• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      青杄MYB轉錄因子基因PwMYB20的克隆及表達分析*

      2017-06-23 12:08:43游韓莉袁義杭李長江張凌云
      林業(yè)科學 2017年5期
      關鍵詞:逆境結構域載體

      游韓莉 袁義杭 李長江 張凌云

      (北京林業(yè)大學 省部共建森林培育與保護教育部重點實驗室 北京 100083)

      ?

      青杄MYB轉錄因子基因PwMYB20的克隆及表達分析*

      游韓莉 袁義杭 李長江 張凌云

      (北京林業(yè)大學 省部共建森林培育與保護教育部重點實驗室 北京 100083)

      【目的】 MYB轉錄因子家族是植物中最大的一類轉錄因子,在植物生長發(fā)育及抗逆調控網(wǎng)絡中發(fā)揮重要作用。對青杄中MYB同源基因PwMYB20的克隆與分析,有利于進一步探究PwMYB20在植物生長發(fā)育及逆境響應中的功能,挖掘與利用青杄中的優(yōu)質基因?!痉椒ā?采用RACE-PCR技術,從青杄cDNA文庫中克隆得到PwMYB20基因,并通過PCR技術克隆驗證。利用ProtParam、ProtScale、FoldIndex等生物信息學軟件對PwMYB20理化性質進行分析預測。通過BLAST在線工具得到植物同源蛋白,并對其進行比對分析和進化樹分析。采用實時熒光定量PCR技術分析PwMYB20基因在不同組織中的表達性,以及干旱、低溫、鹽、ABA等非生物逆境脅迫處理后的表達變化。通過亞細胞定位及轉錄激活活性驗證試驗,揭示其生物學特性?!窘Y果】 通過RACE-PCR克隆得到PwMYB20 cDNA全長966 bp,含675 bp的完整開放閱讀框,編碼225個氨基酸。ProtParam工具計算蛋白分子式為C1104H1740N340O330S8,分子質量為25.3 kDa,等電點為9.11; Protscale工具疏水性分析發(fā)現(xiàn),PwMYB20的疏水位點與親水位點均勻分布,推測該蛋白為親水蛋白; SignalP工具預測發(fā)現(xiàn)該蛋白沒有信號肽結構域; 利用FoldIndex工具對蛋白質固有無序化進行分析,結果表明該蛋白固有無序化序列較多,推測在生理環(huán)境下蛋白的動態(tài)活性較大; TMHMM工具預測發(fā)現(xiàn)該蛋白沒有跨膜結構域。通過對比分析發(fā)現(xiàn)PwMYB20屬于MYB家族基因,編碼1個R2R3-MYB蛋白。進化樹分析結果顯示,青杄PwMYB20與白云杉PgMYB20聚為一簇。實時熒光定量PCR結果表明,PwMYB20在種子中的表達量最高,其次是在針葉中,在花粉中的表達相對較少。PwMYB20對干旱、4 ℃和ABA處理均有響應,而對NaCl處理響應相對較弱。在干旱處理下,PwMYB20表達量先上升后下降;4 ℃低溫處理3 h和12 h時PwMYB20的表達量上升,在4 ℃處理6 h時存在波動,呈現(xiàn)上升—下降—上升的趨勢;PwMYB20的表達受ABA處理持續(xù)誘導。亞細胞定位分析表明,PwMYB20是一個主要定位于細胞核中的蛋白質。轉錄激活活性分析結果顯示,PwMYB20的C端存在轉錄激活活性,而PwMYB20全長及其N端沒有轉錄激活活性。【結論】 青杄PwMYB20,作為一個轉錄因子發(fā)揮作用,其轉錄激活活性位于C端; 受干旱、低溫和ABA誘導,普遍參與了植物應對逆境脅迫的響應過程。

      青杄; MYB轉錄因子; 基因克??; 脅迫響應; 基因表達

      轉錄因子是指能特異性結合靶基因啟動子上順式作用元件的蛋白質,對轉錄起著激活或抑制作用。在植物生長發(fā)育及抗逆調控網(wǎng)絡中,轉錄因子發(fā)揮了十分重要的作用(Broun, 2004; Wangetal., 2016)。MYB家族轉錄因子是一類含有長為50~53個氨基酸殘基且高度保守的MYB結構域的轉錄因子,是植物轉錄因子中最大的轉錄因子家族。Paz-Ares等(1987)在玉米(Zeamays)中鑒定出第1個植物MYB基因,并命名為C1。之后,越來越多的MYB相關基因被分離鑒定。

      MYB轉錄因子在結構上具有由1~4個MYB重復單元(R)組成的MYB結構域。根據(jù)R的個數(shù),可以將其分為4個亞類,即只含1個R的MYB-related類型、包含2個R的R2R3-MYB類型、包含3個R的3R-MYB類型以及包含4個R的4R-MYB類型(Strackeetal., 2001; Dubosetal., 2010)。在植物中,R2R3-MYB類型MYB蛋白數(shù)量較多(Chenetal., 2006),且參與了植物的初生和次生代謝、植物細胞形態(tài)和模式建成、植物生長發(fā)育等多個生命過程的調節(jié)(Dubosetal., 2010; Ambawatetal., 2013)。擬南芥(Arabidopsisthaliana)中MYB11、MYB12和MYB111通過調控FLAVONOLSYNTHASE1等下游靶基因,調節(jié)類黃酮的生物合成(Strackeetal., 2007)。在許多物種中均鑒定到參與細胞壁形成的MYB轉錄因子,例如小麥(Triticumaestivum)的TaMYB4和玉米的ZmMYB31(Fornaleetal., 2010; Maetal., 2011)。此外,MYB對種子胚的發(fā)育、根系的發(fā)育等均有調控作用(Tominagaetal., 2008; Yangetal., 2009)。

      此外,研究發(fā)現(xiàn)MYB家族基因也參與了植物逆境響應過程。干旱脅迫能顯著誘導擬南芥AtMYB2的表達,在植物受到干旱脅迫時,AtMYB2可以激活一些受ABA誘導表達基因的轉錄,從而提高對干旱脅迫的耐受程度(Uraoetal., 1993; Abeetal., 2003)。AtMYB44是一個R2R3類型的MYB轉錄因子,參與調節(jié)植物氣孔閉合和植物對非生物脅迫的響應(Jungetal., 2008)。進一步研究發(fā)現(xiàn),AtMYB44通過直接與WRKY70結合,抑制茉莉酸介導的防衛(wèi)反應,激活水楊酸介導的防衛(wèi)反應(Shimetal., 2013)。此外,水稻(Oryzasativa)中OsMYB2和小麥中的TaMYB4在植物響應生物脅迫與非生物脅迫中均發(fā)揮了重要作用(Yangetal., 2012; Al-Attalaetal., 2014)。

      青杄(Piceawilsonii)是松科(Pinaceae)云杉屬(Picea)的一種常綠高大喬木,高可達50 m,是我國特有的針葉樹種。其適應能力強,喜陰且極耐寒,多分布于涼爽濕潤地區(qū)。目前,青杄已被多個地區(qū)列為水源涵養(yǎng)林及用材林的主要造林和更新樹種。早期對青杄的研究多集中于青杄的群落生態(tài)學(張大勇等, 1989),隨后有研究者對青杄愈傷組織的誘導(楊映根等, 1994)及育苗栽培(許家春等, 2004)也進行了相關研究。近年來,隨著分子生物學和細胞生物學的快速發(fā)展,對于青杄基因的功能研究也有了一定進展。本文通過RACE-PCR的方法,從青杄cDNA文庫中克隆得到1個R2R3-MYB轉錄因子全長cDNA序列; 采用熒光定量PCR分析其在青杄各組織以及各種非生物脅迫下的表達情況,并進一步利用亞細胞定位及轉錄激活活性驗證試驗揭示其生物學特性,為進一步探究其在植物生長發(fā)育及逆境響應中的功能打下基礎,同時有利于挖掘與利用木本植物中的優(yōu)質基因。

      1 材料和方法

      1.1 試驗材料及處理方法

      青杄花粉及種子均采集于北京植物園。3年生青杄幼苗的根、莖、針葉與花粉用于組織特異表達試驗,將青杄種子播種于體積1∶1蛭石和草炭土的培養(yǎng)基質中,置于溫度21 ℃、相對濕度60%~70%、日照時間16 h的條件下培養(yǎng),每周定時澆1次水。8周的青杄幼苗用于逆境響應試驗。

      逆境響應試驗的處理方法參照張通等(2014)和李長江等(2014)略有改動: 將8周的青杄幼苗裸根置于室溫(25 ℃),于吸水紙上放置0,3,6,12 h; 用100 mmol·L-1NaCl處理青杄幼苗0,3,6,12 h; 將青杄幼苗于清水中4 ℃處理0,3,6,12 h。為了驗證PwMYB20對逆境脅迫的響應是否通過ABA途徑,進行了外施ABA試驗,即用100 μmol·L-1ABA分別處理青杄幼苗0,3,6,12 h。

      1.2 青杄PwMYB20全長cDNA的獲得

      青杄cDNA文庫通過Gateway方法構建,由Invitrogen(上海)公司完成(張盾等, 2012)。在前期構建的多年生青杄均一化cDNA文庫的基礎上,利用RACE-PCR的方法得到PwMYB20末端序列,再經(jīng)過序列拼接得到cDNA全長。RACE-PCR所用引物為MYB20-RACE-F、MYB20-RACE-R(表1)。設計引物MYB20-F、MYB20-R從青杄cDNA文庫克隆得到PwMYB20的ORF,連接到pEASY-T1上,獲得PwMYB20單克隆。

      1.3 PwMYB20生物信息學分析

      PwMYB20生物信息學分析方法參照李長江等(2014)。利用DNAMAN軟件進行PwMYB20的cDNA序列編碼區(qū)預測及蛋白翻譯。運用ProtParam工具(http: //biopython.org/wiki/ProtParam)分析蛋白的理化特性和氨基酸組成。通過BLAST工具在NCBI(https: //www.ncbi.nlm.nih.gov/)上進行核酸序列與蛋白序列的同源性分析。利用ClustalX軟件進行氨基酸多序列比對分析,并用MEGA5軟件基于鄰位相連法構建系統(tǒng)發(fā)育樹。利用WoLF-PSORT(http: //www.genscript.com/tools/wolf-psort)進行蛋白亞細胞定位預測。通過Protscale(http: //web.expasy.org/protscale/)、SignalP4.1(http: //www.cbs.dtu.dk/services/SignalP/)、TMHMM(http: //www.cbs.dtu.dk/services/TMHMM/)、FoldIndex(http: //bip.weizmann.ac.il/fldbin/findex)對蛋白疏水性、信號肽區(qū)域、跨膜結構域以及蛋白無序化位點進行預測分析。

      1.4PwMYB20組織特異性表達及逆境響應分析

      利用艾德萊(北京)公司的植物RNA快速提取試劑盒提取各試驗材料的RNA,并用天根(北京)公司反轉錄試劑盒合成第1條cDNA鏈,置于-20 ℃保存。根據(jù)基因序列的非保守區(qū)設計定量引物為qMYB20-F、qMYB20-R。選取青杄EF1-α基因作為內參基因(李長江等, 2014),引物為EF1-α-F、EF1-α-R。將合成的cDNA第1條鏈均一化濃度之后在StepOnePlus Real Time RT-PCR儀器上進行熒光定量PCR,引物序列詳見表1。試驗分別設置2次生物學重復,3次技術重復。利用2-△△Ct法分析數(shù)據(jù),用SPASS與SigmaPlot分析作圖。

      表1 所用引物序列Tab.1 Primer sequences

      1.5 PwMYB20瞬時表達載體構建與亞細胞定位

      圖1 pEZS-NL的載體Fig.1 Map of pEZS-NL35S表示啟動子序列; Ala10表示10個丙氨酸序列; EGFP表示GFP序列; Ocs3′表示章魚堿合成酶基因的終止子。35S shows promoter sequence; Ala10 shows 10 alanine sequences; EGFP shows GFP sequence; Ocs3′ shows terminator.

      通過引物MYB20-F-KpnⅠ、MYB20-R-BamHⅠ(表1)擴增PwMYB20編碼區(qū)序列,擴增產(chǎn)物經(jīng)雙酶切后定向連入pEZS-NL載體(圖1)。構建好的表達載體轉化大腸桿菌(Escherichiacoli)菌株DH5α。利用天根(北京)質粒大型大量提取試劑盒提取質粒,質粒濃度至少達到1 μg·μL-1。通過基因槍將質粒轟擊入洋蔥(Alliumcepa)表皮細胞(Yuetal., 2011)。將轉化的洋蔥表皮置于MS培養(yǎng)基上暗培養(yǎng)1天,用共聚焦顯微鏡(OLYMPUS,F(xiàn)V10i)觀察拍照。為了確定PwMYB20表達部位,用空pEZS-NL載體所表達的綠色熒光以及DAPI熒光作為參照。

      1.6 PwMYB20轉錄激活活性檢測

      設計引物,并在上游和下游引物分別加入EcoRⅠ和BamHⅠ酶切位點,將PwMYB20全長(1-225 aa)、N端(1-127 aa)和C端(133-225 aa)分別連入pGBKT7載體,引物詳見表1。構建好的表達載體轉化大腸桿菌菌株DH5α,并測序驗證。利用天根(北京)公司質粒小提試劑盒提取重組質粒,存于-20 ℃?zhèn)溆?。將?jīng)測序驗證正確后的重組質粒轉入酵母AH109(Saccharomycescerevisiae)菌株,操作按照上海唯地生物技術有限公司說明書進行。以轉入空pGBKT7載體為陰性對照,轉入pGBKT7-ANAC092為陽性對照(Heetal., 2005),均勻涂于SD-Trp單缺陷平板上。生長2~3天后用接種針挑取少量的酵母單克隆,混于500 mL無菌水中,吸取5 μL滴在SD-Trp和含有10 mmol·L-13-氨基-1, 2, 4-三氮唑(3-AT)的SD-Trp-His-Ade缺陷型酵母培養(yǎng)基上。培養(yǎng)3~4天后,若在SD-Trp-His-Ade缺陷型酵母培養(yǎng)基上長出菌落,則具有轉錄激活活性,反之則無。

      2 結果與分析

      2.1 基因克隆與序列分析

      用RACE-PCR的方法得到末端序列,與EST序列拼接,得到PwMYB20的cDNA全長(圖2)。利用DNAMAN軟件分析發(fā)現(xiàn),PwMYB20的cDNA全長為966 bp,在86 bp處出現(xiàn)起始密碼子ATG,在741 bp處出現(xiàn)終止密碼子TGA,編碼區(qū)共675 bp,編碼225個氨基酸,在949 bp處出現(xiàn)PolyA尾巴。

      圖2 PwMYB20的核酸序列與蛋白氨基酸序列Fig.2 Nucleotide sequence and deduced protein amino acids sequence of PwMYB20起始密碼子(ATG)與終止密碼子(TGA)用下劃線標記,氨基酸序列用單字母表示,黑體字母表示PolyA尾巴。Potential translation initiation codon (ATG) and termination codon (TGA) are underlined, amino acid residues are indicated by single letter code and PolyA tail are indicated by bold letters.

      圖3 PwMYB20的理化特性分析Fig.3 Physicochemical properties of PwMYB20A: Protscale工具預測蛋白疏水性; B: PwMYB20的信號肽預測(C-score表示剪切位置分值,S-score表示信號肽分值,Y-score表示綜合剪切位置分值); C: PwMYB20蛋白的固有無序化分析; D: PwMYB20的跨膜結構域分析,圖中第1條橫線(1.0~1.2)表示綜合結果。A: Hydrophobic analysis of PwMYB20; B: Signal peptide analysis of PwMYB20(C-score means Cleavage site score, S-score means Signal peptide score, Y-score means Combined cleavage site score); C: Intrinsically disordered protein analysis of PwMYB20; D: Transmembrane analysis of PwMYB20,the first horizontal line(1.0-1.2)in the graph represents the comprehensive result.

      圖4 PwMYB20及同源蛋白的多序列比對Fig.4 Multiple sequence alignment of PwMYB20 and homological proteins線段示意不同結構域(R2,R3,TAD),虛線框示意青杄等物種中特有的結構域。相似性: 黑色=100%; 粉色≥75%; 藍色≥50%。The lines indicate different domains (R2, R3, TAD), the dashed box indicates a specific domain in Picea wilsonii et al. Conserved percent: Black=100%; Pink≥75%; Blue≥50%.青杄Picea wilsonii:PwMYB20; 白云杉Picea glauca:PgMYB10(ABQ51226.1), PgMYB5 (ABQ51221.1), PgMYB17 (ACN12959.1), PgMYB13(ABQ51229.1); 火炬松Pinus taeda:PtMYB14(ABD60279.1); 擬南芥Arabidopsis thaliana:AtMYB6 (NP_192684.1), AtMYB7(NP_179263.1),AtMYB32(NP_195225.1),AtMYB4(NP_195574.1).

      利用ProtParam工具計算蛋白分子式為C1104H1740N340O330S8,分子量為25.3 kDa,等電點為9.11。亮氨酸(Leu)含量最高(9.8%),其次為8.9%的絲氨酸(Ser)與8.0%的精氨酸(Arg)。預測在體外半衰期為30 h,不穩(wěn)定指數(shù)為55.02,說明蛋白不穩(wěn)定。Protscale工具疏水性分析發(fā)現(xiàn),苯丙氨酸(Phe81)分值最大,為1.633,谷氨酰胺(Gln20)分值最小,為-2.647。疏水位點與親水位點均勻分布,推測該蛋白為親水蛋白(圖3A)。SignalP工具預測發(fā)現(xiàn)該蛋白沒有信號肽結構域(圖3B)。利用FoldIndex工具對蛋白質固有無序化進行分析,結果表明該蛋白固有無序化序列較多,推測在生理環(huán)境下蛋白的動態(tài)活性較大(圖3C)。TMHMM工具預測發(fā)現(xiàn),整條肽鏈都位于膜外,因此推測該蛋白沒有跨膜結構域(圖3D)。此外,利用WOLF-PSORT對PwMYB20亞細胞定位進行預測,發(fā)現(xiàn)其可能定位在細胞核中。

      2.2 多重序列比對及系統(tǒng)進化樹分析

      通過BLAST工具在NCBI上用翻譯后的蛋白序列進行檢索,結果表明其屬于R2R3-MYB家族,且在N端發(fā)現(xiàn)SANT結構域。選取擬南芥、白云杉(Piceaglauca)等物種同源基因進行檢索,發(fā)現(xiàn)PwMYB20與其他MYBs相似性較高。利用ClustalX工具進行多序列比對,發(fā)現(xiàn)PwMYB20與其他物種的MYBs在N端有較高的相似性,且為R2R3結構域,在C端則擁有比較特異的轉錄激活域TAD。與擬南芥相比,C端的結構域是青杄、白云杉等物種特有的(圖4)。

      利用MEGA5軟件的鄰位相連法進行系統(tǒng)發(fā)育樹的構建,可以發(fā)現(xiàn)PwMYB20與PgMYB20聚為一簇,擬南芥的MYBs與木本植物的MYBs明顯分為兩大類(圖5),進而推測2類的激活域TAD擁有不同的分子功能。

      圖5 PwMYB20的系統(tǒng)發(fā)育樹分析Fig.5 Phylogenetic tree analysis of PwMYB20MEGA5用于構建系統(tǒng)發(fā)育樹,計算方法為鄰位相連法。每個分支上的數(shù)字表示1 000次重復搜索的置信度。MEGA5 is applied to construct the tree by Neighbor-joining method. Numbers on branches indicate bootstrap estimates for 1 000 replicate analysis.

      2.3PwMYB20組織特異表達分析

      利用RT-qPCR試驗檢測PwMYB20在青杄各組織中的表達模式,結果發(fā)現(xiàn)PwMYB20在青杄的各個組織中均有表達,在種子中的表達量最高,其次是在針葉中,在花粉中的表達相對較少(圖6)。說明PwMYB20基因屬于組成型表達,可能對青杄種子、針葉、花粉、莖和根的發(fā)育均有影響。

      2.4 逆境脅迫對PwMYB20表達的影響

      為了研究不同脅迫條件下PwMYB20的表達模式,取脅迫處理后的整株青杄幼苗,提取RNA后進行反轉錄,濃度均一化后進行熒光定量PCR試驗。結果表明,PwMYB20對干旱、4 ℃和ABA處理均有響應,而NaCl處理對PwMYB20表達的影響相對較弱(圖7)。在干旱處理下,PwMYB20表達量先上升后下降,在處理6 h后表達量最高,為未處理幼苗表達量的7倍。4 ℃低溫處理3 h和12 h時PwMYB20的表達量顯著高于未處理的幼苗,而4 ℃處理6 h時PwMYB20的表達量并沒有明顯上升,呈現(xiàn)上升—下降—上升的趨勢。ABA處理顯著提高了PwMYB20的表達量,其表達量持續(xù)上升,處理12 h后PwMYB20的表達量是未處理幼苗表達量的8倍。

      2.5 PwMYB20的亞細胞定位分析

      pEZS-NL載體是CaMV 35S驅動的植物瞬時表達載體,具有GFP表達序列(圖1)。將PwMYB20構建在pEZS-NL載體上,與GFP融合表達,最終可以通過觀察GFP的熒光確定PwMYB20的表達部位。結果顯示,空載體GFP分布于整個細胞(圖8A, B, C),而PwMYB20與GFP的融合蛋白雖然在細胞質中也有微量表達(圖8D),但主要分布在細胞核中(圖8D, E, F)。這些結果表明PwMYB20是一個主要定位在細胞核中的蛋白。

      2.6 PwMYB20在酵母中的轉錄激活活性

      為驗證PwMYB20是否作為轉錄因子發(fā)揮作用,構建不同載體并轉化酵母。圖9顯示,轉化空載體pBD和pBD-PwMYB20的酵母不能在-Trp-His-Ade缺陷型培養(yǎng)基中正常生長,而轉化陽性對照pBD-ANAC092的酵母可以在-Trp-His-Ade缺陷型培養(yǎng)基中正常生長,表明PwMYB20全長沒有轉錄激活活性。為了研究PwMYB20 N端和C端的激活活性,又分別構建了包含PwMYB20 N端和C端的酵母轉化載體,結果顯示: PwMYB20-133-225具有轉錄激活活性,而PwMYB20-1-127不具有轉錄活性(圖9)。這些結果表明包含TAD激活域的PwMYB20的C端具有激活活性,而全長沒有轉錄激活活性,可能是由于N端存在轉錄抑制結構域。

      圖6 PwMYB20在青杄各組織的相對表達量Fig.6 Expression analysis of PwMYB20 in different tissues of Picea wilsonii利用單因素方差分析進行差異顯著性分析,多重比較方法為Duncan(α=0.05)法,不同字母表示差異顯著(P<0.05)。內參基因為青杄EF1-α。下同。Single factor analysis of variance is used to analyze the difference, Duncan (α=0.05) test is used as the multiple comparison method, and different letters indicate significant difference (P<0.05). EF1-α is the reference gene.The same below.

      圖7 不同處理下PwMYB20的相對表達量Fig.7 Expression analysis of PwMYB20 with different treatments內參基因為青杄EF1-α。各處理0 h時相對表達量為“1”。EF1-α is the reference gene. The relative expression of PwMYB20 with different treatments for 0 h is ‘1’.

      圖8 PwMYB20的亞細胞定位(標尺: 75 μm)Fig.8 Subcellular localization analysis of PwMYB20(Bar=75 μm)A, B, C: 35S驅動GFP在洋蔥(Allium cepa)中瞬時表達(A: 空載體GFP熒光; B: 明場下的洋蔥表皮細胞; C: A與B的融合圖像); D: PwMYB20-GFP在洋蔥中瞬時表達; E: DAPI染色; F: GFP與DAPI熒光重疊。A, B, C: Onion (Allium cepa) epidermal cells that are transformed with GFP driven by 35S promoter (A: The GFP fluorescence of empty plasm; B: Onion epidermal cell under bright field; C: The merged picture of A and B); D: Onion epidermal cell that is transformed with PwMYB20-GFP; E: Onion epidermal cell that is stained by DAPI; F: The overlap between GFP and DAPI fluorescence.

      3 討論

      植物中的MYB基因最早在玉米中分離出來,被命名為C1(Paz-Areset al., 1987),隨后分離鑒定的MYB轉錄因子越來越多。擬南芥中已經(jīng)發(fā)現(xiàn)198個MYB相關基因,而在水稻、玉米、二倍體粗山羊草(Aegilopstauschii)等植物中發(fā)現(xiàn)MYB基因均超過了200個。本試驗從青杄中克隆得到PwMYB20基因,通過多序列對比發(fā)現(xiàn),PwMYB20屬于R2R3類型的MYB轉錄因子(圖4)。序列比對發(fā)現(xiàn)PwMYB20與其他物種的MYBs在N端有較高的相似性,且為R2R3結構域,在C端則擁有比較特異的轉錄激活域TAD。與擬南芥相比,C端的結構域是青杄、白云杉等物種特有的。R2R3-MYB類蛋白是植物中數(shù)目最多的一類MYB蛋白,擬南芥中198個MYB基因,其中編碼R2R3-MYB的MYB基因數(shù)量高達126,占60%以上(Chenetal., 2006)。

      圖9 PwMYB20在酵母中的轉錄激活活性檢測Fig.9 Transcriptional activity test of the PwMYB20 proteins in yeast空載體pBD和pBD-ANAC092分別作為陰性和陽性對照,圖中蛋白后面的數(shù)字指示片段的位置。The pBD vector alone and pBD-ANAC092 are used as negative and positive controls, and the numbers indicate the position of truncated fragments of protein.

      本研究通過轉錄激活活性試驗,發(fā)現(xiàn)PwMYB20全長及N端沒有激活活性,而C端具有激活活性(圖9)。Hao等(2010)在研究NAC轉錄因子的激活活性時發(fā)現(xiàn),NAC的N端存在1個NARD結構域,抑制了NAC的轉錄激活活性(Haoetal., 2010)。因此,推測PwMYB20 N端可能存在一個轉錄抑制區(qū)域,抑制了PwMYB20的轉錄激活活性。本文中亞細胞定位試驗結果表明,PwMYB20主要存在于細胞核中(圖8),此結果與利用WoLF-PSORT工具進行亞細胞定位預測結果相符。因此推測PwMYB20作為一個轉錄因子主要在細胞核中發(fā)揮功能。

      以往研究發(fā)現(xiàn)MYB轉錄因子在模式植物及作物類植物響應逆境脅迫中扮演了重要角色(Agarwaletal., 2006; Daietal., 2007; Chenetal., 2013; Baldonietal., 2015)。本文的研究結果顯示,PwMYB20在青杄冷脅迫及干旱脅迫后表達量有顯著變化(圖7),表明其可能在植物冷脅迫及干旱脅迫響應中發(fā)揮了功能。在低溫處理3 h和12 h時PwMYB20表達量均顯著高于未處理幼苗,而在低溫處理6 h時PwMYB20表達量與未處理幼苗相比并沒有顯著變化,表明PwMYB20對于低溫處理的響應存在時間上的差異,主要在處理早期和后期發(fā)揮作用。類似地,Shi等(2014)研究發(fā)現(xiàn),AtHAP5A和AtXTH21在NaCl處理3,6,24 h時表達量均明顯上升,而NaCl處理12 h時表達量卻沒有明顯變化。

      根據(jù)在植物抗逆脅迫過程中對ABA信號傳導途徑的依賴性,可將MYB轉錄因子分成2類: 一類是和ABA信號相關的MYB轉錄因子,而另一類是獨立于ABA信號途徑的MYB轉錄因子。AtMYB60與AtMYB96可以通過ABA信號級聯(lián)調節(jié)氣孔運動(Cominellietal., 2005),從而提高抗旱性和抗病性(Seoetal., 2009; 2010)。厚葉旋蒴苣苔(Boeacrassifolia)中的BcMYB1對干旱脅迫響應顯著,同時能被低溫、PEG、高鹽等脅迫誘導,但在外源ABA處理后其表達量卻很低,說明可能通過一種不依賴ABA的途徑參與調控基因表達從而對逆境產(chǎn)生應答(Chenetal., 2005)。在本試驗中,外源ABA處理時PwMYB20表達顯著上升(圖7),因此推測PwMYB20可能通過ABA途徑響應外界非生物脅迫,但其具體的調控與響應機制有待深入研究。

      4 結論

      青杄PwMYB20,作為一個R2R3類型的MYB轉錄因子發(fā)揮作用,其轉錄激活活性位于C端。PwMYB20在青杄各組織中均有表達,屬于組成型表達。此外,在干旱、低溫和ABA處理下PwMYB20表達發(fā)生顯著變化,說明其普遍參與了青杄應對逆境脅迫的響應過程。

      李長江, 崔曉燕, 孫 帆, 等. 2014. 青杄干旱誘導基因PwWDS1的cDNA分離與表達分析. 林業(yè)科學, 50(4): 129-136.

      (Li C J, Cui X Y, Sun F,etal. 2014. Isolation and expression analysis ofPwWDS1 inPiceawilsonii. Scientia Silvae Sinicae, 50(4): 129-136. [in Chinese])

      許家春, 邵海燕, 李殿波. 2004. 優(yōu)良綠化樹種青杄云杉引種栽培技術. 中國林副特產(chǎn), (3): 24-25.

      (Xu J C, Shao H Y, Li D B. 2004. Introduction and cultivation techniques ofPiceawilsonii. Forest By-Product and Speciality in China, (3): 24-25. [in Chinese])

      楊映根, 桂耀林, 唐 巍, 等. 1994. 青杄愈傷組織在繼代培養(yǎng)中的分化能力及染色體穩(wěn)定性研究. 植物學報, 36(12): 934-939.

      (Yang Y G, Gui Y L, Tang W,etal. 1994. Observation on differentiation potential and chromosome stability of callus in subculture ofPiceawilsonii. Journal of Integrative Plant Biology, 36(12): 934-939. [in Chinese])

      張大勇, 趙松嶺, 張鵬云, 等. 1989. 青杄林恢復演替過程中的鄰體競爭效應及鄰體干擾指數(shù)的改進模型. 生態(tài)學報, 9(1): 53-58.

      (Zhang D Y, Zhao S L, Zhang P Y,etal. 1989. An improved model of neighborhood competition effect and neighborhood disturbance index in the process of restoration and succession in spruce forest. Acta Ecologica Sinica, 9(1): 53-58. [in Chinese])

      張 盾, 劉亞靜, 李長江, 等. 2012. 青杄均一化cDNA文庫構建及EST序列分析. 生物技術通報, (6): 71-76.

      (Zhang D, Liu Y J, Li C J,etal. 2012. Construction of normalized cDNA library and analysis of corresponding EST sequences inPiceawilsonii. Biotechnology Bulletin, (6): 71-76. [in Chinese])

      張 通, 李巧玲, 張凌云. 2014.PwEXP1在青杄種子萌發(fā)及逆境響應中的表達特征. 林業(yè)科學, 50(12): 56-62.

      (Zhang T, Li Q L, Zhang L Y. 2014. Expression characteristics ofPwEXP1 gene in seed germination and adversity inPiceawilsonii. Scientia Silvae Sinicae, 50(12): 56-62. [in Chinese])

      Abe H, Urao T, Ito T,etal. 2003.ArabidopsisAtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1): 63-78.

      Agarwal M, Hao Y J, Kapoor A,etal. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 281(49): 37636-37645.

      Al-Attala M, Wang X, Abou-Attia M,etal. 2014. A novelTaMYB4 transcription factor involved in the defence response againstPucciniastriiformisf. sp.triticiand abiotic stresses. Plant Molecular Biology, 84(4/5): 589-603.

      Ambawat S, Sharma P, Yadav N R,etal. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3): 307-321.

      Baldoni E, Genga A, Cominelli E. 2015. Plant MYB transcription factors: Their role in drought response mechanisms. International Journal of Molecular Sciences, 16(7): 15811-15851.

      Broun P. 2004. Transcription factors as tools for metabolic engineering in plants. Current Opinion in Plant Biology, 7(2): 202-209.

      Chen B J, Wang Y, Hu Y L,etal. 2005. Cloning and characterization of a drought-inducible MYB gene fromBoeacrassifolia. Plant Science, 168(2): 493-500.

      Chen Y, Chen Z L, Kang J Q,etal. 2013.AtMYB14 regulates cold tolerance inArabidopsis. Plant Molecular Biology Reporter, 31(1): 87-97.

      Chen Y H, Yang X Y, He K,etal. 2006. The MYB transcription factor superfamily ofArabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60(1): 107-124.

      Cominelli E, Galbiati M, Vavasseur A,etal. 2005. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology, 15(13): 1196-1200.

      Dai X Y, Xu Y Y, Ma Q B,etal. 2007. Overexpression of an R1R2R3 MYB gene,OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenicArabidopsis. Plant Physiology, 143(4): 1739-1751.

      Dubos C, Stracke R, Grotewold E,etal. 2010. MYB transcription factors inArabidopsis. Trends in Plant Science, 15(10): 573-581.

      Fornale S, Shi X H, Chai C L,etal. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant Journal, 64(4): 633-644.

      Hao Y J, Song Q X, Chen H W,etal. 2010. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 232(5): 1033-1043.

      He X J, Mu R L, Cao W H,etal. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal, 44(6): 903-916.

      Jung C, Seo J S, Han S W,etal. 2008. Overexpression ofAtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenicArabidopsis. Plant Physiology, 146(2): 623-635.

      Ma Q H, Wang C, Zhu H H. 2011.TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes. Biochimie, 93(7): 1179-1186.

      Paz-Ares J, Ghosal D, Wienand U,etal. 1987. The regulatory c1 locus ofZeamaysencodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO, 6(12): 3553-3558.

      Seo P J, Park C M. 2010. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis inArabidopsis. New Phytologist, 186(2): 471-483.

      Seo P J, Xiang F N, Qiao M,etal. 2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response inArabidopsis. Plant Physiology, 151(1): 275-289.

      Shi H T, Ye T T, Zhong B,etal. 2014.AtHAP5Amodulates freezing stress resistance inArabidopsisthrough binding to CCAAT motif ofAtXTH21. New Phytologist, 203(2): 554-567.

      Shim J S, Jung C, Lee S,etal. 2013. AtMYB44 regulatesWRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant Journal, 73(3): 483-495.

      Stracke R, Ishihara H, Barsch G H A,etal. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of theArabidopsisthalianaseedling. Plant Journal, 50(4): 660-677.

      Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family inArabidopsisthaliana. Current Opinion in Plant Biology, 5(5): 447-456.

      Tominaga R, Iwata M, Sano R,etal. 2008.ArabidopsisCAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development, 135(7): 1335-1345.

      Urao T, Yamaguchi-Shinozaki K, Urao S,etal. 1993. AnArabidopsismyb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell, 5(11): 1529-1539.

      Wang H Y, Wang H L, Shao H B,etal. 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7. Doi: 10.3389/fpls.2016.00067

      Yang A, Dai X Y, Zhang W H. 2012. A R2R3-type MYB gene,OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7): 2541-2556.

      Yang S W, Jang I C, Henriques R,etal. 2009. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with theArabidopsistranscription factors LAF1 and HFR1 to transmit phytochrome a signals for inhibition of hypocotyl elongation. The Plant Cell, 21(5): 1341-1359.

      Yu Y L, Li Y Z, Huang G X,etal. 2011. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation inPiceawilsonii. Journal of Experimental Botany, 62(14): 4805-4817.

      (責任編輯 徐 紅)

      Cloning and Expression Analysis of MYB Homologous GenePwMYB20 fromPiceawilsonii

      You Hanli Yuan Yihang Li Changjiang Zhang Lingyun

      (Key Laboratory of Forestry Silviculture and Conservation of Ministry of Education Beijing Forestry University Beijing 100083)

      【Objective】 MYB is the largest family of transcription factor in plants, which is widely involved in the regulation of plant life and play an important role in both plant development and growth,and in the regulation of stress resistance. Cloning and analysis of MYB homologous genePwMYB20 inPiceawilsoniiis propitious to explore the function of PwMYB20 in plant growth and development, for the purpose of efficient use of high-qualified genes inPiceawilsonii.【Method】ThePwMYB20 was cloned and verified based on the cDNA library of the EST sequence ofPwMYB20 with RACE-PCR method. ProtParam, ProtScale, FoldIndex and other bioinformatics software were used to analyze and predict the physical and chemical properties of PwMYB20. The homologous proteins were obtained by BLAST online tools, and their comparative analysis and phylogenetic tree analysis were carried out. The tissue specific expression ofPwMYB20 in different tissues,as well as the changes ofPwMYB20 expression with drought, cold, NaCl and ABA treatments were analyzed using real-time quantitative PCR. Furthermore, subcellular localization and transcriptional activation assay were carried out to reveal its biological properties.【Result】The full length ofPwMYB20 cDNA was 966 bp with an open reading frame (ORF) of 675 bp encoding 225 amino acids. ProtParam analysis showed that the protein molecular formula is C1104H1740N340O330S8, molecular weight is 25.3 kDa and isoelectric point is 9.11. Hydrophobicity analysis with Protscale showed that the hydrophobic sites of PwMYB20 were uniformly distributed, suggesting that the protein is hydrophilic. No protein peptide domain was found with SignalP. Furthermore, Protein inherent disorder analysis showed the protein contains many inherently disordered sequences. In addition, TMHMM tools predicted that the protein has no transmembrane domain. BLAST online tools analysis showed thatPwMYB20 belongs to the MYB family gene, which encodes a R2R3-MYB protein. The results of phylogenetic tree analysis showed that PwMYB20 and PgMYB20 were clustered into one cluster. The real-time quantitative PCR analysis indicated thatPwMYB20 expressed constitutively at a high level in seed, followed by needle, and the least was in pollen. The expression ofPwMYB20 displayed responses to drought, cold and ABA treatments, but slightly to NaCl treatment. With drought treatment, the expression ofPwMYB20 was up-regulated at the early stage, and then decreased after 6 h. Additionally, the expression ofPwMYB20 was induced when it was 4 ℃ treated for 3 h, 12 h and with a fluctuation in 6 h, the expression showed an up-down-up trend. Moreover, the expression ofPwMYB20 was induced by ABA continuously. Subcellular localization analysis showed that PwMYB20 was mainly localized in the nucleus. Transcriptional activation analysis revealed that C terminal of PwMYB20 had a transcriptional activation activity, whereas the full-length PwMYB20 and its N terminal had no transcriptional activation activity.【Conclusion】 The results indicated that the expression ofPwMYB20 was constitutive in different tissues, and induced by drought, cold and ABA. In addition, PwMYB20 was located in the nucleus. Its C terminal had a transcriptional activation activity, although its full length is not activated.It is widely involved in responding to different stresses.

      Piceawilsonii; MYB transcription factor; gene cloning; stress response; gene expression

      10.11707/j.1001-7488.20170504

      2016-12-29;

      2017-02-21。

      轉基因生物新品種培育重大專項(2016ZX08009003-002)。

      S718.46

      A

      1001-7488(2017)05-0023-10

      * 張凌云為通訊作者。

      猜你喜歡
      逆境結構域載體
      創(chuàng)新舉措強載體 為僑服務加速跑
      華人時刊(2022年9期)2022-09-06 01:02:44
      超越逆境
      做人與處世(2022年6期)2022-05-26 10:26:35
      How adversity makes you stronger逆境如何讓你更強大
      堅持以活動為載體有效拓展港澳臺海外統(tǒng)戰(zhàn)工作
      華人時刊(2020年15期)2020-12-14 08:10:36
      蛋白質結構域劃分方法及在線服務綜述
      重組綠豆BBI(6-33)結構域的抗腫瘤作用分析
      組蛋白甲基化酶Set2片段調控SET結構域催化活性的探討
      TiO_2包覆Al_2O_3載體的制備及表征
      泛素結合結構域與泛素化信號的識別
      完形填空Ⅳ
      石台县| 宁津县| 东海县| 安庆市| 安岳县| 新乡县| 达拉特旗| 上虞市| 通州市| 崇礼县| 纳雍县| 台湾省| 易门县| 麻栗坡县| 玉溪市| 天峨县| 张家口市| 仙居县| 略阳县| 祁阳县| 白朗县| 舟山市| 宝丰县| 神池县| 衢州市| 搜索| 建水县| 北海市| 新巴尔虎左旗| 星座| 思茅市| 青川县| 于都县| 雷州市| 理塘县| 乃东县| 海盐县| 化州市| 亚东县| 平舆县| 定边县|