• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    長期有機(jī)無機(jī)肥配施對冬小麥籽粒產(chǎn)量及氨揮發(fā)損失的影響

    2017-06-13 11:05:47鄭鳳霞董樹亭劉鵬張吉旺趙斌
    關(guān)鍵詞:冬小麥氮素無機(jī)

    鄭鳳霞,董樹亭,劉鵬,張吉旺,趙斌

    長期有機(jī)無機(jī)肥配施對冬小麥籽粒產(chǎn)量及氨揮發(fā)損失的影響

    鄭鳳霞,董樹亭*,劉鵬*,張吉旺,趙斌

    (山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018)

    【目的】黃淮海地區(qū)作為華北平原重要的農(nóng)業(yè)生產(chǎn)區(qū),氮肥投入量大、利用率低的現(xiàn)象較為普遍,氮肥損失和農(nóng)業(yè)面源污染嚴(yán)重。本研究在長期肥料定位試驗(yàn)基礎(chǔ)上,連續(xù)多年監(jiān)測不同施肥處理下冬小麥田氮素?fù)]發(fā)損失量及其規(guī)律,探討減少黃淮海地區(qū)麥田氨揮發(fā)的有效施肥方式,為提高冬小麥產(chǎn)量及肥料利用效率提供科學(xué)依據(jù)。 【方法】2011~2015 年利用水肥滲漏研究池進(jìn)行試驗(yàn),以石麥 15 (SM15) 為材料,以不施氮肥(CK) 為對照處理,在同等施氮量下設(shè)置單施尿素 (U)、單施牛糞 (M) 和尿素牛糞 1∶1 配施 (U + M) 3 種氮肥配比處理,隨機(jī)區(qū)組設(shè)計(jì)。采用通氣法連續(xù) 4 年原位監(jiān)測不同施肥處理下小麥氨揮發(fā)損失量、小麥籽粒產(chǎn)量及氮肥利用率。 【結(jié)果】2011~2015 年氨揮發(fā)損失量年際間變化較大,最大變幅可達(dá) 19.69 kg/hm2,年際間施肥后氨揮發(fā)速率變化規(guī)律趨勢相似。不同施肥處理對土壤氨揮發(fā)有顯著影響,冬小麥季氨揮發(fā)主要發(fā)生在施肥后15 d 內(nèi),拔節(jié)期追肥的氨揮發(fā)速率顯著高于播種期施用基肥。四年間氨揮發(fā)損失量平均達(dá) 7.26~42.40 kg/hm2,與不施氮肥相比,施氮處理的氨揮發(fā)損失量升高 1.40~4.84 倍,表明施用氮肥顯著促進(jìn)土壤氨揮發(fā);施氮處理的氮肥損失率以 U 處理最高,達(dá)到 19.5%,M 處理最低,為 5.7%,U + M 處理為 12.3%,介于兩處理之間,U + M 處理和 M 處理的氮肥損失率較 U 處理四年平均分別降低了 37.0% 和 71.1%,表明單施有機(jī)肥或有機(jī)無機(jī)肥配施可顯著抑制氨揮發(fā)損失。2011~2015 年各施肥處理冬小麥產(chǎn)量均以 U + M 處理最高,達(dá) 9461.5 kg/hm2,較U 和 M 處理分別增產(chǎn) 6.8% 和 9.1%。各處理的冬小麥籽粒吸氮量、地上部吸氮量同樣以 U + M 處理最大,較 U和 M 處理分別提高 7.1%、12.6% 和 5.4%、12.9%。U + M 處理的氮肥利用率在四年均最高,達(dá) 41.96%,較 U和 M 處理分別提高 16.5%~19.6% 和 38.6%~58.7%。 【結(jié)論】綜合籽粒產(chǎn)量及氮素利用效率,有機(jī)無機(jī)肥配施比單施化肥能顯著降低氨揮發(fā)損失,提高籽粒產(chǎn)量和氮肥利用率,有利于實(shí)現(xiàn)冬小麥高產(chǎn)與肥料高效的協(xié)同,可作為黃淮海區(qū)域小麥生產(chǎn)中的增產(chǎn)增效的優(yōu)化施肥方式。

    有機(jī)無機(jī)配施;冬小麥;氨揮發(fā);籽粒產(chǎn)量

    黃淮海地區(qū)作為華北平原重要的農(nóng)業(yè)生產(chǎn)區(qū),種植方式以冬小麥/夏玉米一年兩熟制為主,為了追求高產(chǎn)農(nóng)戶往往施用較多化肥,小麥生產(chǎn)過程中氮肥過量施用的現(xiàn)象已相當(dāng)嚴(yán)重[1–2],而氮肥利用率卻僅有 20%~40%[3],未被作物吸收利用的氮素則通過氨揮發(fā)、淋洗等途徑損失到環(huán)境中,由于土壤呈堿性,使氨揮發(fā)成為氮肥主要的氣態(tài)損失途徑[4–5],達(dá)到施氮量的 9%~40%[6–8]。通過氨揮發(fā)進(jìn)入大氣的氮素可隨降水等方式回歸農(nóng)田和自然生態(tài)系統(tǒng),造成土體及水體系統(tǒng)富營養(yǎng)化,影響生物多樣性[9–10]。因此,探索降低土壤氨揮發(fā)、減少氮肥損失、控制面源污染的有效農(nóng)藝措施是實(shí)現(xiàn)冬小麥可持續(xù)發(fā)展亟需解決的關(guān)鍵問題。

    我國有機(jī)肥源豐富,每年畜禽糞便資源量可達(dá)26.1 × 108t[11]。這些有機(jī)肥可就地取材,直接還田,既可解決有機(jī)肥堆放問題,又可減少對環(huán)境的污染。有機(jī)無機(jī)肥配施可以使化肥與有機(jī)肥在養(yǎng)分供應(yīng)上優(yōu)勢互補(bǔ),在提升土壤肥力、增加作物產(chǎn)量、提升肥料利用率等方面效果顯著[12–15],是合理利用資源、減少化肥用量、保持作物高產(chǎn)高效的施肥方式。前人關(guān)于有機(jī)無機(jī)肥配施對土壤氨揮發(fā)損失的研究已有很多[16–19],但多以 1~2 年短期監(jiān)測為背景,對田間氨揮發(fā)的長期原位監(jiān)測較少,氨揮發(fā)還易受環(huán)境條件影響,其損失量的年際間變化趨勢及差別不明確。本研究在定位施肥試驗(yàn)的基礎(chǔ)上,連續(xù) 4 年對黃淮海地區(qū)冬小麥有機(jī)無機(jī)肥配合施用下的氨揮發(fā)進(jìn)行原位監(jiān)測,研究有機(jī)無機(jī)肥配施對冬小麥田氨揮發(fā)損失、產(chǎn)量和氮肥利用率的影響,旨在為通過合理施肥以協(xié)同提高冬小麥產(chǎn)量和氮肥利用率、減肥減排提供科學(xué)依據(jù)。

    1 材料與方法

    1.1 試驗(yàn)地概況

    田間試驗(yàn)于 2011~2015 年在山東農(nóng)業(yè)大學(xué)黃淮海玉米技術(shù)創(chuàng)新中心大型水肥滲漏研究池 (36°09′ N,117°09′ E) 進(jìn)行。所在區(qū)域年平均氣溫 12.8℃,7 月份氣溫最高,平均 26.4℃,1 月份最低,平均 –2.6℃。年平均降水 697 mm,夏季降水較多,占 65%,冬季較少,僅占 3.6%。無霜期 195 d。種植制度為冬小麥–夏玉米一年兩熟制。

    水肥滲漏研究池 (2.5 m × 2.5 m × 2.0 m) 由混凝土砌成,每個(gè)池子相互獨(dú)立,底部密封且設(shè)有排水口。池子由下往上依次填 15 cm 粗砂、5 cm 細(xì)砂和180 cm 土壤,土壤取自附近農(nóng)田,同層土壤混勻后填入,按照當(dāng)?shù)亓?xí)慣種植玉米和小麥預(yù)試三年之后開始本研究定位試驗(yàn)。2011~2015 年播種前滲漏池0—20 cm 土層土壤化學(xué)性質(zhì)見表 1。

    1.2 試驗(yàn)設(shè)計(jì)

    供試冬小麥品種為石麥 15 (SM15),種植密度為240 × 104株/hm2,每個(gè)小區(qū)種植 12 行,行距 20 cm。設(shè)置 4 個(gè)不同施肥方式:不施氮肥 (CK)、單施尿素(U)、單施牛糞 (M) 和尿素牛糞 1∶1 配施 (U + M)。隨機(jī)區(qū)組設(shè)計(jì),每個(gè)處理設(shè) 3 次重復(fù),共 12 個(gè)小區(qū)。氮肥類型為普通尿素和腐熟的牛糞,尿素中含氮量為 46.0%,過磷酸鈣中 P2O5含量 11.2%,硫酸鉀中 K2O 含量為 51.1%,每年施入的有機(jī)肥料養(yǎng)分含量通過測定得出,具體見表 2。施氮處理的氮水平均為純 N 180 kg/hm2。各處理的磷鉀肥施用量保持相同,均為 P2O5150 kg/hm2和 K2O 150 kg/hm2。若牛糞處理不足 150 kg/hm2,則用過磷酸鈣和硫酸鉀補(bǔ)齊,若單施牛糞處理中的 P2O5或 K2O 量超過 150 kg/hm2,則其他處理用過磷酸鈣和硫酸鉀補(bǔ)充至牛糞處理的量。2011~2015 年具體施肥量見表 3。牛糞 (濕基)、過磷酸鈣、硫酸鉀一次性基施,尿素分基肥和拔節(jié)追肥施用,基施和追施 1∶1。施肥方式為基肥播前撒施在地表,翻耕埋入土后播種并立即灌水;追肥在小麥拔節(jié)期開溝施用覆蓋后灌水。2011~2014 年均于 10 月 10 日播種,田間管理同小麥高產(chǎn)田。

    表1 播種前滲漏池 0—20 cm 土層土壤化學(xué)性質(zhì)Table1 Soil chemical properties in 0–20 cm soil layer of the experiment field before sowing

    表2 不同生長季有機(jī)肥水分、養(yǎng)分含量 (%)Table2 Water and nutrient contents in organic fertilizers in different growing seasons

    1.3 測定項(xiàng)目與方法

    1.3.1 土壤氨揮發(fā)測定 土壤氨揮發(fā)的收集及測定參照王朝輝等的通氣法[20]。施入氮肥后,第一周每天收集一次樣品,第二周每隔 2~3 d 收集一次,之后每隔 5~7 d 收集一次,直到氨揮發(fā)速率 (AVR) 降到接近于零并穩(wěn)定,該過程最多持續(xù) 30 d。

    田間土壤的氨揮發(fā)速率計(jì)算公式:

    NH3-N [kg/(hm2·d)] = [M/(A × D)]/100

    式中:M 為通氣法單個(gè)裝置平均每次測得的氨量(NH3-N, mg);A 為收集裝置的截面積 (m2);D 為每次連續(xù)收集的時(shí)間 (d)。

    氨揮發(fā)累積量 = ∑(氨揮發(fā)速率 × 每次連續(xù)收集的時(shí)間)

    氨揮發(fā)肥料損失率 = (施肥處理氨揮發(fā)累積量 –不施肥處理氨揮發(fā)累積量)/施肥量 × 100%

    1.3.2 土樣測定 用直徑 2 cm 的土鉆,多點(diǎn)采集0—20 cm 耕層土壤,形成混合土樣。用烘干法測定土壤含水量。pH 值采用 pH 計(jì)測定;土壤有機(jī)質(zhì)用水合熱重鉻酸鉀氧化—比色法測定;土壤全氮用凱氏定氮法測定;土壤全磷采用濃硫酸加熱消煮—鉬酸銨比色法測定;土壤速效鉀采用 1 mol/L 醋酸銨溶液浸提—FP6410 型火焰光度計(jì)測定[21]。

    1.3.3 植株樣品測定 成熟期在每個(gè)小區(qū)取 30~40株長勢均勻、具有代表性的小麥植株,按莖、葉、穗軸 + 穎殼和籽粒分樣,105℃ 下殺青 30 min,75℃ 烘干至恒重,稱干重。小麥植株干樣研磨過篩后經(jīng)濃H2SO4–H2O2聯(lián)合消煮,消煮液中的植株全氮含量用AA3 型連續(xù)流動(dòng)分析儀 (SEAL Analytical,Germany)測定。

    冬小麥成熟期每個(gè)小區(qū)中部 1 m2收獲測產(chǎn),脫粒并經(jīng)自然風(fēng)干后稱重,折算成公頃產(chǎn)量。收獲時(shí)計(jì)數(shù)穗數(shù)和穗粒數(shù),在脫粒后風(fēng)干的籽粒中隨機(jī)取樣測定千粒重,重復(fù) 3 次。

    表3 不同施肥處理的具體施肥量 (kg/hm2)Table3 Application amounts of the fertilizers for different nitrogen treatments

    1.4 計(jì)算方法及統(tǒng)計(jì)分析

    氮肥利用效率指標(biāo)根據(jù)韓寶文等[22]的計(jì)算方法:氮肥利用率 = (施氮區(qū)地上部吸氮量 – 不施氮區(qū)地上部吸氮量)/施氮量 × 100%;氮素收獲指數(shù)=籽粒氮素積累量/植株氮素積累量。

    所有試驗(yàn)數(shù)據(jù)采用 Excel 2003 軟件計(jì)算,用SPSS 20.0 軟件進(jìn)行單因素方差分析,用 LSD 法比較處理間在 P = 0.05 水平上的差異顯著性,利用 Sigma Plot 10.0 軟件作圖。

    2 結(jié)果與分析

    2.1 不同施肥處理對冬小麥季施肥后土壤氨揮發(fā)速率的影響

    2011~2015 年施用氮肥后冬小麥田間氨揮發(fā)速率趨勢一致 (圖 1),在施用基肥、播種小麥并立即灌水的情況下,各施肥處理均有明顯的氨揮發(fā)。在最開始的 7 d,各施肥處理的氨揮發(fā)速率較高且呈現(xiàn)不規(guī)則變化,之后速率逐漸降低。施氮處理在一周內(nèi)均出現(xiàn)兩個(gè)峰值,最大峰出現(xiàn)在施肥后 4~5 d,U處理與 U + M 處理最高,分別達(dá) 2.23~2.74 kg/(hm2·d) 和 1.91~2.31 kg/(hm2·d),M 處理最低,降低至 1.47~2.14 kg/(hm2·d),U + M 和 M 處理較 U處理分別降低 14.3%~15.7% 和 21.9%~34.1%。第14 d 后與 CK 無顯著差異,20 d 后氨揮發(fā)速率接近于 0。

    與小麥基肥有所不同,追肥并灌溉后氨揮發(fā)速率在 1~2 d 即達(dá)到峰值,U 處理仍為最高 [2.52~2.85 kg/(hm2·d)],其次為 U + M 處理 [1.58~2.32 kg/(hm2·d)],M 處理的氨揮發(fā)速率由于基肥施入的牛糞緩慢釋放氮素而維持在一個(gè)較低水平,與 CK 處理無顯著差異。

    2.2 不同施肥處理對冬小麥季施肥后土壤氨揮發(fā)損失總量的影響

    表4 表明,2011~2015 年,冬小麥生育期內(nèi)田間氨揮發(fā)損失量變化較大,最大變幅可達(dá) 19.69 kg/hm2,這可能與不同年份氣溫等環(huán)境因素不同有關(guān)。各處理四年的氨揮發(fā)損失量平均達(dá) 7.26~42.40 kg/hm2,氮肥損失率最高可達(dá) 19.52%,是黃淮海平原主要的氮素?fù)p失途徑。各施肥處理的氨揮發(fā)損失總量表現(xiàn)為 U > U + M > M > CK。U 處理四年平均損失量為 42.40 kg/hm2,較 U + M 和 M 處理分別高 44.3% 和 143.4%;施氮量相等的條件下,氨揮發(fā)的氮肥損失率表現(xiàn)為 U > U + M > M,與 U 處理相比,U + M 和 M 處理的氨揮發(fā)氮肥損失率分別降低了 37.0% 和 71.1%。由表 4 還可看出,在基肥和追肥施氮量相同 (U 處理) 的情況下,追肥時(shí)期發(fā)生的氨揮發(fā)損失顯著高于基肥,占全生育期內(nèi)氨揮發(fā)總量的 53.5%。

    2.3 不同施肥處理對冬小麥產(chǎn)量及產(chǎn)量構(gòu)成因素的影響

    施氮肥能有效提高冬小麥籽粒產(chǎn)量 (表 5),U + M、U 和 M 處理分別比對照增產(chǎn) 73.9%、62.7% 和59.4%,各施肥處理小麥產(chǎn)量均以 U + M 處理最高,達(dá)到 9 175.3~9 781.6 kg/hm2,較 U 和 M 處理分別提高 6.8% 和 9.1%,U 和 M 處理間差異不顯著。從產(chǎn)量構(gòu)成因素分析,有機(jī)無機(jī)肥配施顯著影響冬小麥產(chǎn)量構(gòu)成因素,四年的數(shù)據(jù)均顯示 U + M 處理和 U處理可獲得較高的公頃穗數(shù)和穗粒數(shù),其次為 M 處理,CK 處理最低;而千粒重則表現(xiàn)為 CK 和 M 處理較大,其次為 U + M 處理,U 處理最小。綜合分析,公頃穗數(shù)和穗粒數(shù)對提高產(chǎn)量的貢獻(xiàn)較大,有機(jī)無機(jī)配施處理下構(gòu)成產(chǎn)量的各因素均達(dá)較高水平,最終其產(chǎn)量最高。

    2.4 不同施肥處理對冬小麥氮素利用效率的影響

    由表 6 可以看出,增施氮肥可以顯著增加冬小麥籽粒吸氮量和地上部吸氮總量,與對照處理相比,施氮處理小麥籽粒吸氮量增加 33.04~51.19 kg/hm2,地上部總吸氮量提高 32.7%~49.9%。在施用等量氮肥情況下,U + M 處理的籽粒吸氮量顯著高于 U 和M 處理,增幅分別達(dá)到 7.1% 和 12.6%,在 2011~2015 年 U 處理顯著高于 M 處理。各處理的地上部總吸氮量與籽粒吸氮量趨勢一致。氮素收獲指表現(xiàn)為CK > M > U + M > U,處理間差異不顯著。氮肥利用率以 U + M 處理最高,達(dá) 40.5%~45.0%,四年平均較 U 和 M 處理分別提高 18.2% 和 52.5%。表明有機(jī)無機(jī)肥配施可加強(qiáng)冬小麥對氮肥的吸收利用,提高氮肥的有效利用率。

    3 討論

    有機(jī)肥與無機(jī)肥配施,既能使作物高產(chǎn),又能培肥地力,是實(shí)現(xiàn)作物高產(chǎn)高效和促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展的一種有效措施。前人在 1~2 年試驗(yàn)的基礎(chǔ)上得出,有機(jī)肥與無機(jī)肥配合施用能有效降低氨揮發(fā)損失[24–26]。劉紅梅等[4]于 2006~2007 年進(jìn)行大田試驗(yàn),結(jié)果表明,華北平原東北部小麥季累計(jì)氨揮發(fā)量在 5.35~8.92 kg/hm2,且不同施氮水平下的氨揮發(fā)損失均以有機(jī)無機(jī)肥配施較低。本研究連續(xù) 4 年的數(shù)據(jù)均表明,在施氮量 180 kg/hm2的條件下,冬小麥田的氨揮發(fā)損失量可達(dá) 13.09~52.84 kg/hm2,不同年份間波動(dòng)幅度最大可達(dá) 19.69 kg/hm2。有機(jī)無機(jī)肥配施能有效降低氨揮發(fā)損失,其氨揮發(fā)損失量較尿素處理降低 13.02 kg/hm2。究其原因,主要是尿素與有機(jī)肥施入土壤后發(fā)生的反應(yīng)不同,尿素在土壤脲酶的作用下被水解成 NH4HCO3,NH4HCO3迅速轉(zhuǎn)化為 NH4+-N,為氨揮發(fā)提供較多底物,使尿素處理的氨揮發(fā)速率高于其他處理;而有機(jī)肥施入土壤后,經(jīng)過礦化作用將各種形態(tài)的有機(jī)氮轉(zhuǎn)化為 NH4+-N。NH4+-N 一部分被作物吸收利用,一部分被土壤吸附,剩余部分則大多在土壤 pH 偏堿性的條件下以氨的形式揮發(fā)出來[27]。有機(jī)無機(jī)肥配施之所以能降低土壤氨揮發(fā),原因是有機(jī)肥中的有機(jī)質(zhì)在分解過程中大量有機(jī)酸被釋放同時(shí)形成腐殖質(zhì),抑制了尿素水解過程中土壤酸堿度的升高,從而顯著抑制土壤氨揮發(fā)[28]。

    圖1 2011~2015 年施肥后土壤氨揮發(fā)速率Fig. 1 Ammonia volatilization rate after the fertilization in 2011–2015

    表4 2011~2015 年冬小麥季基施和追施氮肥后土壤氨揮發(fā)累積量、損失率及其占所施氮肥的百分比Table4 Cumulative ammonia volatilization, loss rate and their proportion in the applied nitrogen fertilizer after the basal and top dressing in 2011–2015

    合理的有機(jī)無機(jī)肥配施可以起到顯著的增產(chǎn)作用,張建軍等[29]在黃土旱塬地研究了有機(jī)肥對冬小麥產(chǎn)量的影響,結(jié)果表明,氮磷化肥配施生物有機(jī)肥較單施化肥增產(chǎn) 17.5%,氮肥配施普通農(nóng)家肥較單施化肥處理產(chǎn)量提高 3.4%。于昕陽等[30]研究表明,有機(jī)無機(jī)肥配施與相同施氮量下的單施無機(jī)肥處理相比,冬小麥產(chǎn)量提升 1.2%~12.7%。本研究結(jié)果同樣表明,有機(jī)無機(jī)肥配施能夠顯著提高冬小麥產(chǎn)量,各施肥處理在四個(gè)生長季均表現(xiàn)為有機(jī)無機(jī)肥配施處理產(chǎn)量最高,較對照增產(chǎn)幅度達(dá)到 73.9%,較單施化肥增產(chǎn) 6.8%。這是由于有機(jī)無機(jī)肥料配合施用,可以調(diào)控土壤氮素的固持和釋放,協(xié)調(diào)土壤氮素供應(yīng)[31],使肥效相互促進(jìn),還可以提高冬小麥群體光合速率[32],增加光合產(chǎn)物的積累。因此,有機(jī)無機(jī)肥料配施較單施有機(jī)肥或單施化肥的增產(chǎn)效果更優(yōu)。

    表5 不同施肥處理下冬小麥產(chǎn)量及產(chǎn)量構(gòu)成因素 (2011~2015)Table5 Yield and yield components of winter wheat under different fertilizer treatments in 2011–2015

    有機(jī)無機(jī)肥配合施用有利于作物氮肥利用率的提高[33–34]。劉益仁等[35]研究表明有機(jī)無機(jī)肥配施顯著提高了水稻的氮肥利用率,其主要機(jī)制為配施促進(jìn)了土壤微生物的繁殖,協(xié)調(diào)了土壤氮素釋放與作物氮素吸收進(jìn)程的同步性,較好地滿足了水稻生長發(fā)育對氮素養(yǎng)分的需求。吳迪等[35]的研究表明,配施有機(jī)肥可促進(jìn)玉米對氮肥的吸收利用,有利于氮素由營養(yǎng)器官向生殖器官的轉(zhuǎn)運(yùn),減少氮素?fù)p失,從而顯著提高氮肥利用率。本研究中有機(jī)無機(jī)肥配施也提高了冬小麥的氮肥利用率。與單施化肥相比,有機(jī)無機(jī)肥配施處理的氮肥利用率較單施化肥四年平均提高了 18.2%,主要原因,一是增加了冬小麥對氮素的吸收利用,提高了籽粒的氮素積累量,較單施化肥提高 5.6%~8.3%,二是減少了氮肥的損失,氨揮發(fā)作為黃淮海麥區(qū)主要的氮肥損失方式,降低氨揮發(fā)是提高氮肥利用率的有效途徑。

    4 結(jié)論

    長期田間原位監(jiān)測結(jié)果表明,在施氮量為 180 kg/hm2的條件下,不同年份間氨揮發(fā)損失波動(dòng)較大,土壤氨揮發(fā)肥料損失率可達(dá) 4.5%~22.0%,是黃淮海區(qū)域小麥/玉米輪作下的主要氮肥損失形式。有機(jī)無機(jī)肥 1∶1 配施下可以顯著提高冬小麥籽粒產(chǎn)量、吸氮量和氮肥利用率,同時(shí)降低氨揮發(fā)損失。追肥施用期的氨揮發(fā)損失高于基肥施用期,優(yōu)化追肥的施用對減少氨揮發(fā)也起到積極作用。在本試驗(yàn)條件下,綜合考慮冬小麥高產(chǎn)、氮素高效利用,化肥與有機(jī)肥 1∶1 配施可作為黃淮海區(qū)域小麥的綠色增產(chǎn)增效施肥方式,值得倡導(dǎo)與推廣。

    表6 不同施肥處理下冬小麥吸氮量及氮肥利用效率 (2011~2015)Table6 Nitrogen uptake and nitrogen use efficiency of winter wheat under different fertilizer treatments in 2011–2015

    [1]張福鎖, 崔振嶺, 王激清, 等. 中國土壤和植物養(yǎng)分管理現(xiàn)狀與改進(jìn)策略[J]. 植物學(xué)通報(bào), 2007, 24(6): 687–694. Zhang FS, Cui ZL, Wang JQ, et al. Current status of soil and plant nutrient management and improvement strategies in China[J]. Chinese Bulletin of Botany, 2007, 24(6): 687–694.

    [2]Ju XT, Kou CL, Christie P. Changes in the soil environment from excessive application of fertilizers and manures to low contrasting intensive cropping systems on the North China[J]. Environmental Pollution, 2007, 145(2): 497–506.

    [3]江立庚, 曹衛(wèi)星. 水稻高效利用氮素的生理機(jī)制及有效途徑[J]. 中國水稻科學(xué), 2002, 16(3): 261–264. Jiang LG, Cao WX. Physiological mechanism and approaches for efficient nitrogen utilization in rice[J]. Chinese Journal of Rice Science, 2002, 16(3): 261–264.

    [4]劉紅梅, 龐鳳梅, 賴欣, 楊殿林. 供氮水平和有機(jī)無機(jī)配施對麥田土壤氨揮發(fā)的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2012, 40(12): 7119–7122, 7249. Liu HM, Pang FM, Lai X, Yang DL. Effects of nitrogen fertilizer rate and combined application of organic manure and chemical fertilizer on soil ammonia volatilization in winter-wheat field[J]. Journal of Anhui Agricultural Sciences, 2012, 40(12): 7119–7122, 7249.

    [5]朱兆良. 農(nóng)田中氮肥的損失與對策[J]. 土壤與環(huán)境, 2000, 9(1): 1–6. Zhu ZL. Loss of fertilizer Nfrom plant-soil system and the strategies and techniques of its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1–6.

    [6]Ma BL, Wu TY, Tremblay N, et al. On-farm assessment of the amount and timing of nitrogen fertilizer on ammonia volatilization[J]. Agronomy Journal, 2010, 102(1): 134–144.

    [7]宋勇生, 范曉輝. 稻田氨揮發(fā)研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2003, 12(2): 240–244. Song YS, Fan XH. Summary of research on ammonia volatilization in paddy soil[J]. Ecology and Environment Sciences, 2003, 12(2): 240–244.

    [8]田光明, 蔡祖聰, 曹金留, 李小平. 鎮(zhèn)江丘陵區(qū)稻田化肥氮的氨揮發(fā)及其影響因素[J]. 土壤學(xué)報(bào), 2001, 38(3): 324–332. Tian GM, Cai ZC, Cao JL, Li XP. Ammonia volatilization of nitrogen fertilizers and its affecting factors in paddy fields of Zhenjiang hilly region[J]. Acta Pedologica Sinica, 2001, 38(3): 324–332.

    [9]Fillery IR P, Vlek PL G. Reappraisal of the significance of ammonia volatilization as aN loss mechanism in flooded rice fields[J]. Nutrient Cycling in Agroecosystems, 1986, 9(1–2): 79–98.

    [10]Tian GM, Cao JL, Cai ZC, Ren LT. Ammonia volatilization from wheat field top-dressed with urea[J]. Pedosphere, 1998, 8(4): 331–336.

    [11]張夫道, 張俊清, 趙秉強(qiáng), 等. 無公害農(nóng)產(chǎn)品市場準(zhǔn)入及相關(guān)對策[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2002, 8(1): 3–7. Zhang FD, Zhang JQ, Zhao BQ, et al. Safety control and its related strategy for market entry of green farm produce[J]. Plant Nutrition and Fertilizer Science, 2002, 8(1): 3–7.

    [12]Krupa SV. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review[J]. Environmental Pollution, 2003, 124(2): 179–221.

    [13]Chauhan SS, Bhatnagar RK. Influence of long term use of organic and inorganic manures on soil fertility and sustainable productivity of wheat in Vertisols of Madhya Pradesh[J]. An Asian Journal of Soil Science, 2014, 9(1): 113–116.

    [14]Duan YH, Xu MG, Gao SD, et al. Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications[J]. Field Crops Research, 2014, 157(2): 47–56.

    [15]Zhang HM, Xu MG, Shi XJ, et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3): 341–349.

    [16]郁潔, 蔣益, 徐春淼, 等. 不同有機(jī)物及其堆肥與化肥配施對小麥生長及氮素吸收的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(6): 1293–1302. Yu J, Jiang Y, Xu CM, et al. Effects of combined application of inorganic fertilizer with straw and pig slurry and their compost on wheat growth and nitrogen uptake[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1293–1302.

    [17]倪康, 丁維新, 蔡祖聰. 有機(jī)無機(jī)肥長期定位試驗(yàn)土壤小麥季氨揮發(fā)損失及其影響因素研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(12): 2614–2622. Ni K, Ding WX, Cai ZC. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J]. Journal of Agro-Environment Science, 2009, 28(12): 2614–2622.

    [18]郝小雨, 高偉, 王玉軍, 等. 有機(jī)無機(jī)肥料配合施用對日光溫室土壤氨揮發(fā)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(21): 4403–4414. Hao XY, Gao W, Wang YJ, et al. Effects of combined application of organic manure and chemical fertilizers on ammonia volatilization from greenhouse vegetable soil[J]. Scientia Agricultura Sinica, 2012, 45(21): 4403–4414.

    [19]俞映倞, 薛利紅, 楊林章. 太湖地區(qū)稻田不同氮肥管理模式下氨揮發(fā)特征研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(8): 1682–1689. Yu YL, Xue LH, Yang LZ. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013, 32(8): 1682–1689.

    [20]王朝輝, 劉學(xué)軍, 巨曉棠, 張福鎖. 田間土壤氨揮發(fā)的原位測定—通氣法[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2002, 8(2): 205–209. Wang ZH, Liu XJ, Ju XT, Zhang FS. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205–209.

    [21]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科技出版社, 2000. Lu RK. Methods of soil agricultural chemical analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [22]韓寶文, 王激清, 李春杰, 劉社平. 氮肥用量和耕作方式對春玉米產(chǎn)量、氮肥利用率及經(jīng)濟(jì)效益的影響[J]. 中國土壤與肥料, 2011, (2): 28–34. Han BW, Wang JQ, Li CJ, Liu SP. Impacts of nitrogen application rates and tillage modes on yield, nitrogen use efficiency of spring maize and economic benefit[J]. Soil and Fertilizers Sciences in China, 2011, (2): 28–34.

    [23]Gu LM, Liu TN, Wang JF, et al. Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat[J]. Field Crops Research, 2016, 188: 82–95.

    [24]李宗新, 王慶成, 劉開昌, 等. 不同施肥模式下夏玉米田間土壤氨揮發(fā)規(guī)律[J]. 生態(tài)學(xué)報(bào), 2009, 29(1): 307–314. Li ZX, Wang QC, Liu KC, et al. Law of field soil ammonia volatilization in summer maize under different fertilizer patterns[J]. Acta Ecologica Sinica, 2009, 29(1): 307–314.

    [25]張惠, 楊正禮, 羅良國, 等. 黃河上游灌區(qū)稻田氨揮發(fā)損失研究[J].植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(5): 1131–1139. Zhang H, Yang ZL, Luo LG, et al. Study on the ammonia volatilization from paddy field in irrigation area of the Yellow River[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1131–1139.

    [26]Shang QY, Gao CM, Yang XX, et al. Ammonia volatilization inChinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments[J]. Biology and Fertility of Soils, 2014, 50(5): 715–725.

    [27]劉學(xué)軍, 巨曉棠, 張福鎖. 基施尿素對土壤剖面中無機(jī)氮?jiǎng)討B(tài)的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 6(5): 63–68. Liu XJ, Ju XT, Zhang FS. Effect of basal application of urea on inorganic nitrogen in soil profile[J]. Journal of China Agricultural University, 2001, 6(5): 63–68.

    [28]Dong WX, Hu CS, Zhang YM, Cui JF. Ammonia volatilization from urea incorporation with wheat and maize straw on aloamy soil in China[A]. The Proceedings of the International Plant Nutrition Colloquium XVI[C]. Davis: Department of Plant Sciences, University of California, Davis, 2009.

    [29]張建軍, 樊廷錄, 王勇, 等. 有機(jī)肥對隴東黃土旱塬冬小麥產(chǎn)量和土壤養(yǎng)分的調(diào)控效應(yīng)[J]. 西北植物學(xué)報(bào), 2009, 29(8): 1656–1662. Zhang JJ, Fan TL, Wang Y, et al. Winter wheat yield and soil nutriments affected by organic fertilizer in loess plateau east of Gansu[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(8): 1656–1662.

    [30]于昕陽, 翟丙年, 金忠宇, 等. 有機(jī)無機(jī)肥配施對旱地冬小麥產(chǎn)量、水肥利用效率及土壤肥力的影響[J]. 水土保持學(xué)報(bào), 2015, 29(5): 320–324. Yu XY, Zhai BN, Jin ZY, et al. Effect of combined application of organic and inorganic fertilizers on winter wheat yield, water and fertilizer use efficiency and soil fertility in dryland[J]. Journal of Soil and Water Conservation, 2015, 29(5): 320–324.

    [31]梁斌, 趙偉, 楊學(xué)云, 周建斌. 長期不同施肥對旱地小麥土壤氮素供應(yīng)及吸收的影響[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(5): 885–892. Liang B, Zhao W, Yang XY, Zhou JB. Effects of long-term different fertilization managements on changes of Nin soil and its uptake by wheat on dryland[J]. Scientia Agricultura Sinica, 2012, 45(5): 885–892.

    [32]趙雋, 董樹亭, 劉鵬, 等. 有機(jī)無機(jī)肥長期定位配施對冬小麥群體光合特性及籽粒產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(8): 2362–2370. Zhao J, Dong ST, Liu P, et al. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2015, 26(8): 2362–2370.

    [33]Bandyopadhyay KK, Misra AK, Ghosh PK, Hati KM. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean[J]. Soil and Tillage Research, 2010, 110(1): 115–125.

    [34]孟琳, 王強(qiáng), 黃啟為, 等. 豬糞堆肥與化肥配施對水稻產(chǎn)量和氮效率的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2008, 24(1): 68–71, 76. Meng L, Wang Q, Huang QW, et al. Effects of combined application of pig manure compost and inorganic fertilizers on yield of rice grains and nitrogen use efficiency[J]. Journal of Ecology and Rural Environment, 2008, 24(1): 68–71, 76.

    [35]劉益仁, 李想, 郁潔, 等. 有機(jī)無機(jī)肥配施提高麥–稻輪作系統(tǒng)中水稻氮肥利用率的機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(1): 81–86. Liu YR, Li X, Yu J, et al. Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 81–86.

    [36]吳迪, 黃紹文, 金繼運(yùn). 氮肥運(yùn)籌、配施有機(jī)肥和坐水種對春玉米產(chǎn)量與養(yǎng)分吸收轉(zhuǎn)運(yùn)的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2009, 15(2): 317–326. Wu D, Huang SW, Jin JY. Effects of nitrogen fertilizer management, organic manure application and bed-irrigation sowing on maize yield, and nutrient uptake and translocation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 317–326.

    Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat

    ZHENG Feng-xia, DONG Shu-ting*, LIU Peng*, ZHANG Ji-wang, ZHAO Bin
    ( College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China )

    【Objectives】The Huang Huai-Hai Plain (HHP) is an important agricultural production area in North China Plain. The excessive application of nitrogen fertilizers and low nitrogen use efficiency are very common, and nitrogen fertilizer loss and agricultural non-point source pollution are serious. To deal with these problems, the amount of ammonia volatilization loss and its regularity in winter wheat fields under different fertilization treatments were monitored continuously for many years using along-term fertilization experiment. The purpose ofthis study aimed to reduce the ammonia volatilization of the HHP, and then provide ascientific basis for improving yield of winter wheat and efficiency of fertilizers based on the long-term fertilizer experiment.【Methods】The experiment was conducted using lysimeters in 2011–2015 and the tested winter wheat cultivar was SM15. The venting method was used to monitor ammonia volatilization under four fertilization modes (organic manure, M; half organic manure plus half chemical Nfertilizer, U + M; urea, U and no N fertilizer, CK) in awinter wheat and summer maize rotation in the North China Plain. 【Results】The amount of ammonia volatilization varied greatly from 2011 to 2015, with the maximum value of 19.69 kg/hm2. The trend of ammonia volatilization rate after the fertilization was similar. The ammonia volatilization in winter wheat mainly occurred within 15 days after the fertilization, and the rate of ammonia volatilization after applying topdressing fertilizer at the jointing stage was significantly higher than that at the seeding stage. The flux of ammonia volatilization was dramatically influenced by fertilizer types and their combination. The amount of ammonia volatilization was 7.26–42.40 kg/hm2. The ammonia volatilization loss amounts of the Nfertilizer treatments were increased by 1.40–4.84 times compared with the no Nfertilizer, which indicated that the application of nitrogen fertilizer could significantly promote the ammonia volatilization in the soil. The rate of N loss was the highest in the Utreatment, reaching to 19.5%, that of the Mtreatment was the lowest, reducing to 5.7%, and that of the U+ M treatment was in amiddle position which was 12.3%. The rates of nitrogen fertilizer loss in the U+ M treatment and the Mtreatment were decreased by 37.0% and 71.1% for four years compared with the Utreatment, respectively, which indicated that the combined application of organic manure and nitrogen fertilizer could significantly inhibit ammonia volatilization. The yield of winter wheat of the U+ M treatment was 9461.5 kg/hm2, which was 6.8% and 9.1% higher than those of the Uand Mtreatments, respectively. The nitrogen uptake by grain and absorption of nitrogen in aboveground part of the U+ M treatment were also greater, which were 7.1%, 12.6% and 5.4%, 12.9% higher than the Uand Mtreatments, respectively. The nitrogen use efficiency of the U+ M treatment was the highest in four years, reaching to 41.96%, which was increased by 16.5%–19.6% and 38.6%–58.7% compared with the Uand Mtreatments, respectively. 【Conclusions】Integrating the grain yield and nitrogen use efficiency, the combined application of organic manure and chemical fertilizers could significantly reduce ammonia volatilization loss and increase grain yield and nitrogen use efficiency, and could achieve synergistic effect of high yield and fertilizer efficiency. Therefore, it can be used as an optimum fertilization method for wheat production in Huang-Huai-Hai region.

    organic manure and chemical fertilizers; wheat; ammonia volatilization; grain yield

    2016–11–15 接受日期:2017–02–08

    國家自然科學(xué)基金項(xiàng)目(31071358,30871476);國家 “十二五” 科技支撐計(jì)劃(2013BAD07B06-2);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(CARS-02-20);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(HY20121203100,HY1203096);山東省財(cái)政支持農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新課題(2014)資助。

    鄭鳳霞(1991—),女,山東萊蕪人,碩士研究生,主要從事小麥高產(chǎn)與施肥研究。E-mail:zhengfengxia1991@163.com

    * 通信作者 Tel:0538-8245838,E-mail:stdong@sdau.edu.cn;Tel:0538-8241485,E-mail:liupengsdau@126.com

    猜你喜歡
    冬小麥氮素無機(jī)
    無機(jī)滲透和促凝劑在石材防水中的應(yīng)用
    石材(2020年9期)2021-01-07 09:30:04
    加快無機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
    甘肅冬小麥田
    有機(jī)心不如無機(jī)心
    山東青年(2016年2期)2016-02-28 14:25:31
    冬小麥和春小麥
    中學(xué)生(2015年4期)2015-08-31 02:53:50
    冬小麥——新冬18號(hào)
    冬小麥—新冬41號(hào)
    Fe2(SO4)3氧化脫除煤中無機(jī)硫的研究
    楸樹無性系苗期氮素分配和氮素效率差異
    基于光譜分析的玉米氮素營養(yǎng)診斷
    宁乡县| 辽阳县| 年辖:市辖区| 长岭县| 澎湖县| 偃师市| 泾川县| 祁东县| 济南市| 西平县| 东丰县| 永城市| 托克逊县| 大石桥市| 清涧县| 郓城县| 天镇县| 车险| 庄河市| 朝阳区| 永靖县| 巧家县| 松阳县| 蕉岭县| 乐安县| 云龙县| 万盛区| 海宁市| 正定县| 连山| 淮南市| 鸡东县| 民勤县| 汉沽区| 乐至县| 南京市| 建宁县| 石楼县| 泽州县| 阿坝县| 镇雄县|