• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雨強和坡度對紅壤坡耕地地表徑流及壤中流的影響

    2017-06-27 01:31:07陳曉安湯崇軍鄭太輝李龍飛
    農(nóng)業(yè)工程學報 2017年9期
    關(guān)鍵詞:雨強產(chǎn)流坡耕地

    陳曉安,楊 潔,湯崇軍,鄭太輝,李龍飛

    ?

    雨強和坡度對紅壤坡耕地地表徑流及壤中流的影響

    陳曉安1,2,楊 潔1※,湯崇軍1,鄭太輝1,李龍飛1

    (1. 江西省水土保持科學研究院江西省土壤侵蝕與防治重點實驗室,南昌 330029; 2. 河海大學水利水電學院,南京210098)

    地表徑流和壤中流是坡面重要水文過程,雨強和坡度是影響坡面地表徑流和壤中流產(chǎn)流主要因素。為研究降雨強度和地表坡度對坡耕地地表徑流和壤中流的影響,該文采用人工模擬降雨試驗法,在長3.0 m、寬1.5 m、深0.5 m土槽,設計4個不同坡度(5°、10°、15°、20°)和3個不同雨強(30、60、90 mm/h)對紅壤坡耕地地表徑流及壤中流產(chǎn)流過程進行模擬試驗。結(jié)果表明:1)壤中流開始產(chǎn)流時間滯后于地表徑流,降雨強度從30到90 mm/h,地表徑流、壤中流產(chǎn)流開始時間均隨雨強增大而減小,壤中流比地表產(chǎn)流開始滯后時間隨著雨強增大先增大后趨于穩(wěn)定;2)地表徑流強度隨雨強增大而增大,壤中流初始徑流強度隨雨強增大而增大,不同雨強下壤中流徑流峰值相近;3)地表徑流和壤中流產(chǎn)流過程曲線有明顯差異,地表徑流產(chǎn)流過程線先增大后趨于穩(wěn)定,壤中流產(chǎn)流過程線呈拋物線型即先增大后減??;4)從5°到20°,地表產(chǎn)流開始時間隨坡度增大而減小,壤中流產(chǎn)流開始時間隨坡度增大先減小后增大;5)從5°到20°,地表徑流強度先增大后減小,10°為轉(zhuǎn)折坡度,壤中流產(chǎn)流峰值隨坡度增大而減小,并且隨著坡度增大達到壤中流峰值時間不斷減小。

    土壤;侵蝕;產(chǎn)流;紅壤坡耕地;雨強;坡度;地表徑流;壤中流

    0 引 言

    紅壤坡耕地是中國重要的土地資源,該地區(qū)水熱資源豐富,是中國重要的名、優(yōu)、特農(nóng)產(chǎn)品生產(chǎn)基地[1-2]。然而由于自然因素、歷史和人為因素的原因,導致紅壤坡耕地水土流失嚴重,是該區(qū)域水土流失策源地[3],紅壤坡耕地受到翻耕、作物生長和土體結(jié)構(gòu)的影響,地表徑流和壤中流具有特殊性,坡耕地地表徑流和壤中流流失不僅會影響坡面土壤水分及養(yǎng)分的流失[4-9],而且坡面地表徑流和壤中流是流域徑流的重要組成部分,并直接影響到流域水文過程[10-12]。國內(nèi)外已經(jīng)對坡面地表徑流壤中流特征及其相互關(guān)系進行了一系列研究,土壤厚度是影響壤中流發(fā)育的重要因素[13],土體構(gòu)型影響壤中流占總徑流的比例[14-15],地表覆蓋對壤中流有顯著的影響[16],壤中流受到土壤前期含水量、地形、降雨的影響[17-19]。壤中流的產(chǎn)流過程對降雨響應迅速[20],降雨是影響壤中流的來源,三峽花崗巖天然次生馬尾松林優(yōu)先流的流量主要受到降雨總量的影響[21],雨強的增大可以增加紫色土坡耕地壤中流的發(fā)生概率及峰值流量[22]。付智勇等[23]通過對紫色土區(qū)原位人工模擬降雨試驗研究指出降雨強度和表土結(jié)皮程度是影響土壤水分過程和壤中流過程的主要因素。謝頌華等[24]采用野外大型土壤入滲裝置開展了自然降雨條件下降雨-產(chǎn)流過程的觀測試驗,結(jié)果表明雨型、降雨量、前期土壤含水量影響壤中流產(chǎn)流量及其過程,并指出紅壤坡地地下徑流占總徑流的80%以上[25]。徐勤學等[26]利用野外模擬降雨試驗研究認為壤中流的發(fā)育受到土地利用類型的影響,荒坡地壤中流徑流強度遠大于坡耕地,并且坡耕地壤中流徑流系數(shù)隨降雨強度的增加而顯著減少。綜上,壤中流受降雨的影響是復雜的,且不同土壤類型、土地利用類型情況下壤中流并不是一致的規(guī)律。坡耕地受到耕作的影響,其壤中流發(fā)育尤為特殊,遼寧渾河流域耕地中地表徑流占總徑流較大,約為78%,壤中流約占總徑流量的22%,而草地中地表徑流占總徑流僅為48%[27]。鄭海金等[28]利用室內(nèi)模擬試驗研究了紅壤坡地壤中流、地表徑流產(chǎn)流特征,指出壤中流產(chǎn)流量占總徑流量52.26%~67.19%,是紅壤坡耕地重要的徑流形式。地表徑流和壤中流的比例隨雨強和坡度的不同而發(fā)生變化[29]。紅壤坡耕地土層厚、質(zhì)地粘,不同于其他地區(qū)坡耕地,并且主要分布在丘陵崗地,坡度變化范圍大,紅壤區(qū)降雨強度差異明顯,因此紅壤坡耕地雨強和坡度對壤中流的影響研究具有重要意義。

    目前關(guān)于紅壤坡耕地土壤中流的研究較少且主要采用野外固定坡面及室內(nèi)固定坡度試驗,從坡度、雨強角度系統(tǒng)研究紅壤坡耕地地表徑流和壤中流特征較少涉及。為此,本文采用人工模擬降雨試驗,研究了不同雨強和坡度對地表徑流及壤中流的影響,以期為深入了解紅壤坡耕地地表及壤中流產(chǎn)流過程提供科學依據(jù)。

    2 材料與方法

    2.1 試驗地概況

    試驗區(qū)于2015年5-8月在江西水土保持生態(tài)科技園內(nèi)進行。該科技園地處江西省北部的德安縣燕溝小流域、鄱陽湖水系博陽河西岸,位于115°42′38″~115°43′06″E、29°16′37″~29°17′40″N,總面積約80 hm2,屬亞熱帶季風氣候區(qū),降雨充沛,多年平均降雨量1 350.9 mm,多年平均氣溫16.7 ℃;地貌為淺丘崗地,海拔30~100 m,坡度5°~25°;成土母質(zhì)以第四紀紅色黏土為主,地帶性植被為亞熱帶常綠闊葉林。

    模擬降雨試驗在江西水土保持生態(tài)科技園二期模擬降雨大廳內(nèi)完成,模擬降雨大廳采用鋼結(jié)構(gòu),建筑面積約1 776 m2,有效降雨面積786 m2,降雨高度18 m,降雨均勻度在0.85以上,分為4個15.6 m×12.6 m獨立降雨區(qū),3個下噴區(qū)(1號區(qū)、2號區(qū)、3號區(qū))和1個側(cè)噴區(qū)(4號區(qū)),下噴區(qū)雨強變化范圍為10~200 mm/h,側(cè)噴區(qū)雨強變化范圍為30~300 mm/h,每個降雨區(qū)可以獨立控制。本次試驗在1號下噴區(qū)完成,采用FULLJET旋轉(zhuǎn)下噴式噴頭。

    2.2 試驗方法

    試驗土槽規(guī)格寬(1.5 m)×長(3 m)×高(0.5 m),土槽坡度可以調(diào)節(jié),調(diào)節(jié)范圍是0~45°,土槽底部填筑10 cm厚度的粗砂,粗砂上覆蓋一層土工布,再填筑40 cm后的第四紀紅粘土,20~40 cm土壤填筑容重控制在1.32 g/cm3,0~20 cm土壤種植前翻耕,翻耕后容重為1.15 g/cm3,模擬的是坡耕地土壤,并且在種植花生前與野外花生地一樣翻耕0~20 cm深度土壤。農(nóng)作物采用的是紅壤丘陵區(qū)坡耕地最主要的農(nóng)作物花生,按照當?shù)卣7N植方式播種花生,株行距為30 cm×30 cm。

    降雨強度試驗采用的雨強分別為30、60、90 mm/h,坡度為10°,每個雨強試驗重復2次,重復間誤差??;不同坡度試驗分別采用5°、10°、15°、20°4個坡度,降雨強度為90 mm/h,每個坡度試驗2個重復,重復間誤差小。30 mm/h雨強試驗降雨歷時120 min,其他所有模擬降雨試驗降雨歷時均為60 min,試驗開始后觀測地表產(chǎn)流和壤中流產(chǎn)流開始時間,產(chǎn)流后每隔3 min采集一次整個3 min內(nèi)地表徑流泥沙和壤中流過程樣品,雨停至產(chǎn)流截止采集最后一個徑流泥沙樣品,地表徑流、壤中流用量筒直接量測,泥沙樣采用攪拌法采集0.5 L渾水樣品放入1 L的鋁盒中,靜置24 h后倒出上部清水,剩下水樣烘干測定含沙量。

    3 結(jié)果與分析

    3.1 雨強對地表徑流和壤中流影響

    對不同雨強下地表徑流和壤中流開始產(chǎn)流時間分析見表1,可知不同雨強下地表徑流和壤中流開始產(chǎn)流時間均差異明顯,不同雨強開始產(chǎn)流時間從大到小依次為30>60>90 mm/h,隨著降雨強度的增大,地表徑流和壤中流開始產(chǎn)流時間減??;雨強從30到60 mm/h,地表開始產(chǎn)流時間減小29.47 min,雨強從60到90 mm/h,地表開始產(chǎn)流時間減小1.40 min,隨著降雨強度的增大,地表開始產(chǎn)流時間減小程度縮?。挥陱姀?0到60 mm/h,壤中流開始產(chǎn)流時間減小16.72 min,雨強從60到90 mm/h,壤中流開始產(chǎn)流時間減小1.46 min,說明隨著降雨強度增大,壤中流開始產(chǎn)流時間減小程度降低;不同雨強下壤中流開始產(chǎn)流時間均小于地表徑流,當雨強為30 mm/h,壤中流開始產(chǎn)流時間比地表產(chǎn)流滯后僅0.45 min,當雨強達到60 mm/h時,壤中流出流時間比地表產(chǎn)流滯后13.20 min,當雨強繼續(xù)增大,壤中流比地表產(chǎn)流滯后時間不再繼續(xù)增大,說明當雨強較小時,壤中流開始產(chǎn)流時間與地表開始產(chǎn)流時間差異不大,隨著雨強增大壤中流比地表徑流滯后時間增大,當雨強增大到60 mm/h時,壤中流比地表產(chǎn)流滯后時間趨于穩(wěn)定值。

    表1 不同雨強下地表徑流和壤中流開始產(chǎn)流時間

    對不同雨強下地表產(chǎn)流過程分析見圖1,可知不同雨強下地表徑流強度先增大后趨于穩(wěn)定;當降雨強度為30 mm/h時,初始徑流強度為3.73 mm/h,產(chǎn)流60 min后徑流強度穩(wěn)定在4.40 mm/h左右,初始徑流強度到穩(wěn)定產(chǎn)流時間長,而且穩(wěn)定產(chǎn)流值僅高于初始徑流強度0.67 mm/h;當降雨強度為60 mm/h,整個產(chǎn)流過程增加較快,初始徑流強度為8.89 mm/h,產(chǎn)流36 min后徑流強度趨于穩(wěn)定,穩(wěn)定徑流強度為16 mm/h左右;當雨強增大到90 mm/h產(chǎn)流3 min后就趨于穩(wěn)定;降雨強度影響到徑流強度,不同降雨強度下徑流強度從大到小依次為90>60>30 mm/h;累計徑流量與累計降雨量曲線斜率從雨強30到90 mm/h不斷增大,說明隨著雨強增大,相同降雨量帶來的徑流量增大。

    不同雨強下壤中流產(chǎn)流過程分析見圖2,可知不同雨強下壤中流徑流強度開始產(chǎn)流時小,隨著降雨歷時增加徑流強度增大,產(chǎn)流過程曲線均存在明顯的峰,60和90 mm/h降雨壤中流出現(xiàn)峰值值后開始減小,30 mm/h降雨壤中流達到峰值后穩(wěn)定一段時間減小,李金中等[10,26,29]利用土槽人工模擬降雨試驗研究亦認為坡面壤中流過程線均存在明顯的峰。雨停5 min后壤中流開始衰減,60和90 mm/h壤中流峰值后的衰減曲線接近,在90 min后衰減曲線幾乎重合。不同雨強下壤中流徑流強度峰值無差異,均為20 mm/h左右,但是不同雨強下壤中流從開始產(chǎn)流到達峰值時間有明顯差異,從30到60 mm/h產(chǎn)流到達峰值所需時間明顯縮小,從60到90 mm/h從產(chǎn)流到峰值所需時間縮小不明顯。降雨初期,雨水用于濕潤土壤和填充土層大孔隙,致使地表產(chǎn)流滯后于降雨[30],地表徑流產(chǎn)生的同時,部分雨水沿土體下滲,部分土體一旦蓄滿,該土層即產(chǎn)生壤中流[24],30 mm/h雨強較小,開始降雨時土壤入滲水量大于降雨量,致使壤中流產(chǎn)流慢。由于雨強小補充土壤中的水分小,到達峰值所需時間就長,隨著雨強的增大,地表徑流深度大,補給土壤水分增大,因此,隨著雨強的增大,壤中流達到峰值的時間縮減,60和90 mm/h雨強遠大于土壤最大入滲率,因此60和90 mm/h雨強壤中流達到峰值時間差異不明顯。60和90 mm/h雨強下,壤中流均在1 h整個土槽土體達到完全飽和,壤中流徑流強度達到最大,降雨停止后沒有水分入滲補給即開始降低,該尖峰的出現(xiàn)和降雨時間短有關(guān),30 mm/h的降雨壤中流達到最大后仍然降雨補充水分,因此其壤中流峰穩(wěn)定至雨停后減小。坡面翻耕后可以明顯增大壤中流的徑流系數(shù)[22],地表20 cm翻耕作用后,容重減小,孔隙度增大,增加土壤水分入滲率,20 cm以下由于犁底層的存在土壤容重增大到1.32 g/cm3,相對不透水層的存在會促進20 cm深土層壤中流發(fā)育。坡耕地特殊的土體結(jié)構(gòu)影響壤中流的產(chǎn)生,造成紅壤坡耕地壤中流峰值高,30、60 mm/h壤中流的徑流峰值超過其地表徑流穩(wěn)定最大值。由于3個不同雨強下試驗土槽填筑土壤、厚度、容重一致,土壤飽和穩(wěn)定入滲性相同,壤中流的峰均為整個土槽土體水分飽和時的產(chǎn)流,土體飽和穩(wěn)定入滲率一致,所以不同雨強壤中流最大峰值相同。上述分析說明降雨強度影響壤中流的發(fā)育,降雨時間、土壤容重、土體厚度影響壤中流過程線,降雨時間影響到壤中流產(chǎn)流能否產(chǎn)生、出現(xiàn)后能否達到峰值及達到峰值后的穩(wěn)定時間,土壤容重、土體厚度影響到飽和土體的穩(wěn)定入滲率,影響到壤中流峰值出現(xiàn)的時間、峰值徑流大小。

    3.2 坡度對地表徑流和壤中流影響

    對不同坡度下地表土壤徑流和壤中流產(chǎn)流時間分析見表2,可知隨著坡度的增大地表產(chǎn)流時間從大到小依次為5°>10°>15°>20°;壤中流產(chǎn)流時間從大到小依次為5°>20°>15°>10°,即從5°到20°隨著坡度增大壤中流產(chǎn)流時間先減小后增大,存在臨界坡度;壤中流比地表徑流滯后時間從大到小依次為5°>20°>15°>10°,即從5°到20°隨著坡度增大壤中流比地表徑流產(chǎn)流滯后時間先減小后增大,與壤中流產(chǎn)流時間隨坡度的變化規(guī)律一致。

    表2 不同坡度下地表徑流和壤中流產(chǎn)流開始時間

    對不同坡度下地表產(chǎn)流過程分析見圖3,可知不同坡度下紅壤坡耕地地表產(chǎn)流過程都是先增大后趨于穩(wěn)定,隨著坡度的增大地表徑流穩(wěn)定時間減小趨勢;從5°到10°地表徑流穩(wěn)定值增大,從10°到25°地表徑流穩(wěn)定值依次減小,10°地表徑流穩(wěn)定值最大,即坡度從5°到20°,地表產(chǎn)流穩(wěn)定值是先增大后減小,存在臨界坡度。地表總徑流量從5°到20°,分別為198.2、226.5、205.5、198.7 L,說明地表總產(chǎn)流量從5°到20°,先增大后減小,10°最大。從5°到20°土槽的受雨面積不斷減小,以90 mm/h雨強試驗為例,10°、15°、20°與5°相比土槽每分鐘接受到的降雨量依次減小76.86、204.31、381.39 mL,整個1 h的模擬降雨10°、15°、20°與5°相比土槽接受到的降雨量依次減小4 611.71、12 258.89、22 883.34 mL;另外一方面土壤的入滲速率隨著坡度的增大而減小,土壤入滲速率的減小又可以增大地表產(chǎn)流量。由于紅壤坡耕地土槽模擬試驗隨著坡度增大受雨面積減小,土壤入滲速率減小,雙重因素的影響下導致地表產(chǎn)流量從5°到20°出現(xiàn)先增大后減小的趨勢。

    雨強90 mm/h及不同坡度下壤中流產(chǎn)流過程由圖4可知,不同坡度下壤中流過程曲線表現(xiàn)出明顯的單峰,壤中流產(chǎn)流后隨著時間增大而增大,峰值在雨停(60 min)后2~7 min內(nèi)達到,峰值過后隨著時間增大,壤中流徑流強度減小;從5°到20°,壤中流達到峰值時間分別為66.61、65.67、65.08、62.08 min,即隨著坡度的增大,達到峰值時間不斷減??;壤中流峰值徑流強度從5°到20°分別為33.77、19.56、14.67、14.17 mm/h,即隨著坡度的增大峰值不斷減?。辉谌乐辛鬟_到峰值前,從5°到20°隨著坡度的增大壤中流徑流強度增加速度減緩,峰值后從5°到20°表現(xiàn)出隨坡度增大衰減速度存在減小的趨勢,即坡度越小壤中流增加速度越快,峰值過后減小的速度亦快。

    隨著坡度增大受雨面積不斷減小,土壤水平入滲面不斷減小,因此,隨著坡度增大壤中流峰值不斷減小。

    4 結(jié) 論

    1)降雨影響紅壤坡耕地地表徑流和壤中流產(chǎn)流。地表徑流和壤中流產(chǎn)流開始時間隨著降雨強度的增大而減小,壤中流開始產(chǎn)流時間滯后于地表徑流,當雨強從30到60 mm/h,壤中流比地表徑流產(chǎn)流滯后時間迅速增大,隨著雨強繼續(xù)增大,壤中流比地表徑流產(chǎn)流滯后時間趨于穩(wěn)定;當雨強從30到90 mm/h,隨著雨強的增大,地表徑流初始徑流強度和穩(wěn)定徑流強度都增大,并且累計徑流量與累計降雨量曲線斜率不斷增大;壤中流徑流強度隨開始產(chǎn)流時間先增大后減小,隨著降雨強度的增大壤中流初始徑流強度增大,而壤中流峰值無明顯差異,壤中流由開始產(chǎn)流到峰值徑流強度增加速度隨著雨強增大而增大,60 mm/h降雨與90 mm/h降雨雨停后壤中流衰減曲線一致。降雨時間影響壤中流過程線,降雨時間足夠長壤中流徑流強度才能達到最大穩(wěn)定值。

    2)坡度影響紅壤坡耕地地表徑流和壤中流產(chǎn)流。從5°到20°地表開始產(chǎn)流時間隨坡度增大而減小,隨著坡度增大壤中流開始產(chǎn)流時間先減小后增大,最小值為10°,壤中流比地表徑流滯后時間隨著坡度增大先減小后增大;從5°到20°隨著坡度增大地表徑流穩(wěn)定值、總徑流量都先增大后減小,峰值為10°坡面;不同坡度下壤中流產(chǎn)流過程線均表現(xiàn)為先增大后減小,隨著坡度增大,壤中流達到峰值時間不斷減小,徑流峰值不斷減小。

    [1] 曹學章,張更生. 紅壤丘陵脆弱生態(tài)環(huán)境的形成與整治對策[J]. 農(nóng)業(yè)生態(tài)環(huán)境,1995,11(4):45-48.

    Cao Xuezhang, Zhang Gengsheng. Formation and control countermeasures for vulnerable eco-environment in hilly red soil area[J]. Rural Eco-Environment, 1995, 11(4): 45-48. (in Chinese with English abstract)

    [2] 袁東海,王兆騫,陳欣,等. 不同農(nóng)作措施紅壤坡耕地水土流失特征的研究[J]. 水土保持學報,2001,4(18):66-69.

    Yuan Donghai, Wang Zhaoqian, Chen Xin, et al. Properties of soil and water loss from slope field in red soil in different farming systems[J]. Journal of Soil and Water Conservation, 2001, 4(18): 66-69. (in Chinese with English abstract)

    [3] 水利部,中國科學院,中國工程院. 中國水土流失防治與生態(tài)安全[M]. 北京:科學出版社,2010.

    [4] 常龍飛,王曉龍,李恒鵬,等. 巢湖典型低山丘陵區(qū)不同土地利用類型壤中流養(yǎng)分流失特征[J]. 生態(tài)與農(nóng)村環(huán)境學報,2012,28(5):511-517.

    Chang Longfei, Wang Xiaolong, Li Hengpeng, et al. Characteristics of soil nutrient loss with interflow from uplands as affected by land uses in low hill region of chaohu basin[J]. Journal of Ecology and Rural Environment, 2012, 28(5): 511-517. (in Chinese with English abstract)

    [5] 劉泉,李占斌,李鵬,等. 漢江水源區(qū)自然降雨過程下坡地壤中流對硝態(tài)氮流失的影響[J]. 水土保持學報,2012,26(5):1-10.

    Liu Quan, Li Zhanbin, Li Peng, et al. Effect of nitrate-N loss by subsurface flow of slope land under natural rainfall processes in Hanjiang River water source area[J]. Journal of Soil and Water Conservation, 2012, 26(5): 1-10. (in Chinese with English abstract)

    [6] 馬琳琳,安娟,劉前進. 橫坡壟作壤中流條件下壟高對徑流態(tài)氮磷流失的影響[J]. 水土保持學報,2014,28(6):56-60.

    Ma Linlin, An Juan, Liu Qianjin. Effects of ridge height on losses of nitrogen and phosphorus in runoff under seepage condition for contour ridge system[J]. Journal of Soil and Water Conservation, 2014, 28(6): 56-60. (in Chinese with English abstract)

    [7] 李恒鵬,金洋,李燕. 模擬降雨條件下農(nóng)田地表徑流與壤中流氮素流失比較[J]. 水土保持學報,2008,22(2):6-9.

    Li Hengpeng, Jin Yang, Li Yan. Comparative study of nitrogen losses between surface flow and interflow of farmland under artificial rainfall conditions[J]. Journal of Soil and Water Conservation, 2008, 22(2): 6-9. (in Chinese with English abstract)

    [8] Marianne Bechmann. Long-term monitoring of nitrogen in surface and subsurface runofffrom small agricultural dominated catchments in Norway[J]. Agriculture, Ecosystems and Environment, 2014, 198: 13-24

    [9] 莫明浩,謝頌華,張杰,等. 紅壤坡地氮溶質(zhì)分層輸出特征試驗研究[J].水利學報,2006,47(7):924-933

    Mo Minghao, Xie Songhua, Zhang Jie, et al. Experimental research on characteristics of nitrogen output from different layers in red soil slopes[J]. Journal of Hydraulic Engineering, 2006, 47(7): 924-933. (in Chinese with English abstract)

    [10] 李金中,裴鐵璠,牛麗華,等. 森林流域坡地壤中流模型與模擬研究[J]. 林業(yè)科學,1999,35(4):2-8,9.

    Li Jinzhong, Pei Tiefan, Niu Lihua, et al. Simulation and model of interflow on hillslope of forest catchment[J]. Scientia Silvae Sinicae, 1999, 35(4): 2-8, 9. (in Chinese with English abstract)

    [11] 裴鐵璠,李金中. 壤中流模型研究的現(xiàn)狀及存在問題[J].應用生態(tài)學報,1998,9(5):543-548.

    Pei Tiefan, Li Jinzhong. Current situation and existing problems in research of interflow models[J]. Chinese Journal of Applied Ecology, 1998, 9(5): 543-548. (in Chinese with English abstract)

    [12] Pertti Alaaho, Chris Soulsby, Wang Hailong, et al. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterization[J]. Journal of Hydrology, 2017(547): 664-677.

    [13] Fu Zhiyong, Li Zhaoxia, Cai Chongfa, et al. Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective[J]. Geoderma, 2011(167/168): 41-53.

    [14] Fu Zhiyong, Chen Hongsong, Xu Qinxue, et al. Role of epikarst in near-surface hydrological processes in a soil mantledsubtropical dolomite karst slope: Implications of field rainfall simulation experiments[J]. Hydrological Processes, 2016, 30(5): 795-811.

    [15] 張興,王克林,付智勇,等. 桂西北白云巖坡地典型石灰土土體構(gòu)型水文特征[J]. 應用生態(tài)學報,2017,28(7)網(wǎng)絡版http://kns.cnki.net/kcms/detail/21.1253.Q.20170518.1317.022.html

    Zhang Xing, Wang Kelin, Fu Zhiyong, et al. Hydrological characteristics of contrasting calcareous soil architecture on dolomite slope of Northwest Guangxi[J]. Chinese Journal of Applied Ecology, 2017, 28(7) http://kns.cnki.net/kcms/detail/ 21.1253.Q.20170518.1317.022.html. (in Chinese with English abstract)

    [16] Liu Yaojun, Yang Jie, Hu Jianmin, et al. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China[J]. Journal of Hydrology, 2016, 539: 457-467.

    [17] Fu Zhi Yong, Chen Hong Song, Wang Zhanga, et al. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14.

    [18] Wilson G V, Cullum R F, Romkens M J M. Ephemeral gully erosion by preferential flow through a discontinuous soil-pipe[J]. Catena, 2008, 73(1): 98-106.

    [19] 肖雄,李小雁,吳華武,等. 青海湖流域高寒草甸壤中流水分來源研究[J]. 水土保持學報,2016,30(2):230-236.

    Xiao Xiong, Li Xiaoyan, Wu Huawu, et al. Study on the water sources of subsurface flow in alpine meadow of the Qinghai Lake Basin[J]. Journal of Soil and Water Conservation, 2016, 30(2): 230-236. (in Chinese with English abstract)

    [20] Guebert M D, Gardner T W. Macropore flow on a reclaimed surface mine: Infiltration and hillslope hydrology[J]. Geomorphology, 2001, 39: 151-169

    [21] 何凡,張洪江,史玉虎,等. 長江三峽花崗巖地區(qū)降雨因子對優(yōu)先流的影響[J]. 農(nóng)業(yè)工程學報,2005,21(3):75-78.

    He Fan, Zhang Hongjiang, Shi Yuhu, et al. Influence of rainfall factors on preferential flow in the granite region of the Three Gorges of the Yangtze River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(3): 75-78. (in Chinese with English abstract)

    [22] 徐佩,王玉寬,傅斌,等. 紫色土坡耕地壤中流特征及分析[J]. 水土保持通報,2006,26(6):14-18.

    Xu Pei, Wang Yukuan, Fu Bin, et al. Interflow occurrence characters and their analysis on slope cropland with purple soil[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 14-18. (in Chinese with English abstract)

    [23] 付智勇,李朝霞,蔡崇法,等. 不同起始條件下坡面薄層紫色土水分和壤中流響應[J]. 水利學報,2011,42(8):899-907.

    Fu Zhiyong, Li Zhaoxia, Cai Chongfa, et al. Impact of boundary conditions on soil water and subsurface flow in shallow purple soil slope[J]. Journal of Hydraulic Engineering, 2011, 42(8): 899-907. (in Chinese with English abstract)

    [24] 謝頌華,涂安國,莫明浩,等. 自然降雨事件下紅壤坡地壤中流產(chǎn)流過程特征分析[J]. 水科學進展,2015,26(4):226-234.

    Xie Songhua, Tu Anguo, Mo Minghao, et al. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 2015, 26(4): 226-234. (in Chinese with English abstract)

    [25] 謝頌華,莫明浩,涂安國,等. 自然降雨條件下紅壤坡面徑流垂向分層輸出特征[J]. 農(nóng)業(yè)工程學報,2014,30(19):132-138.

    Xie Songhua, Mo Minghao, Tu Anguo, et al. Characteristics of vertical runoff output on red-soil slope under natural rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 132-138. (in Chinese with English abstract)

    [26] 徐勤學,王天巍,李朝霞,等. 紫色土坡地壤中流特征[J].水科學進展,2010,21(2):229-234.

    Xu Qinxue, Wang Tianwei, Li Zhaoxia, et al. Characteristics of interflow in purple soil of hillslope[J]. Advances in Water Science, 2010, 21(2): 229-234. (in Chinese with English abstract)

    [27] 周林飛,郝利朋,孫中華. 遼寧渾河流域不同土地類型地表徑流和壤中流氮、磷流失特征[J]. 生態(tài)環(huán)境學報,2011,20(4):737-742.

    Zhou Linfei, Hao Lipeng, Sun Zhonghua. Characteristics of nitrogen and phosphorus losses through surface flow and interflow on different types of land in Liaoning Hunhe Basin[J]. Ecology and Environment, 2011, 20(4): 737-742. (in Chinese with English abstract)

    [28] 鄭海金,胡建民,黃鵬飛,等. 紅壤坡耕地地表徑流與壤中流氮磷流失比較[J]. 水土保持學報,2014,28(6):41-45.

    Zheng Haijin, Hu Jianmin, Huang Pengfei, et al. Comparative study of nitrogen and phosphorus through surface-flow and interflow on Red Soil farmland[J]. Journal of Soil and Water Conservation, 2014, 28(6): 41-45. (in Chinese with English abstract)

    [29] 丁文峰,張平倉,王一峰. 紫色土坡面壤中流形成與坡面侵蝕產(chǎn)沙關(guān)系試驗研究[J]. 長江科學院院報,2008,25(3):14-17.

    Ding Wenfeng, Zhang Pingcang, Wang Yifeng. Experimental study on runoff and sediment yield characteristics on purple soil slope[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(3): 14-17. (in Chinese with English abstract)

    [30] De Vente J, Poesen J, Verstraeten G. The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain[J]. Journal of Hydrology, 2005, 305(1-4): 63-86.

    Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland

    Chen Xiaoan1,2, Yang Jie1※, Tang Chongjun1, Zheng Taihui1, Li Longfei1

    (1.,330029;2.,210098,)

    The surface and subsurface runoff in the red soil slope farmland result in soil moisture and nutrient loss. In addition, the surface and subsurface runoff are important components contributing runoff at the watershed scale. An extensive literature shows that rain intensity and slope are two main factors playing an important role in the surface and subsurface runoff. In this paper, the surface and subsurface runoff in the red soil slope land under different rainfall intensities and slopes were studied by stimulated rainfall experiments in the flume (3.0 m length×1.0 m width×0.5 m depth) with variable slopes. The experiments were conducted in the Jiangxi Soil and Water Conservation Ecological Science and Technology Park. Stratified soil samples from different profiles including 0-20 cm (the plow horizon) and 20-40 cm (the plow pan) were collected and then filled respectively into the flumes by controlling the bulk density. For the rain intensity of 90 mm/h, we set four slopes including 5°, 10°, 15° and 20° in the simulated rainfall experiment. Three rain intensity levels (30, 60 and 90 mm/h) were set for the plots with slope of 10°. The results indicated that: 1) the subsurface runoff lagged behind the surface runoff, and the initiation time of the surface and subsurface runoff decreased with the increase of rainfall intensity from 30 mm/h to 90 mm/h. The lag time of the subsurface runoff initiation increased with the increasing rain intensity, and then tended to be stable; 2) the initial and steady surface runoff increased with the increase of the rain intensity; and the initiation subsurface runoff intensity increased with the increase of rainfall intensity. An increase trend was observed in the runoff produced by per unit rainfall; 3) the initial intensity of the surface runoff increased with the increase of rainfall intensity from 30 to 90 mm/h. However, no significant differences were found for the peak values of the subsurface runoff under different rainfall intensities. The attenuation curves of the surface runoff under different rainfall intensities were similar; 4) the obvious differences were observed between the runoff process curves of the surface runoff and subsurface runoff. The surface runoff increased firstly and then tended to be stable, but the soil subsurface runoff increased firstly and then decreased; 5) the initiation time of the surface runoff decreased with the increase of slope from 5° to 20°, but the initiation time of the subsurface runoff decreased firstly and then increased with the increase of the slope. The lag time of the subsurface runoff to the surface runoff also decreased firstly and then increased with the increasing slopes; 6) the surface runoff intensity first increased and then decreased with the increasing slope from 5° to 20° with a critical slope of 10°. The peak values of the subsurface runoff in soils increased firstly and then decreased with the increasing slopes. Moreover, the time to reach the peak value of the subsurface runoff decreased gradually with the increase of the slopes.

    soils; erosion; runoff; red soil slope farmland; rainfall intensity; slope; surface runoff; subsurface runoff

    10.11975/j.issn.1002-6819.2017.09.018

    S157.1

    A

    1002-6819(2017)-09-0141-06

    2016-10-18

    2017-04-10

    國家自然科學基金(41401312);水利部公益性行業(yè)專項(201301050);水利部948項目(201519);江西省優(yōu)勢科技創(chuàng)新團隊建設項目(20152BCB24011);江西省水利科技項目(KT201419)

    陳曉安,男,安徽南陵人,工程師,博士生,主要研究土壤侵蝕機理等。南昌 江西省水土保持科學研究院江西省土壤侵蝕與防治重點實驗室,330029。Email:onlycxa@163.com

    楊 潔,女,教授。主要研究水土保持。南昌 江西省水土保持科學研究院江西省土壤侵蝕與防治重點實驗室,330029。 Email:zljyj@126.com

    陳曉安,楊 潔,湯崇軍,鄭太輝,李龍飛. 雨強和坡度對紅壤坡耕地地表徑流及壤中流的影響[J]. 農(nóng)業(yè)工程學報,2017,33(9):141-146. doi:10.11975/j.issn.1002-6819.2017.09.018 http://www.tcsae.org

    Chen Xiaoan, Yang Jie, Tang Chongjun, Zheng Taihui, Li Longfei. Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 141-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.018 http://www.tcsae.org

    猜你喜歡
    雨強產(chǎn)流坡耕地
    2022年11月1日克拉瑪依區(qū)域降水天氣復盤總結(jié)
    產(chǎn)流及其研究進展
    不同坡面單元人工降雨產(chǎn)流試驗與分析
    北京山區(qū)側(cè)柏林地坡面初始產(chǎn)流時間影響因素
    托里降雨時間分布特征分析
    渭南市1961-2016年雨日、雨強的季節(jié)變化特征
    地表粗糙度對黃土坡面產(chǎn)流機制的影響
    白城市雷達定量估測降水方法
    建平縣實施國家坡耕地治理項目成效及經(jīng)驗
    資陽市雁江區(qū):防治并重 建管結(jié)合 創(chuàng)建坡耕地水土流失綜合治理示范區(qū)
    中國水利(2015年24期)2015-04-25 08:14:51
    晋中市| 囊谦县| 霍山县| 临澧县| 武清区| 望都县| 永昌县| 正安县| 永修县| 沿河| 玉环县| 阿坝县| 读书| 仙居县| 九台市| 抚州市| 饶平县| 女性| 安泽县| 衡阳县| 敦煌市| 湾仔区| 承德市| 宜黄县| 枣阳市| 喜德县| 崇左市| 嘉义县| 前郭尔| 阿坝| 湖南省| 九龙县| 南溪县| 铅山县| 庆云县| 衡山县| 延寿县| 舒城县| 革吉县| 达州市| 五常市|