桑建兵,劉彥勇,邢素芳,王靜遠(yuǎn),付雙建
(河北工業(yè)大學(xué)機(jī)械工程學(xué)院,天津,300130)
基本載荷作用下橡膠類材料的超彈性力學(xué)性能分析
桑建兵,劉彥勇,邢素芳,王靜遠(yuǎn),付雙建
(河北工業(yè)大學(xué)機(jī)械工程學(xué)院,天津,300130)
基于有限變形的基本理論,對(duì)基本載荷作用下橡膠類材料的超彈性力學(xué)性能進(jìn)行了分析.在高玉臣所提出的橡膠類材料的本構(gòu)模型的基礎(chǔ)上,給出了1種新的不可壓縮超彈性應(yīng)變能函數(shù).引入?yún)?shù)α,當(dāng)n=1且α=1時(shí),新模型轉(zhuǎn)化為Mooney-Rivlin模型,而當(dāng)n=1且α=0時(shí),新模型轉(zhuǎn)化為Neo-Hookean模型.利用新的本構(gòu)關(guān)系對(duì)橡膠類材料在單軸拉伸以及受內(nèi)壓膨脹2種基本載荷作用下的超彈性力學(xué)性能進(jìn)行了研究,分析了本構(gòu)參數(shù)對(duì)單軸拉伸和內(nèi)壓膨脹的影響,指出本構(gòu)參數(shù)n為材料的強(qiáng)化參數(shù),橡膠圓管受內(nèi)壓膨脹時(shí)存在失穩(wěn)現(xiàn)象,其穩(wěn)定性不僅依賴于本構(gòu)參數(shù)n而且與本構(gòu)參數(shù)α相關(guān).
橡膠類材料;本構(gòu)關(guān)系;有限變形理論;單軸拉伸;內(nèi)壓膨脹
從20世紀(jì)40年代開(kāi)始,彈性材料的有限變形理論得到了很大的發(fā)展.所得出的有意義理論結(jié)果和許多實(shí)驗(yàn)驗(yàn)證的結(jié)果被廣泛地應(yīng)用于描述橡膠類材料的物理行為和工程領(lǐng)域.彈性材料有限變形的數(shù)學(xué)理論的本質(zhì)是非線性的,在理論和應(yīng)用中所遇到的數(shù)學(xué)方面的困難是可想而知的.近年來(lái),有許多力學(xué)工作者用數(shù)學(xué)和數(shù)值分析方法對(duì)許多有限彈性理論的非線性問(wèn)題和技術(shù)難題進(jìn)行了研究.在研究中,人們?cè)絹?lái)越認(rèn)識(shí)到建立反映橡膠類材料變形特征本構(gòu)模型是解決問(wèn)題的核心,選取簡(jiǎn)單而適用的描述橡膠類材料的本構(gòu)模型,決定著數(shù)值分析方法的精確性和得出結(jié)果的可用性[1-5].
目前,人們?cè)絹?lái)越關(guān)注橡膠類材料本構(gòu)模型的建立,1948年Rivlin[6]從唯象學(xué)的角度出發(fā)提出了針對(duì)各向同性超彈性材料應(yīng)變能函數(shù):
Mooney-Rivlin本構(gòu)模型由于形式簡(jiǎn)單,容易通過(guò)實(shí)驗(yàn)進(jìn)行驗(yàn)證,因此在工程上有著廣泛的應(yīng)用.在長(zhǎng)期的研究中積累了大量的理論和實(shí)驗(yàn)結(jié)果,為后續(xù)的新本構(gòu)模型的建立奠定了基礎(chǔ).該模型能較好擬合不可壓縮橡膠材料小變形和中等應(yīng)變范圍的材料力學(xué)行為,但不能精確的描述產(chǎn)生硬化現(xiàn)象的橡膠類材料的力學(xué)行為以及描述在大變形中應(yīng)力-應(yīng)變曲線的“陡升”行為,為了解決這些問(wèn)題,人們構(gòu)造對(duì)數(shù)型和冪指數(shù)型的本構(gòu)模型[8-9].
1997年高玉臣[10]從材料的抗拉和抗壓角度,給出一種橡膠類材料的應(yīng)變能函數(shù),并基于此本構(gòu)模型對(duì)橡膠類材料的裂尖場(chǎng)進(jìn)行了分析.然而,在不可壓縮條件下,此應(yīng)變能函數(shù)既不能簡(jiǎn)化為Neo-Hookean材料,也不能簡(jiǎn)化為Mooney-Rivlin材料.這影響著應(yīng)變能函數(shù)應(yīng)用的實(shí)驗(yàn)基礎(chǔ).高玉臣基于此本構(gòu)模型對(duì)橡膠缺口與剛性楔體之間的大變形接觸問(wèn)題,集中力作用下橡膠楔體的拉伸問(wèn)題,橡膠類材料的界面裂紋,大應(yīng)變彈性體的應(yīng)力以及奇異性進(jìn)行了分析[11-14].Long R[15]基于此本構(gòu)模型對(duì)軟彈性體的裂尖場(chǎng)進(jìn)行了準(zhǔn)大變形分析.Sang JB[16]對(duì)此本構(gòu)模型進(jìn)行了修正,基于有限變形理論對(duì)含空洞圓形橡膠薄膜的大變形問(wèn)題進(jìn)行了分析.
在本文中,借鑒高玉臣的本構(gòu)模型,建立一個(gè)描述不可壓縮橡膠類材料的新的本構(gòu)模型.當(dāng)n=1且α =0時(shí),新模型轉(zhuǎn)化為Neo-Hookean模型,而當(dāng)n=1且α=1時(shí),新模型轉(zhuǎn)化為Mooney-Rivlin模型.通過(guò)對(duì)均勻變形進(jìn)行分析和計(jì)算,考察了新模型的合理性和適用性.給出橡膠類材料的單軸拉伸以及橡膠圓管受內(nèi)壓膨脹兩個(gè)特例,討論了兩個(gè)本構(gòu)參數(shù)對(duì)材料行為的影響.
1997年高玉臣給出應(yīng)變能函數(shù)[10]:
基于有限變形理論可得Cauchy應(yīng)力張量的表達(dá)式為
基于本構(gòu)模型式(2),對(duì)不可壓縮橡膠類材料,給出了修正后的應(yīng)變能函數(shù)
對(duì)于新的本構(gòu)模型式(4)的合理性,做如下討論.首先,式(4)滿足在剛性條件下,這意味著參考構(gòu)形是自然構(gòu)形.其次β1和β2滿足?β1/?I2+?β2/?I1=0即材料是超彈性的.再次,1975年Batra提出對(duì)各向同性材料進(jìn)行單軸拉伸時(shí),其本構(gòu)模型需滿足經(jīng)驗(yàn)不等式,β1>0,β2≤0,Rivlin、Saunders和Treloar等人的試驗(yàn)數(shù)據(jù)都說(shuō)明這個(gè)經(jīng)驗(yàn)不等式是成立的,顯然,由式(7)可以看出,當(dāng)A>0,n>0,α≥0時(shí),β1≥0;β2≤0成立.最后討論新的本構(gòu)模型是否滿足Baker-Ericksen不等式,這是1962年由Truesdell和Noll提出的.對(duì)于各向同性材料,較大的主應(yīng)力應(yīng)該產(chǎn)生在較大的主伸長(zhǎng)[1],即
不可壓縮條件為
由不可壓縮條件(11)得到
為不失一般性,考慮一個(gè)有限變形材料的立方單元體.如圖1所示.
圖1 單軸變形示意圖Fig.1 The uniaxial deformation diagram
由本構(gòu)關(guān)系式(5)可得分量形式
為了討論本構(gòu)參數(shù)α和n對(duì)材料力學(xué)性能的影響,引入無(wú)量綱化的作用力F/A,由方程(18)得出:
對(duì)方程(20)的計(jì)算結(jié)果由圖2和圖3給出.
圖2 本構(gòu)參數(shù)n對(duì)F/A-λ關(guān)系曲線的影響(α=0.1)Fig.2 The relation between F/A-λ with effect of n(α=0.1)
圖3 本構(gòu)參數(shù)α對(duì)F/A-λ關(guān)系曲線的影響(n=1.2)Fig.3 The relation between F/A-λ with effect of α(n=1.2)
圖4 受內(nèi)壓橡膠圓管模型示意圖Fig.4 Rubber tube model diagram under pressure
其左柯西-格林應(yīng)變張量以及3個(gè)應(yīng)變不變量可表示為
由式(5)可以得到各Cauchy應(yīng)力分量為
將式(27)代入式(26)可得:
在柱坐標(biāo)系下,不計(jì)體力的影響,并由軸對(duì)稱條件得到徑向平衡方程為
將式(31)代入式(30)可得膨脹壓力的表達(dá)式為
將式(33)代入式(32),經(jīng)過(guò)化簡(jiǎn)可得
將膨脹壓力P進(jìn)行無(wú)量綱化處理可得
基于有限變形的基本理論,對(duì)高玉臣所提出的橡膠類材料的本構(gòu)模型進(jìn)行修改,給出1個(gè)新的不可壓縮超彈性應(yīng)變能函數(shù).由于引入?yún)?shù)α和n,使描述材料的模型具有更大的實(shí)用范圍.當(dāng)n=1且α=0時(shí),新的本構(gòu)模型轉(zhuǎn)化為Neo-Hookean模型,而當(dāng)n=1且α=1時(shí),轉(zhuǎn)化為Mooney-Rivlin模型.對(duì)于橡膠類材料的單軸拉伸,給定本構(gòu)參數(shù)α,隨著本構(gòu)參數(shù)n增加,應(yīng)力增大,明顯的具有強(qiáng)化特征,當(dāng)n=1.4出現(xiàn)在大變形中應(yīng)力-應(yīng)變曲線的“陡升”行為;給定本構(gòu)參數(shù)n,α控制了I2對(duì)于材料變形和應(yīng)力的影響,對(duì)于給定的n=1.2,隨著α的增加,應(yīng)力相應(yīng)的也會(huì)增加,但影響的效果較強(qiáng)化參數(shù)n的影響的效果小.對(duì)于橡膠圓管受內(nèi)壓膨脹問(wèn)題,固定α和λz,當(dāng)n取較小值時(shí),橡膠圓管具有較大的環(huán)向主伸長(zhǎng),表示橡膠圓管的膨脹能力較強(qiáng),韌性較好,尤其當(dāng)n<1時(shí),橡膠軟管出現(xiàn)了失穩(wěn)現(xiàn)象.當(dāng)n取較大值時(shí),橡膠圓管具有較小的環(huán)向主伸長(zhǎng),隨著n的增加,內(nèi)壓增加明顯,具有明顯的強(qiáng)化特征;固定n和λz,α同樣控制了I2對(duì)于材料變形的影響,隨著α的增加,內(nèi)壓相應(yīng)地增加,但影響的效果較強(qiáng)化參數(shù)n的影響效果小.
圖5 本構(gòu)參數(shù)n對(duì)P*-λ曲線的影響Fig.5 The Relation between P*and λ for different n
圖6 本構(gòu)參數(shù)α對(duì)P*-λ曲線的影響Fig.6 The Relation between P*and λ for different α
[1]Beatty M F.Topics in finite elasticity:hyperelasticity of rubber,elastomer,and biological tissues-with example[J].Applied Mechanics Review,1987,40(12):1699-1734.
[2]Fuzhang Zhao.Continuum constitutive modeling for isotropic hyperelastic materials[J].Advances in Pure Mathematics,2016,6,571-582.
[3]EhretAE.OnamolecularstatisticalbasisforOgden'smodelofrubberelasticity[J].Journal of the Mechanics and Physics of Solids,2015,78:249-268.
[4]Yükseler R F.A theory for rubber-like rods[J].International Journal of Solids&Structures,2015,69-70:350-359.
[5]Li F,Liu J,Yang H,et al.Numerical simulation and experimental verification of heat build-up for rubber compounds[J].Polymer,2016,101:199-207.
[6]Rivlin R S.Large elastic deformations of isotropic materials.ii.some uniqueness theorems for pure,homogeneous deformation[J].Philosophical Transactions of the Royal Society B Biological Sciences,1948,240(822):491-508.
[7]黃筑平.連續(xù)介質(zhì)力學(xué)基礎(chǔ)[M].北京:高等教育出版社,2003.
[8]Gent A N.A new constitutive ralation for rubber[J].Rubber Chemistry and Technology.1996,69(1):59-61.
[9]Horgan C O,Saccomandi G.A molecular-statistical basis for the Gent constitutive model of rubber elasticity[J].J Elasticity,2002,68(1):167-176.
[10]Gao Y C.Large deformation field near a crack tip in rubber-like material[J].Theoretical&Applied Fracture Mechanics,1997,26(3):155-162.
[11]Gao Y C,Gao T J.Large deformation contact of a rubber notch with a rigid wedge[J].International Journal of Solids and Structures,2000,37(32):4319-4334.
[12]Gao Y C,Chen S H.Analysis of a rubber cone tensioned by a concentrated force[J].Mechanics Research Communications,2001,28(1):49-54.
[13]Gao Y C.Analysis of the interface crack for rubber-like materials[J].Journal of Elasticity,2002,66(1):1-19.
[14]Gao Y C,Jin M,Dui G S.Stresses,singularities,and a complementary energy principle for large strain elasticity[J].Applied Mechanics Reviews,2011,61(61):683-695.
[15]Long R,Hui C Y.Crack tip fields in soft elastic solids subjected to large quasi-static deformation-A review[J].Extreme Mechanics Letters,2015,4:131-155.
[16]Sang JB,Xing SF,Tian HY et al.Research on mechanical properties of a polymer membrane with a void based on the finite deformation theory[J].e-Polymers,2015,15(5):293-299.
[責(zé)任編輯田豐 夏紅梅]
Analysis of hyperelastic mechanical property on rubber like materials under basic load
SANG Jianbing,LIU Yanyong,XING Sufang,WANG Jingyuan,FU Shuangjian
(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
Based on the finite deformation theory,analysis of hyper elastic mechanical property on rubber like materials under basic load has been proposed.A new constitutive model modified from Gao's second constitutive model has been introduced by utilizing the finite deformation theory.In the circumstance that material is incompressible,when and,the new constitutive relation may be simplified to Mooney-Rivlin model;when and,the new constitutive relation may be simplified to Neo-Hookean model.By utilizing the new constitutive relation,super elastic mechanical properties of the rubber materials has been researched under basic loads,which include the uniaxial tension and inflation under internal pressure.The influence of constitutive parameters has been analyzed,which has been pointed out that is the intensive parameter of the materials.Rubber tube has the phenomenon of instability under internal pressure.Its stability is not only dependent on the constitutive parameter but also related to the constitutive parameter α.
rubber like materials;constitutive model;finite deformation theory;uniaxial tension;inflation under internal pressure
U465
A
1007-2373(2017)02-0036-06
10.14081/j.cnki.hgdxb.2017.02.007
2016-12-05
河北省教育廳自然科學(xué)重點(diǎn)項(xiàng)目(ZD20131019,ZD2016083);天津市科技特派員項(xiàng)目(16JCTPJC53100)
桑建兵(1974-),男,教授,sangjianbing@hebut.edu.cn.