• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existenceofweightedpseudoanti-periodicsolutionstosomeneutraldifferentialequationswithpiecewiseconstantargument*

    2017-06-19 15:59:24,
    關(guān)鍵詞:數(shù)學(xué)系國家自然科學(xué)基金惠州

    ,

    (1. Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, China; 2. Department of Mathematics, Huizhou University, Huizhou 516007, China)

    Existenceofweightedpseudoanti-periodicsolutionstosomeneutraldifferentialequationswithpiecewiseconstantargument*

    LINQuanwen1,ZHUANGRongkun2

    (1. Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, China; 2. Department of Mathematics, Huizhou University, Huizhou 516007, China)

    By means of weighted pseudo anti-periodic solutions of relevant difference equations, the existence for weighted pseudo anti-periodic solutions of differential equations with piecewise constant argument is studied. The conditions of existence and uniqueness for the weighted pseudo anti-periodic solutions are presented.

    pseudo anti-periodic solutions; pseudo anti-periodic sequences; neutral delay equation; piecewise constant argument

    In this paper we consider the following first order neutral delay differential equations with piecewise constant argument of the forms

    (1)

    (2)

    wherep(≠0),a0,a1areconstants, [·]denotesthegreatestintegerfunction.Tostudytheexistenceofweightedpseudoω-anti-periodic solutions to Eqs. (1) and (2), we will assume that the following assumptions hold:

    (H1)f: R→R is weighted pseudoω-anti-periodic function.

    (H2)g: R×R2→ R is jointly continuous and satisfiesg(t+ω,x,y) =-g(t,x,y) for allt∈ R and (x,y)∈R2. Moreover, the functiongis uniformly Lipschitz with respect tox,yin the following sense: there existsη> 0 such that

    (3)

    for all (xi,yi)∈ R2,i=1, 2andt∈R.

    A functionx: R → R is called a solution of Eq. (1) if the following conditions are satisfied:

    (i)xis continuous on R;

    (ii) the derivative ofx(t) +px(t-1)existsonR except possibly at the pointst=n,n∈Z, where one-sided derivatives exist;

    (iii)xsatisfies Eq. (1) on each interval (n,n+ 1) , with integern∈Z.

    The existence of anti-periodic solutions to differential equations is an attractive topic in the qualitative theory of differential equations due to its applications in control theory or engineering and others, see [1-4] and references therein. Motivated by the study of existence of pseudo almost periodic solutions, and weighted pseudo almost solution to differential equations[5-7], Al-Islam[8]et al. introduced the weighted pseudo anti-periodic functions, which is a natural generalization of the classical pseudo almost periodic functions, and has been used in the investigation of a certain non-autonomous second-order abstract differential equation.

    Differential equations with piecewise constant arguments are usually referred to as a hybrid system (a combination of continuous and discrete). These equations have the structure of continuous dynamical systems within intervals and the solutions are continuous, and so combine properties of both differential and difference equations. The equations are thus similar in structure to those found in certain sequential-continuous models of disease dynamics as treated by by Busenberg and Cooke[9]. Therefore, there are many papers concerning the differential equations with piecewise constant argument (see [10-19] and the references therein).

    We note that there is no results on the weighted pseudo anti-periodic solution for Eq. (1) (or (2) ) still now. The main purpose of this work is to establish an existence and uniqueness result of weighted pseudo anti-periodic solutions of Eqs. (1) and (2).

    1 Preliminary definitions and lemmas

    For the sake of convenience, we now state some of the preliminary definitions and lemmas. we always denote byBC(R, R) the space of bounded continuous functionsu: R → R,C(R, R) the space of continuous functionsu: R → R, and denote by |·| the Euclidean norm.

    Definition 1 A functionf∈C(R,R) is said to beω-anti-periodic function for someω> 0, iff(t+ω)=-f(t) for allt∈R. The least positiveωwith this property is called the anti-period off.DenotebyAPω(R) the set of all such functions.

    Proposition 1 Iff(t) is anω-anti-periodic function, thenf(t) is also (2ω+1) -anti-periodic and 2ω-periodic.

    LetUbe the collection of functions (weights)ρ: R → (0, +∞), which are locally integrable over R. Ifρ∈U, we set

    and

    Obviously,UB?U∞?U,withstrictinclusions.

    Letρ1,ρ2∈U∞,ρ1issaidtobeequivalenttoρ2,denotingthisasρ1ρ2, ifρ1/ρ2∈UB.ThenisabinaryequivalencerelationonU∞(see [7]). Letρ∈U∞,c∈R, defineρcbyρc(t)=ρ(t+c)fort∈R. We denote

    UT{ρ∈U∞:ρρcfor eachc∈R}

    It is easy to see thatUTcontainsplentyofweights,say, 1, et, 1 + 1/(1 +t2), 1 + |t|nwithn∈N, etc.

    Forρ∈U∞,theweightedergodicspacePAP0(R,ρ)isdefinedby

    Lemma 1[14]PAP0(R,ρ)withρ∈UTistranslationinvariant,i.e.φ∈PAP0(R,ρ)ands∈Rimplythatφ(·-s)∈PAP0(R,ρ).

    Definition 2[7]Letρ∈U∞. A functionf∈BC(R, R) is called weightedω-anti-periodic function (orρ-pseudoω-anti-periodic function) for someω> 0, iffcanbewrittenasf=fap+fe, wherefap∈APω(R), andfe∈PAP0(R,ρ).fapandfeare called theω-anti-periodic component and the weighted ergodic perturbation, respectively, of the functionf. Denote byPAPω(R,ρ)thesetofallsuchfunctions.

    Definition 3 Letρ∈U∞.Afunctiong∈BC(R×R)is called weighted pseudoω-anti-periodic function (orρ-pseudoω-anti-periodic function) intuniformly on R2,ifgcan be written asg=gap+ge, wheregapisω-anti-periodic in t uniformly for R2, and for any compact setW?R2,geiscontinuous,boundedandsatisfies

    uniformlyin(x,y)∈W,gapandgearecalledtheω-anti-periodic component and the weighted ergodic perturbation, respectively, of the functiong.DenotebyPAP(R×R,R,ρ)thesetofallsuchfunctions.

    Definition 4 A sequencex: Z → R, denoted by {x(n)}, is called aω-anti-periodic sequence ifx(n+ω)=-x(n) for alln∈Z.We denote the set of all such sequences byAPωS(R).

    LetUsdenote the collection of sequences (weights)Q:Z→(0,+∞).ForQ∈UsandT∈Z+={n∈ Z:n≥ 0}, set

    Denote

    and

    UsB

    LetQ1,Q2∈Us∞,Q1issaidtobeequivalenttoQ2,denotingthisasQ1Q2,if{Q1(n)/Q2(n)}n∈z∈UsB.ThenitiseasytoseethatisabinaryequivalencerelationonUs∞.LetQ∈Us∞,k∈Z,defineQkbyQk(n)=Q(n+k)forn∈Z.Wedenote

    ForQ∈Us∞,theweightedergodicsequencesspacePAP0S(R,Q)isdefinedby

    PAP0S(R,Q)

    Definition 5 LetQ∈Us∞.Asequencex:Z→R, is called a weighted pseudoω-anti-periodicsequence(orQ-pseudoω-anti-periodicsequence)ifxcanbewrittenasx(n)=xap(n)+xe(n),n∈Zwherexap∈APωS(R), andxe∈PAP0S(R,Q).xapandxearecalledtheω-anti-periodiccomponentandtheweightedergodicperturbation,respectively,ofthesequencex.DenotethesetofallsuchsequencesbyPAPωS(R,Q).

    Proposition 2 Iff∈APω(R),ω∈Z+,then{f(n)}n∈Z∈APωS(R).

    Proof Sincef(t) is anω-anti-periodic function, then for allt∈ R, we havef(t+ω) +f(t) = 0 and

    From definition, it follows that {hn}n∈Zisanω-anti-periodic sequence. This completes the proof of Lemma 2.

    Lemma 3 Letρ∈UT, and denote

    forn∈Z

    (4)

    ThenQ∈UsT. Moreover, givenc∈R, there exist positive constantsC1,C2such that, for sufficiently largeT,

    (5)

    Proof Without loss of generality, we assume thatc≥ 0. Sinceρ∈UT,thereexistsM> 0 such thatρc+1(t) ≤Mρ(t) andρ-(c+1)(t) ≤Mρ(t) fort∈ R and

    (6)

    Notice that

    ForT>c+2,i.e.,-T+2c+3

    (7)

    Similarly,wecanprovethatthereexistsM′> 0 such that, forTlarge enough,

    (8)

    Thus by (6)-(8), we have

    forTlarge enough. This leads to (5), and from which we can get easily thatQ∈UsT. The proof is complete.

    Proposition 3PAP0S(R,Q)withQ∈UsTis translation invariant.

    This implies that {x(n-k)}n∈Z∈PAP0S(R,Q).Theproofiscomplete.

    Itisclearthat|hn|≤‖f‖forn∈Zand

    isω-anti-periodic.Let

    ForT∈ Z+, we get

    ForT∈Z+,s∈ [1, 1], let

    Lemma 5[11]Letx:R→R is a continuous function, andw(t)=x(t)+px(t-1).then

    t≥t0

    Where|p|<1,a=log (1/|p|),b=1/(1-|p|),or

    t≤t0

    Where|p|>1,b=1/(|p|-1).

    2 Main results

    Now,wecanformulateourmaintheorems.

    Theorem 1 Suppose that

    (9)

    Then for anyf∈PAPωS(R,ρ), the following results hold:

    (i) Ifω=n0∈Z+, Eq. (5) has a uniqueρ-pseudoω-anti-periodic bounded solution.

    Theorem 2 Suppose that conditions (H2) and (9) hold. Then there existsη*>0,suchthatifη<η*,thatfollowingresultshold:

    (i)Ifω=n0∈ Z+,Eq. (5)hasauniqueρ-pseudoω-anti-periodic bounded solution.

    3 Proofs of theorems

    Proof of Theorem 1 (i) Letx(t)beasolutionofEq.(1)onR, integrating (1) fromntot, we have that forn≤t

    (10)

    In view of the continuity of a solution at a point, we obtain that fort→(n+1)-0,

    (11)

    ThecorrespondinghomogeneousequationofEq. (11)is

    (12)

    Following[10],weseektheparticularsolutionsasx(n)=λnforhomogeneousdifferenceequation(12),thenwehavethefollowingcharacteristicequationof(12):

    (13)

    Eq. (13)hastwonontrivialsolutions

    Inviewof(9),wehavethat|λ1,2|≠1andλ1≠λ2,then

    (14)

    isthegeneralsolutionsofEq.(12),wherek1,k2are any constants.

    We define a sequence {cn} by

    (15)

    wherek1,k2will be determined later. We put Eq.(15) into Eq.(11) and compare the coefficients ofhn’s.

    For |λ1|<1, |λ2|<1,weobtainalinearsystemink1andk2

    (16)

    Solving system (16), we have

    (17)

    is a solution of the difference equation (11).

    For other cases we can similarly write out the expression for the solution of Eq.(11).

    (ii) Sincef∈PAPωS(R,ρ),itfollowsfromLemma4that{hn}n∈Z∈PAPωS(R,Q),sothat{hn} can be written as a sum

    It is easy to see that

    Indeed, it is easy to see that forT∈ Z+,

    Form∈Z+,let

    FromProposition1,weget

    (18)

    Givenε> 0, it is clear that there exists an integerK>0suchthat

    (19)

    Thenby(18),thereexistsT0> 0 such that forT>T0,

    for0≤m≤K

    (20)

    Now by (18)-(20), forT>T0we have

    withx(s)=φ(s),-1≤s≤0.

    (21)

    Letw(t)=x(t)+px(t-1),weclaimthatw(t)∈PAP0(R,Q).Letf=fap+fe,wherefap∈APω(R),fe∈PAP0(R,ρ),let

    Wehave

    Itfollowsfromdefinitionthatwap(t)isω-anti-periodic. Denote

    Then {ηn}∈PAP0(R,Q).ByanargumentthesameastheproofLemma4wegetthat

    Meanwhile,itfollowsfromLemma3thatthereexistssomeM> 0 such thatμs([T] + 1,Q) ≤Mμ(T,ρ) forTlarge enough. Then forTlarge enough we have

    asT→∞

    Thisimpliesthatwe∈PAP0(R,ρ),andhencew∈PAPω(R,ρ).

    Nextweexpressxin terms ofwand then prove thatx∈PAPω(R,ρ).From

    Onehasforalln∈Z+

    (22)

    hence,

    It follows

    Conversely, if we put

    xis well defined andwis bounded and |p|<1,xisboundedwith|x(t)| ≤ ‖w(t)‖∞/(1-|p|),moreoveronehas

    For|p|<1,rewriting(22)as

    wededuceinasimilarmannerthat

    If|p|<1,givenε> 0, there exists an integerK> 0 such that

    (23)

    Let

    By a standard argument we can get thatxap∈APω(R). SincePAP0(R,ρ)withρ∈UTis translation invariant, namelyφ∈PAP0(R,ρ)ands∈Rimplythatφ(·-s)∈PAP0(R,ρ) (see[14,Lemma4.1]),wegetthatwe(· -n)∈PAP0(R,ρ)forn∈Z+. So there existsT0> 0 such that forT>T0,

    for0≤n≤K

    (24)

    Now by (23) and (24), forT>T0,

    This implies thatxe∈PAP0(R,ρ), andx∈PAPω(R,ρ). If |p|>1,let

    Similarlytotheabove,wecanprovethatx∈PAPω(R,ρ).

    ?t∈R

    Clearly,wehave

    Fromtheboundednessoftheρ-pseudoω-anti-periodic function, it follows that

    This means that theρ-pseudoω-anti-periodic solution of Eq. (1) is unique.

    Proof of Theorem 2 (i) It is easy to seen that the spacePAPω(R,ρ)isaBanachspacewithsupremumnorm‖φ‖=supt∈R|φ(t)|.Foranyφ∈PAPω(R,ρ),usingboth(H2)andthecompositionoffunctionsinPAP0(R,ρ) (seeDiagana[19]),itfollowsthatg(t,φ(t),φ([t]))∈PAPω(R,ρ).

    Weconsiderthefollowingequation:

    (25)

    FromTheorem1,itfollowsthatforanyφ∈PAPω(R,ρ), Eq. (25) has a unique weighted pseudo-anti-ω-periodic solution, denote byJφ. Thus, we obtain a mappingJ:φ→xφ,itfollowsthatJis a mapping fromPAPω(R,ρ)intoitself.Foranyφ,ψ∈PAPω(R,ρ),Jφ-Jψsatisfiesthefollowingequation:

    where

    ThisimpliesthatthereexistsK0> 0, such that

    ?n∈Z

    Let

    ThusthereexistsK1> 0 such that

    We easily conclude that

    We typically consider the case when |p|<1.UsingLemma5,wehave

    wherea=log(1/|p|),b=1/(1-|p|). Settingt0→∞,weobtain

    Hence,thereexistsη*>0, such that if 0≤η<η*,J:PAPω(R,ρ)→PAPω(R,ρ)iscontractingmapping.Thisimpliesthatthereexistsφ∈PAPω(R,ρ)suchthatJφ=φthatis,Eq. (1)hasauniqueρ-pseudoω-anti-periodic solution.

    (ii) Ifω=(n0/m0)(n0,m0∈Z+)andgisρ-pseudoω-anti-periodic int, theng(t,φ(t),φ([t]))isaρ-pseudom0ω-anti-periodicfunction,foranyφ∈PAPm0 ω(R,ρ).Atthistime,itfollowsthatEq. (25)hasauniqueρ-pseudom0ω-anti-periodicsolutionJφbyusingTheorem1.Similarly,weknowthatthereexistsη*>0suchthatif0≤η<η*,Eq.(1)hasauniqueρ-pseudom0ω-anti-periodic solution. This completes the proof of Theorem 2.

    [1] OKOCHI H. On the existence of periodic solutions to nonlinear abstract parabolic equations [J]. J Math Soc Japan, 1988, 40 (3): 541-553.

    [2] AIZICOVICI S, MCKIBBEN M, REICH S. Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J]. Nonlinear Anal, 2001, 43:233-251.

    [3] CHEN Y, NIETO J J, O’REGAN D. Anti-periodic solutions for fully nonlinear first-order differential equations [J]. Math Comput Model, 2007, 46:1183-1190.

    [4] CHEN T, LIU W, ZHANG J, et al. The existence of anti-periodic solutions for Linard equations [J]. J Math Study, 2007, 40:187-195 (in Chinese).

    [5] ZHANG C Y. Pseudo almost periodic solutions of some differential equations [J]. J Math Anal Appl, 1994, 181: 62-76.

    [6] ZhANG C Y. Pseudo-almost periodic solutions of some differential equations II [J]. J Math Anal Appl, 1995, 192 (2) : 543-561.

    [7] DIAGANA T. Weighted pseudo-almost periodic functions and applications [J]. C R Acad Sci Paris, Ser I, 2006,343 (10): 643-646.

    [8] Al-ISLAM N S, ALSULAMI S M, DIAGANA T. Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations [J]. Applied Mathematics and Computation, 2012, 218: 6536-6548.

    [9] BUSENBERG S, COOK K L. Models of vertically transmitted diseases with sequential-continuous dynamics [M]∥LAKSHMIKANTHAM V, ed. Nonlinear Phenomena in Mathematical Sciences. New York: Academic Press, 1982.

    [10] COOK K L, WIENER J. A survey differential equation with piecewise continuous argument [M]∥BUSENBERG S, MARTELLI, eds. Lecture Notes in mathematics, Vol. 1475. Berlin: Springer, 1991:1-15.

    [11] YUAN R. On the existence of almost periodic solutions of second order delay differential equations with piecewise constant argument [J]. Sci China, 1998, 41(3): 232-241.

    [12] YUAN R. Pseudo-almost periodic solutions of second order neutral delay differential equations with piecewise constant argument [J]. Nonlinear Anal, 2000, 41: 871-890.

    [13] ZHAN R L L, LI H X. Weighted pseudo-almost periodic solutions for some abstract differential equations with uniform continuity [J]. Bull Aust Math Soc, 2010, 82: 424-436.

    [14] ZHANG L L, LI H X. Weighted pseudo-almost periodic solutions of second order neutral differential equations with piecewise constant argument [J]. Nonlinear Anal, 2011,74: 6770-6780.

    [15] ZHUANG R K, YUAN R. The existence of pseudo-almost periodic solutions of third-order neutral differential equations with piecewise constant argument [J]. Acta Math Sin (Engl Ser), 2013,29(5): 943-958.

    [16] ZHUANG R K, YUAN R. Weighted pseudo almost periodic solutions of N-th order neutral differential equations with piecewise constant arguments [J]. Acta Math Sin (Engl Ser), 2014,30(7): 1259-1272.

    [17] ZHANG L, XU Y. Existence of almost periodic solutions for some nonlinear Duffing equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(4): 6-10.

    [18] ZHANG L. Almost periodic mild solutions to functional differential equations of neutral type in Banach space [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(1): 30-34.

    [19] DIAGANA T. Pseudo almost periodic functions in Banach spaces [M]. New York: Nova Science Publishers Inc, 2007.

    2017-02-22 基金項目:國家自然科學(xué)基金(11271380,11501238) ;廣東省自然科學(xué)基金(2014A030313641,2016A030313119);廣東省教育廳重大項目基金(2014KZDXM070)

    林全文(1965年生),男;研究方向:微分方程與動力系統(tǒng);E-mail:linquanwen@126.com

    O175

    A

    0529-6579(2017)03-0057-09

    具有分段常變量的中立型微分方程加權(quán)偽反周期解的存在性

    林全文1,莊容坤2

    (1. 廣東石油化工學(xué)院數(shù)學(xué)系,廣東 茂名 525000; 2. 惠州學(xué)院數(shù)學(xué)系,廣東 惠州 516007)

    通過構(gòu)造差分方程的加權(quán)偽反周期解,研究了一類含分段常變量中立型微分方程的加權(quán)偽反周期解的存在性,給出了所論方程的加權(quán)偽反周期解的存在唯一性條件。

    偽反周期解;偽反周期序列;中立型時滯方程;分段常變量

    10.13471/j.cnki.acta.snus.2017.03.009

    猜你喜歡
    數(shù)學(xué)系國家自然科學(xué)基金惠州
    奔跑惠州
    嶺南音樂(2022年4期)2022-09-15 14:03:10
    一個人就是一個數(shù)學(xué)系
    ——丘成桐
    惠州一絕
    常見基金項目的英文名稱(一)
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    論Gross曲線的二次扭
    國家自然科學(xué)基金項目簡介
    “健康惠州”助力幸?;葜?/a>
    亚洲精品美女久久久久99蜜臀| 久久久成人免费电影| 国产精品电影一区二区三区| xxx96com| 亚洲午夜理论影院| 国产精品98久久久久久宅男小说| 夜夜躁狠狠躁天天躁| e午夜精品久久久久久久| 性欧美人与动物交配| 久久国产精品人妻蜜桃| 国产精品99久久久久久久久| 黄片大片在线免费观看| 精品不卡国产一区二区三区| 老司机午夜十八禁免费视频| 精品欧美国产一区二区三| 免费看美女性在线毛片视频| 此物有八面人人有两片| 九九在线视频观看精品| 一个人看的www免费观看视频| 国产亚洲精品一区二区www| 国内精品久久久久精免费| 国产 一区 欧美 日韩| 亚洲熟妇中文字幕五十中出| 亚洲美女视频黄频| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 无人区码免费观看不卡| 亚洲色图 男人天堂 中文字幕| 久久精品影院6| 两个人的视频大全免费| 成人特级黄色片久久久久久久| 久久国产精品影院| 岛国在线观看网站| 国产精品乱码一区二三区的特点| 搡老熟女国产l中国老女人| 欧美乱色亚洲激情| 午夜两性在线视频| 99re在线观看精品视频| 亚洲va日本ⅴa欧美va伊人久久| 美女cb高潮喷水在线观看 | 国产精品久久久久久亚洲av鲁大| 丁香六月欧美| av黄色大香蕉| 亚洲一区高清亚洲精品| 国产真实乱freesex| 午夜免费激情av| 色播亚洲综合网| 日韩av在线大香蕉| av欧美777| 麻豆一二三区av精品| 日韩欧美在线乱码| 波多野结衣巨乳人妻| 最近最新中文字幕大全免费视频| 亚洲av日韩精品久久久久久密| 香蕉av资源在线| 搡老岳熟女国产| 99久久久亚洲精品蜜臀av| 亚洲国产高清在线一区二区三| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久人妻精品电影| 天天躁日日操中文字幕| 18禁裸乳无遮挡免费网站照片| 色播亚洲综合网| 51午夜福利影视在线观看| 淫秽高清视频在线观看| 久久久久久久久久黄片| 午夜a级毛片| 最新中文字幕久久久久 | 亚洲精品美女久久av网站| 久久久久国内视频| 成人一区二区视频在线观看| 国产av在哪里看| 欧美午夜高清在线| 19禁男女啪啪无遮挡网站| 亚洲国产欧美人成| 国产av不卡久久| 免费电影在线观看免费观看| 亚洲成人中文字幕在线播放| 18禁黄网站禁片免费观看直播| 18禁观看日本| 91av网一区二区| 五月玫瑰六月丁香| 久久性视频一级片| 老司机午夜福利在线观看视频| 久久国产精品人妻蜜桃| 国产亚洲精品一区二区www| 亚洲av五月六月丁香网| 小说图片视频综合网站| 在线永久观看黄色视频| 别揉我奶头~嗯~啊~动态视频| 国产1区2区3区精品| 国产精品综合久久久久久久免费| 国产伦人伦偷精品视频| 一本精品99久久精品77| 999久久久国产精品视频| 国产高清激情床上av| 久久香蕉国产精品| 在线观看美女被高潮喷水网站 | 两性夫妻黄色片| 国产亚洲欧美98| 欧美极品一区二区三区四区| av黄色大香蕉| 9191精品国产免费久久| 成人精品一区二区免费| 曰老女人黄片| 亚洲欧美精品综合一区二区三区| 高潮久久久久久久久久久不卡| 波多野结衣巨乳人妻| 91九色精品人成在线观看| 成人国产综合亚洲| 欧美+亚洲+日韩+国产| 亚洲av五月六月丁香网| 国产精品综合久久久久久久免费| 五月伊人婷婷丁香| 国产真人三级小视频在线观看| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| av天堂中文字幕网| 身体一侧抽搐| 每晚都被弄得嗷嗷叫到高潮| 日韩精品青青久久久久久| 午夜免费成人在线视频| 美女午夜性视频免费| 亚洲av成人av| 最近视频中文字幕2019在线8| 久久精品国产清高在天天线| 丰满人妻一区二区三区视频av | 国产精品亚洲一级av第二区| 美女大奶头视频| 国产成人福利小说| 欧美黑人巨大hd| 久99久视频精品免费| 亚洲av成人精品一区久久| 小说图片视频综合网站| 校园春色视频在线观看| 又爽又黄无遮挡网站| 亚洲av中文字字幕乱码综合| 757午夜福利合集在线观看| 97碰自拍视频| 国产伦精品一区二区三区视频9 | 色哟哟哟哟哟哟| 国产乱人视频| 欧美不卡视频在线免费观看| 最新美女视频免费是黄的| 怎么达到女性高潮| 亚洲av成人精品一区久久| 一区二区三区国产精品乱码| 老司机深夜福利视频在线观看| 亚洲最大成人中文| 亚洲精品一卡2卡三卡4卡5卡| 我的老师免费观看完整版| 999久久久国产精品视频| 岛国视频午夜一区免费看| 亚洲熟妇熟女久久| 观看美女的网站| 国产成人精品无人区| 午夜福利高清视频| 亚洲熟妇熟女久久| 国产亚洲精品久久久com| 成人三级做爰电影| 国产视频一区二区在线看| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 99久久精品国产亚洲精品| 日日夜夜操网爽| 日本黄色视频三级网站网址| 男女做爰动态图高潮gif福利片| or卡值多少钱| 欧美成狂野欧美在线观看| 色尼玛亚洲综合影院| 欧美日韩黄片免| 露出奶头的视频| 成人三级做爰电影| 成人av一区二区三区在线看| 欧美性猛交╳xxx乱大交人| 亚洲男人的天堂狠狠| 成年女人看的毛片在线观看| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 老汉色∧v一级毛片| 欧美一区二区国产精品久久精品| 久久午夜亚洲精品久久| 青草久久国产| 老汉色av国产亚洲站长工具| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 亚洲 国产 在线| 黄色日韩在线| 午夜影院日韩av| 国产一区二区在线观看日韩 | 香蕉国产在线看| 精品免费久久久久久久清纯| 亚洲熟妇中文字幕五十中出| 国产一区在线观看成人免费| 亚洲人成网站在线播放欧美日韩| 高潮久久久久久久久久久不卡| 精品午夜福利视频在线观看一区| 免费搜索国产男女视频| 一个人免费在线观看电影 | 天堂av国产一区二区熟女人妻| 国产 一区 欧美 日韩| 一个人看的www免费观看视频| 国产精品影院久久| 深夜精品福利| 男插女下体视频免费在线播放| 久久久精品大字幕| 好男人电影高清在线观看| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 人人妻人人看人人澡| 欧美日韩黄片免| 五月玫瑰六月丁香| 桃红色精品国产亚洲av| 国产成人欧美在线观看| 无限看片的www在线观看| 亚洲片人在线观看| 91久久精品国产一区二区成人 | 中文字幕人成人乱码亚洲影| 欧美性猛交黑人性爽| 热99在线观看视频| 香蕉av资源在线| 色播亚洲综合网| 亚洲国产中文字幕在线视频| 国产黄片美女视频| 一级a爱片免费观看的视频| 无遮挡黄片免费观看| 国产野战对白在线观看| 久久久久久九九精品二区国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲最大成人中文| 一区二区三区国产精品乱码| 国产精品电影一区二区三区| 精品国产乱子伦一区二区三区| 亚洲精品在线美女| 国产伦精品一区二区三区视频9 | 亚洲国产看品久久| 在线观看一区二区三区| 国产精品,欧美在线| 国产成人精品久久二区二区91| 最新在线观看一区二区三区| 不卡av一区二区三区| avwww免费| 免费搜索国产男女视频| 黄频高清免费视频| 国产淫片久久久久久久久 | 亚洲一区二区三区不卡视频| 一区二区三区国产精品乱码| 国产伦在线观看视频一区| av国产免费在线观看| 午夜亚洲福利在线播放| 精品久久蜜臀av无| 国产亚洲精品综合一区在线观看| 好男人电影高清在线观看| 极品教师在线免费播放| www.精华液| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 三级毛片av免费| 国产伦一二天堂av在线观看| 美女午夜性视频免费| 男人的好看免费观看在线视频| 中文字幕久久专区| 日韩欧美国产一区二区入口| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器 | 日韩欧美在线二视频| 国产精品久久久久久久电影 | 18禁黄网站禁片午夜丰满| 高清在线国产一区| av福利片在线观看| 国产高清激情床上av| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 天堂动漫精品| 国产真实乱freesex| 一区二区三区国产精品乱码| ponron亚洲| 国产精品日韩av在线免费观看| 国产人伦9x9x在线观看| 国产伦精品一区二区三区视频9 | 久久热在线av| 18禁国产床啪视频网站| 日韩欧美在线二视频| 亚洲成人精品中文字幕电影| 久久久久性生活片| 国产三级中文精品| 久99久视频精品免费| 久久香蕉精品热| 亚洲aⅴ乱码一区二区在线播放| 色综合婷婷激情| 男女床上黄色一级片免费看| 日本在线视频免费播放| 一区福利在线观看| 99久久综合精品五月天人人| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线 | 99热只有精品国产| 一本精品99久久精品77| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式 | 丝袜人妻中文字幕| 免费av不卡在线播放| 亚洲精品中文字幕一二三四区| 亚洲av成人一区二区三| 午夜福利免费观看在线| 少妇的逼水好多| 精品国产三级普通话版| 在线观看日韩欧美| 天堂网av新在线| 亚洲黑人精品在线| 精品日产1卡2卡| 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 18禁观看日本| 久久久久国内视频| 国产激情偷乱视频一区二区| 婷婷精品国产亚洲av在线| 十八禁人妻一区二区| 免费看光身美女| 色综合站精品国产| 丰满人妻熟妇乱又伦精品不卡| 国产三级在线视频| 久久久色成人| 成人国产综合亚洲| 一进一出好大好爽视频| 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 免费在线观看亚洲国产| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 欧美黄色淫秽网站| 亚洲国产高清在线一区二区三| 一二三四社区在线视频社区8| 亚洲成a人片在线一区二区| 色老头精品视频在线观看| 精品乱码久久久久久99久播| 美女高潮的动态| 国产99白浆流出| 91久久精品国产一区二区成人 | 午夜精品在线福利| 欧美不卡视频在线免费观看| 嫩草影院精品99| 级片在线观看| 亚洲精品在线观看二区| 男插女下体视频免费在线播放| 一级毛片精品| 国产蜜桃级精品一区二区三区| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 一个人免费在线观看的高清视频| 伦理电影免费视频| 人人妻人人澡欧美一区二区| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 女生性感内裤真人,穿戴方法视频| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 毛片女人毛片| 国产免费男女视频| 久久久久久久久久黄片| 久久久久国产一级毛片高清牌| 亚洲成人久久性| 夜夜爽天天搞| 美女被艹到高潮喷水动态| 亚洲自拍偷在线| 又大又爽又粗| 可以在线观看毛片的网站| 婷婷六月久久综合丁香| 欧美日韩福利视频一区二区| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 亚洲天堂国产精品一区在线| 午夜福利18| 国产成人影院久久av| 一本综合久久免费| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 九九热线精品视视频播放| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 成人无遮挡网站| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 久久精品人妻少妇| 国产亚洲欧美98| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 亚洲片人在线观看| 国产综合懂色| 亚洲精品粉嫩美女一区| 91在线观看av| 日本a在线网址| 国产精品一区二区三区四区免费观看 | 51午夜福利影视在线观看| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 一个人看的www免费观看视频| 在线观看午夜福利视频| 色哟哟哟哟哟哟| 国产精品美女特级片免费视频播放器 | 亚洲精品久久国产高清桃花| 国产午夜福利久久久久久| 后天国语完整版免费观看| 黄色 视频免费看| 精品熟女少妇八av免费久了| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 久久天堂一区二区三区四区| 一级毛片女人18水好多| 天天添夜夜摸| 手机成人av网站| 亚洲精品久久国产高清桃花| 两个人的视频大全免费| 中文字幕精品亚洲无线码一区| 午夜福利在线在线| 亚洲精品456在线播放app | 精品国产乱码久久久久久男人| 两性午夜刺激爽爽歪歪视频在线观看| 两个人视频免费观看高清| h日本视频在线播放| a在线观看视频网站| 欧美日韩黄片免| 女警被强在线播放| 成人三级黄色视频| 亚洲第一电影网av| 九色成人免费人妻av| 久久久久久久久中文| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看 | 国产淫片久久久久久久久 | 国产亚洲精品一区二区www| 两个人视频免费观看高清| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久国产高清桃花| 激情在线观看视频在线高清| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站 | 91麻豆精品激情在线观看国产| 中文字幕久久专区| 免费看美女性在线毛片视频| 国产精品99久久99久久久不卡| 国产亚洲精品久久久com| 亚洲 国产 在线| 欧美3d第一页| 久久婷婷人人爽人人干人人爱| 欧美一级a爱片免费观看看| 色综合站精品国产| 欧美日韩瑟瑟在线播放| 男插女下体视频免费在线播放| 午夜福利高清视频| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 精品久久久久久久人妻蜜臀av| 成在线人永久免费视频| 激情在线观看视频在线高清| 一本一本综合久久| 婷婷精品国产亚洲av在线| 午夜福利成人在线免费观看| 日本精品一区二区三区蜜桃| 好看av亚洲va欧美ⅴa在| 一个人观看的视频www高清免费观看 | 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| 99久久精品国产亚洲精品| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 怎么达到女性高潮| 美女午夜性视频免费| 男女床上黄色一级片免费看| 女警被强在线播放| 成人av一区二区三区在线看| 香蕉国产在线看| 身体一侧抽搐| 亚洲欧美日韩高清专用| 精品久久久久久久人妻蜜臀av| 黄色女人牲交| 成人鲁丝片一二三区免费| 人人妻,人人澡人人爽秒播| 欧美日韩一级在线毛片| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 婷婷亚洲欧美| 少妇裸体淫交视频免费看高清| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 日韩成人在线观看一区二区三区| 九色国产91popny在线| or卡值多少钱| 久久国产精品影院| 亚洲成av人片免费观看| 日韩成人在线观看一区二区三区| 国产高清三级在线| 成在线人永久免费视频| 在线观看免费视频日本深夜| 老司机午夜十八禁免费视频| 国产伦精品一区二区三区视频9 | 怎么达到女性高潮| 国产伦人伦偷精品视频| 国产极品精品免费视频能看的| av片东京热男人的天堂| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 最近最新免费中文字幕在线| 日韩精品青青久久久久久| 午夜成年电影在线免费观看| 亚洲av日韩精品久久久久久密| 色老头精品视频在线观看| 男插女下体视频免费在线播放| 国产午夜福利久久久久久| 俺也久久电影网| 黑人巨大精品欧美一区二区mp4| 午夜免费激情av| 欧美一区二区精品小视频在线| 久久久久国产一级毛片高清牌| 日本精品一区二区三区蜜桃| 日本熟妇午夜| 国产淫片久久久久久久久 | 国产精品国产高清国产av| 真人一进一出gif抽搐免费| 日韩欧美精品v在线| 国产在线精品亚洲第一网站| 极品教师在线免费播放| 亚洲 欧美 日韩 在线 免费| 国产单亲对白刺激| 老汉色av国产亚洲站长工具| 国产毛片a区久久久久| 午夜精品久久久久久毛片777| 欧美在线黄色| 国产av麻豆久久久久久久| 啪啪无遮挡十八禁网站| 日韩精品青青久久久久久| 高清在线国产一区| 欧美性猛交╳xxx乱大交人| 日韩中文字幕欧美一区二区| 女人被狂操c到高潮| 国产精品一区二区三区四区久久| 757午夜福利合集在线观看| 99精品久久久久人妻精品| 在线观看一区二区三区| 少妇的逼水好多| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av在线| 欧美大码av| 少妇裸体淫交视频免费看高清| 亚洲一区二区三区色噜噜| 99久国产av精品| 老汉色av国产亚洲站长工具| 老司机在亚洲福利影院| 亚洲欧美激情综合另类| 岛国视频午夜一区免费看| 亚洲欧美日韩东京热| 久99久视频精品免费| 国产蜜桃级精品一区二区三区| 久久精品国产综合久久久| 国产亚洲精品久久久com| 美女午夜性视频免费| 国产1区2区3区精品| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 精品国产乱子伦一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 好男人电影高清在线观看| 日韩欧美国产在线观看| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 在线播放国产精品三级| 少妇裸体淫交视频免费看高清| 1000部很黄的大片| 日本在线视频免费播放| 99国产综合亚洲精品| 国产午夜福利久久久久久| 午夜福利成人在线免费观看| 综合色av麻豆| 国产极品精品免费视频能看的| 成人亚洲精品av一区二区| or卡值多少钱| 不卡一级毛片| 国产激情久久老熟女| 国产精品精品国产色婷婷| 国产一区二区三区视频了| www.精华液| 听说在线观看完整版免费高清| 亚洲一区二区三区色噜噜| 亚洲精品乱码久久久v下载方式 | 老司机午夜福利在线观看视频| 女生性感内裤真人,穿戴方法视频| 小说图片视频综合网站| 亚洲第一欧美日韩一区二区三区| 国产精品日韩av在线免费观看| 国产精品久久久久久久电影 | 婷婷精品国产亚洲av| 欧美丝袜亚洲另类 | 亚洲国产日韩欧美精品在线观看 | 99久久精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 美女免费视频网站| 久久久久久久久中文| 精品欧美国产一区二区三|