夏梓元, 蔣華波, 王 洋, 黃美金, 陸 斌*
1. 第二軍醫(yī)大學(xué)藥學(xué)院生化藥學(xué)教研室,上海 200433 2. 第二軍醫(yī)大學(xué)長(zhǎng)海醫(yī)院病理科,上海 200433 3. 解放軍成都軍區(qū)昆明總醫(yī)院腫瘤科,昆明 650010
·論 著·
CDHR2基因條件性敲除小鼠模型的構(gòu)建及鑒定
夏梓元1, 蔣華波1, 王 洋2, 黃美金3, 陸 斌1*
1. 第二軍醫(yī)大學(xué)藥學(xué)院生化藥學(xué)教研室,上海 200433 2. 第二軍醫(yī)大學(xué)長(zhǎng)海醫(yī)院病理科,上海 200433 3. 解放軍成都軍區(qū)昆明總醫(yī)院腫瘤科,昆明 650010
目的: 構(gòu)建CDHR2基因條件性敲除小鼠模型,為研究CDHR2基因的生物學(xué)功能提供條件。方法: 構(gòu)建CDHR2基因條件打靶載體,電轉(zhuǎn)入小鼠胚胎干細(xì)胞(ES細(xì)胞),用G418和GANC篩選陽性細(xì)胞克隆。胚胎注射陽性ES細(xì)胞入小鼠囊胚,獲得嵌合體小鼠。嵌合體小鼠與Cre小鼠交配獲得條件性敲除小鼠。分別通過PCR方法和免疫組織化學(xué)方法對(duì)CDHR2的敲除結(jié)果進(jìn)行驗(yàn)證。結(jié)果: 成功構(gòu)建打靶載體,并獲得6個(gè)正確同源重組的ES細(xì)胞陽性克隆。陽性ES細(xì)胞克隆注射入C57BL/6J小鼠的囊胚中,獲得5只嵌合鼠。嵌合鼠再與Flp小鼠交配,獲得6只陽性F1代去Neo小鼠。去Neo小鼠與Cre小鼠雜交,獲得CDHR2基因腸道特異性敲除小鼠。免疫組織化學(xué)檢測(cè)表明,陽性小鼠腸道組織中的CDHR2基因被特異性敲除,而腎臟組織CDHR2基因的表達(dá)沒有受到影響。結(jié)論: 成功構(gòu)建CDHR2基因腸道特異性敲除小鼠,為進(jìn)一步研究CDHR2基因的作用奠定了基礎(chǔ)。
CDHR2;基因敲除;Cre/loxP系統(tǒng)
原鈣黏蛋白(protocadherin,PCDH)家族是屬于鈣黏蛋白超家族中的一員,可以根據(jù)其基因結(jié)構(gòu)分為集簇型PCDH和非集簇型PCDH兩類[1]。近年來,多種非集簇型PCDH在腫瘤中表達(dá)下調(diào),并具有抑制腫瘤生長(zhǎng)的作用。如乳腺癌[2]和淋巴瘤[3]中的PCDH8,膠母細(xì)胞瘤中的PCDH9[4],胃癌[5]、結(jié)直腸癌[6]、胰腺癌[6]、鼻咽癌[7]、食管癌[7]、乳腺癌[8]、宮頸癌[9-10]、肺癌[11]、肝細(xì)胞癌[12]、睪丸癌[13]及血液系統(tǒng)腫瘤[14]中的PCDH10,食管鱗狀細(xì)胞癌中的PCDH17[15],小細(xì)胞肺癌中的PCDH20[16]等均被發(fā)現(xiàn)表達(dá)下調(diào)或缺失,表明該家族分子在腫瘤發(fā)生發(fā)展中具有重要的作用。
CDHR2又稱PCDH24,屬于PCDH家族中非集簇型PCDH的一類膜蛋白。其最初被發(fā)現(xiàn)在肝、腎和結(jié)直腸中表達(dá),曾被命名為protocadherin LKC[17]。CDHR2的基因位于染色體5q35,由1 310個(gè)氨基酸組成,在蛋白結(jié)構(gòu)上包括7個(gè)鈣黏蛋白重復(fù)結(jié)構(gòu)域、1個(gè)跨膜區(qū)和PDZ結(jié)合域。研究[18]發(fā)現(xiàn),CDHR2在結(jié)直腸癌中呈低表達(dá),而HCT116細(xì)胞過表達(dá)CDHR2則可促使細(xì)胞發(fā)生接觸抑制現(xiàn)象;體內(nèi)實(shí)驗(yàn)還發(fā)現(xiàn),CDHR2可抑制HCT116細(xì)胞在裸鼠體內(nèi)的成瘤。這些結(jié)果表明,CDHR2在結(jié)直腸癌中具有抑制腫瘤細(xì)胞生長(zhǎng)的作用。為進(jìn)一步闡明CDHR2的生物學(xué)功能,本研究通過制備CDHR2flox/+小鼠,再與Cre小鼠進(jìn)行交配,最后成功獲得了CDHR2基因腸道特異性敲除小鼠。
1.1 主要材料及試劑
1.1.1 實(shí)驗(yàn)動(dòng)物 C57BL/6和B6.Cg-Tg(Vil1-cre)1 000 Gum/J品系小鼠購(gòu)自上海南方模式生物科技發(fā)展有限公司,由第二軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心(SPF級(jí))飼養(yǎng)。
1.1.2 主要試劑 血液/組織/細(xì)胞基因組提取試劑盒購(gòu)自北京天根生化有限公司;GeneRuler 1 kb DNA Ladder購(gòu)自ThremoFisher公司;DL2000 Marker 購(gòu)自北京天根生化有限公司;GoTaq○RG2 Green Master Mixes購(gòu)自Promega公司;PrimeSTAR GXL DNA Polymerase購(gòu)自大連寶生物工程公司;抗CDHR2兔多抗由本教研室制備;GTVisionTMⅢ抗鼠、兔通用型免疫組化檢測(cè)試劑盒購(gòu)自基因科技(上海)股份有限公司。
1.2 CDHR2基因腸道特異性敲除小鼠的構(gòu)建策略 根據(jù)小鼠CDHR2基因組序列(NC_000079.6)設(shè)計(jì)特異性敲除CDHR2第4和第5外顯子的CDHR2條件性基因敲除打靶載體(圖1)。在CDHR2基因的第4號(hào)外顯子上游的內(nèi)含子中插入loxP位點(diǎn),在第5號(hào)外顯子下游內(nèi)含子序列中插入FRT-pGK-Neo-FRT-loxP元件。通過同源重組,將打靶載體序列插入小鼠ES細(xì)胞基因組中,在Flp重組下去除2個(gè)FRT位點(diǎn)之間的Neo抗性基因,最后將該小鼠模型與腸道特異性表達(dá)Cre酶的小鼠進(jìn)行雜交,獲得腸道特異性敲除CDHR2基因的小鼠。
圖1 CDHR2基因敲除條件打靶載體構(gòu)建示意圖
1.3 CDHR2基因腸道特異性敲除小鼠的構(gòu)建方法 將構(gòu)建成功的打靶載體,經(jīng)線性化后,電穿孔轉(zhuǎn)染C57BL/6J*129S3 ES細(xì)胞,以G418和GANC藥物進(jìn)行篩選;經(jīng)長(zhǎng)片段PCR鑒定,獲得正確同源重組的陽性克隆。陽性ES細(xì)胞克隆經(jīng)擴(kuò)增后,注射入C57BL/6J小鼠的囊胚中,獲得嵌合鼠。嵌合小鼠通過與Flp小鼠交配,獲得去除Neo基因的flox雜合子小鼠(CDHR2flox/+∶Flp+),后者再與野生型小鼠交配,獲得分離掉Flp基因型的flox小鼠(CDHR2flox/+)。將獲得的去Neo及Flp的flox陽性雜合子小鼠(CDHR2flox/+)與Cre小鼠B6.Cg-Tg(Vil1-cre)1 000 Gum/J交配,最終獲得flox陽性且Cre陽性的小鼠(CDHR2flox/+∶Cre+)。
1.4 小鼠基因型的PCR方法鑒定 通過PCR對(duì)同源重組陽性克隆進(jìn)行篩選。對(duì)于5′臂同源重組的鑒定使用PrimeSTAR GXL DNA Polymerase,反應(yīng)條件:98℃ 2 min;98℃ 10 s,68℃ 3 min,35個(gè)循環(huán);68℃ 10 min。以Flox引物對(duì)(表1),陽性克隆出4.2 kb片段,陰性克隆出8.9 kb片段。
對(duì)于Cre酶的PCR鑒定,采用GoTaqG2 Green Master Mix,反應(yīng)條件:94℃ 5 min;94℃ 30 s,55℃ 30 s,72℃ 30 s,35個(gè)循環(huán);72℃ 5 min。以Cre引物對(duì)(表1),陽性克隆出309 bp片段。
表1 基因型鑒定引物序列
1.5 CDHR2基因腸道特異性敲除小鼠表型分析 通過提取CDHR2基因條件性敲除小鼠和野生型小鼠的結(jié)腸和腎臟組織,經(jīng)甲醛溶液固定后,經(jīng)石蠟包埋、切片、H-E染色后進(jìn)行形態(tài)學(xué)觀察,免疫組織化學(xué)檢測(cè)CDHR2的表達(dá)情況。
2.1 CDHR2基因條件性敲除嵌合體小鼠的建立 通過構(gòu)建CDHR2基因條件性敲除載體,并電轉(zhuǎn)胚胎干細(xì)胞進(jìn)行打靶,共獲得抗性ES細(xì)胞克隆125個(gè)。抽提抗性ES細(xì)胞克隆的基因組DNA后,通過長(zhǎng)片段PCR的方式對(duì)同源重組陽性克隆進(jìn)行篩選,共獲得6個(gè)正確同源重組的陽性ES細(xì)胞克隆(圖1)。取陽性ES細(xì)胞克隆,經(jīng)擴(kuò)增后,注射入C57BL/6J小鼠囊胚33個(gè),通過胚胎移植,共獲得5只嵌合體雄鼠。
2.2 F1代去Neo小鼠獲得及基因型鑒定 取嵌合體雄鼠與Flp小鼠交配,繁育獲得F1代去Neo小鼠(CDHR2flox/+∶Flp+)。經(jīng)PCR篩選及測(cè)序確認(rèn),最終獲得6只陽性雜合子小鼠(9、14、27、33、35、42號(hào),圖2)。
圖1 同源重組ES細(xì)胞基因型PCR鑒定結(jié)果
圖2 F1代去Neo小鼠基因型PCR鑒定結(jié)果
2.3 腸道組織特異性表達(dá)Cre酶小鼠的獲得 取F1代去Neo小鼠(CDHR2flox/+∶Flp+)與Vil1-Cre小鼠交配,獲得flox陽性且Cre陽性小鼠(CDHR2flox/+∶Cre+)。CDHR2flox/+∶Cre+小鼠交配后獲得flox純合且Cre陽性的小鼠(CDHR2flox/flox∶Cre+)。結(jié)果表明,32、36、37號(hào)小鼠Cre酶表達(dá)陽性(圖3),提示其腸道組織中CDHR2可能被敲除。
圖3 小鼠Cre酶表達(dá)情況的基因檢測(cè)
2.4 CDHR2基因腸道組織特異性敲除小鼠的組織標(biāo)本鑒定 H-E染色顯示,CDHR2基因腸道組織特異性敲除小鼠和野生小鼠的結(jié)腸和腎臟組織的形態(tài)學(xué)無明顯改變。免疫組織化學(xué)檢測(cè)顯示,野生小鼠的結(jié)腸和腎臟組織均存在CDHR2的表達(dá),尤其以結(jié)腸組織表達(dá)較為顯著;而CDHR2基因腸道組織特異性敲除小鼠結(jié)腸組織中CDHR2的表達(dá)呈陰性,腎臟組織中仍有CDHR2的表達(dá),表明CDHR2基因在腸道組織中被特異性敲除,模型構(gòu)建成功(圖4)。
圖4 CDHR2基因腸道組織特異性敲除和野生型小鼠結(jié)腸和腎臟組織形態(tài)及CDHR2的表達(dá)
基因敲除小鼠是動(dòng)物水平上研究基因功能的利器。常規(guī)基因敲除小鼠是通過基因打靶技術(shù),將需要敲除基因的幾個(gè)重要的外顯子或功能區(qū)域去除,使敲除小鼠全身所有的組織和細(xì)胞中均不表達(dá)該基因產(chǎn)物。但如果敲除該基因是胚胎致死性的,則難以獲得成年小鼠以進(jìn)行功能研究。而通過條件性基因敲除小鼠,首先把兩個(gè)loxP位點(diǎn)放到目的基因的一個(gè)或幾個(gè)重要外顯子的兩側(cè)構(gòu)建成嵌合小鼠,再與特定組織中表達(dá)Cre酶的小鼠進(jìn)行雜交,可實(shí)現(xiàn)在特定組織或細(xì)胞中敲除基因,同時(shí)該基因在其他組織或細(xì)胞中的表達(dá)不受影響的目的。這樣可避免胚胎致死性基因?qū)π∈笊L(zhǎng)發(fā)育的影響,從而能更好地研究相關(guān)基因在特定組織或細(xì)胞中的生理病理功能。
CDHR2作為PCDH超家族的一員,在腫瘤的發(fā)生、發(fā)展中具有重要的作用。最初發(fā)現(xiàn)CDHR2在人的肝、腎和結(jié)直腸中表達(dá),因而被命名為protocadherin LKC[17]。CDHR2的C末端可與hMAST205蛋白的PDZ區(qū)域相結(jié)合,發(fā)揮其接觸抑制的作用[17]。另有研究[19]表明,Galectin-1和Galectin-3能夠與CDHR2的胞內(nèi)段結(jié)合,使β-catenin滯留于胞質(zhì),從而抑制β-catenin信號(hào)通路。我們預(yù)實(shí)驗(yàn)也發(fā)現(xiàn),在多種肝癌細(xì)胞系和肝癌組織中,CDHR2表達(dá)下調(diào)或缺失,且過表達(dá)CDHR2可顯著抑制肝癌細(xì)胞的增殖和體內(nèi)成瘤作用。
本研究通過設(shè)計(jì)小鼠CDHR2基因的打靶序列和構(gòu)建打靶載體,電轉(zhuǎn)入ES細(xì)胞,獲得正確同源重組的陽性克隆。將陽性ES細(xì)胞注射入C57BL/6J小鼠的囊胚中,獲得嵌合鼠。嵌合小鼠通過與Flp小鼠交配,獲得去除Neo基因的flox雜合子小鼠。然后,該雜合子小鼠再與野生型小鼠交配,獲得分離掉Flp基因型的flox小鼠。將獲得的去Neo及Flp的flox陽性雜合子小鼠與Cre小鼠交配,最終獲得flox陽性且Cre陽性的小鼠。H-E染色和免疫組織化學(xué)檢測(cè)顯示,CDHR2基因在敲除小鼠的腸道組織中表達(dá)缺失,而在腎臟組織中的表達(dá)不受影響,表明腸道特異性CDHR2基因敲除小鼠構(gòu)建成功。該研究結(jié)果為進(jìn)一步探究CDHR2在腸道腫瘤中的作用提供了重要條件。
[ 1 ] MORISHITA H, YAGI T. Protocadherin family: diversity, structure, and function[J]. Curr Opin Cell Biol,2007,19(5):584-592.
[ 2 ] YU J S, KOUJAK S, NAGASE S, et al. PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer[J]. Oncogene, 2008, 27(34):4657-4665.
[ 3 ] LESHCHENKO V V, KUO P Y, SHAKNOVICH R, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma[J]. Blood, 2010,116(7):1025-1034.
[ 4 ] DE TAYRAC M, ETCHEVERRY A, AUBRY M, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression[J]. Genes Chromosomes Cancer, 2009, 48(1):55-68.
[ 5 ] YU J, CHENG Y Y, TAO Q, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer[J]. Gastroenterology, 2009,136(2):640-651, e641.
[ 6 ] YU B, YANG H, ZHANG C, et al. High-resolution melting analysis of PCDH10 methylation levels in gastric, colorectal and pancreatic cancers[J]. Neoplasma, 2010, 57(3):247-252.
[ 7 ] YING J, LI H, SENG T J, et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation[J]. Oncogene, 2006, 25(7):1070-1080.
[ 8 ] MIYAMOTO K, FUKUTOMI T, AKASHI-TANAKA S, et al. Identification of 20 genes aberrantly methylated in human breast cancers[J]. Int J Cancer, 2005, 116(3):407-414.
[ 9 ] WANG K H, LIU H W, LIN S R, et al. Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings[J]. Cancer Sci, 2009, 100(11):2175-2180.
[10] NARAYAN G, SCOTTO L, NEELAKANTAN V, et al. Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer[J]. Genes Chromosomes Cancer, 2009, 48(11):983-992.
[11] HARADA H, MIYAMOTO K, YAMASHITA Y, et al. Prognostic signature of protocadherin 10 methylation in curatively resected pathological stage I non-small-cell lung cancer[J]. Cancer Med, 2015, 4(10):1536-1546.
[12] FANG S, HUANG S F, CAO J, et al. Silencing of PCDH10 in hepatocellular carcinoma via de novo DNA methylation independent of HBV infection or HBX expression[J]. Clin Exp Med, 2013, 13(2):127-134.
[13] CHEUNG H H, LEE T L, DAVIS A J, et al. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer[J]. Br J Cancer, 2010, 102(2):419-427.
[14] YING J, GAO Z, LI H, et al. Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies[J]. Br J Haematol, 2007, 136(6):829-832.
[15] HARUKI S, IMOTO I, KOZAKI K, et al. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma[J]. Carcinogenesis, 2010, 31(6):1027-1036.
[16] IMOTO I, IZUMI H, YOKOI S, et al. Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers[J]. Cancer Res, 2006, 66(9):4617-4626.
[17] OKAZAKI N, TAKAHASHI N, KOJIMA S, et al. Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation[J]. Carcinogenesis, 2002, 23(7):1139-1148.
[18] OSE R, YANAGAWA T, IKEDA S, et al. PCDH24-induced contact inhibition involves downregulation of beta-catenin signaling[J]. Mol Oncol, 2009, 3(1):54-66.
[19] OSE R, OHARAA O, NAGASE T. Galectin-1 and galectin-3 mediate protocadherin-24-dependent membrane localization of β-catenin in colon cancer cell line HCT116[J]. Curr Chem Genomics, 2012, 6:18-26.
[本文編輯] 姬靜芳
Construction and identification of a CDHR2 gene conditional knockout mouse model
XIA Zi-yuan1, JIANG Hua-bo1, WANG Yang2, HUANG Mei-jin3, LU Bin1*
1.Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China 2.Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China 3.Department of Oncology, Kunming General Hospital, PLA Chengdu Military Area Command, Kunming 650010, Yunnan, China
Objective: To construct a CDHR2 conditional knockout mouse model, and to provide conditions for the study on biological function of CDHR2 gene. Methods: The conditional CDHR2 targeting vector was constructed and transfected into mouse embryonic stem (ES) cells by electroporation. The positive ES cells screened by G418 and GANC were microinjected into the blastocysts of C57BL/6J mice. The chimeric mice were obtained and then mated with Cre mice to obtain conditional CDHR2 knockout mice. The phenotype was analyzed by PCR and immunohistochemistry, respectively. Results: The conditional CDHR2 targeting vector was successfully constructed, with six positive clones of ES cells being obtained. The positive clones of ES cells were microinjected into blastocysts of C57BL/6J mice with 5 chimeric mice being obtained. The chimeric mice were mated with Flp mice, and 6 positive F1generation mice without Neo gene were obtained. Finally, such mice were hybridized with Cre mice to obtain intestine-specific CDHR2 knockout mice. Immunohistochemistry assay showed that the CDHR2 gene in intestinal tracts of the positive mice was specifically knocked out. In contrast, the expression of CDHR2 in kidney tissue was not affected. Conclusions: The successful construction of intestine-specific CDHR2 knockout mice provides a basis for further functional study on CDHR2 gene.
CDHR2; gene knockout; Cre/loxP system
2017-03-24 [接受日期] 2017-04-15
國(guó)家自然科學(xué)基金(81472283). Supported by National Natural Science Foundation of China(81472283).
夏梓元,碩士,住院醫(yī)師. E-mail: 1431449713@qq.com
*通信作者(Corresponding author). Tel: 021-81871327,E-mail: binlu@smmu.edu.cn
10.12025/j.issn.1008-6358.2017.20170245
R -33
A