡吃甜瓜
      松原市| 虹口区| 大理市| 长沙县| 兴城市| 隆化县| 特克斯县| 霍邱县| 山东| 大埔区| 小金县| 陇西县| 东辽县| 木里| 乐清市| 塘沽区| 连州市| 高碑店市| 营口市| 黑山县| 丰台区| 于田县| 沂水县| 广丰县| 丹江口市| 迭部县| 平山县| 扎兰屯市| 衡东县| 东兴市| 阳山县| 罗甸县| 米易县| 海林市| 梅河口市| 桐柏县| 宁武县| 武山县| 宜宾县| 灵宝市| 鄂托克旗|