徐國偉,孫會(huì)忠,陸大克,王賀正,李友軍
不同水氮條件下水稻根系超微結(jié)構(gòu)及根系活力差異
徐國偉1,2,孫會(huì)忠1,陸大克1,王賀正1,李友軍1
(1 河南科技大學(xué)農(nóng)學(xué)院,河南洛陽 471003;2 揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室,江蘇揚(yáng)州 225009)
【目的】探討不同水氮耦合對(duì)水稻根系超微結(jié)構(gòu)及根系代謝特性的影響,從根尖細(xì)胞超微結(jié)構(gòu)及根系活力方面闡明不同水氮組合處理在根際環(huán)境間的差異。 【方法】以新稻 20 號(hào)為材料,進(jìn)行盆栽試驗(yàn),設(shè)置淺水層灌溉、輕度水分脅迫 (灌 1~2 cm 水層,至土壤水勢(shì)降到 –20 kPa 再灌淺水層,如此反復(fù)) 和重度水分脅迫 (灌1~2 cm 水層,至土壤水勢(shì)降到 –40 kPa 再灌淺水層,如此反復(fù)) 3 種灌溉方式及不施氮肥,適量氮 (N 240 kg/hm2) 和高量氮 (N 360 kg/hm2) 3 種氮肥水平,測(cè)定了不同處理水稻根系氧化力、根系傷流量及根系分泌有機(jī)酸總量,并觀測(cè)了根系細(xì)胞超微結(jié)構(gòu)。 【結(jié)果】隨著生育進(jìn)程,根系氧化力表現(xiàn)為先增加后降低的趨勢(shì),在幼穗分化期達(dá)到峰值,根系傷流液及根系分泌物中有機(jī)酸總量先增加后降低,在抽穗期達(dá)到峰值。在同一氮肥水平下,輕度水分脅迫后根系細(xì)胞完整,核膜界限清晰,結(jié)構(gòu)特征典型;與保持水層相比,根系氧化力及根系傷流量在分蘗盛期分別增加 25.6%~32.0% 及 9.1%~18.8%,根系分泌有機(jī)酸總量在抽穗期前平均增加 16.4%。重度水分脅迫后嗜鋨體和淀粉體較多,后期細(xì)胞完全扭曲變形,細(xì)胞間隙明顯增多增大、細(xì)胞器出現(xiàn)斷裂降解,細(xì)胞基質(zhì)中僅存細(xì)胞器碎片,細(xì)胞壁較完整,未出現(xiàn)斷裂情況;與保持水層相比較,根系氧化力及根系傷流量在幼穗分化始期平均降低 8.8% 及 25.6%,根系分泌有機(jī)酸總量平均降低 22.8%。在同一灌溉方式下,適量氮處理根系細(xì)胞結(jié)構(gòu)較完整,核膜較清楚,有利于根系活力的提高及根系有機(jī)酸的分泌;重施氮處理根系細(xì)胞壁和核膜降解加速。與適量氮相比,高氮處理下根系氧化力及根系傷流量在分蘗盛期至幼穗分化始期分別降低了6.6%~9.8% 及 7.7%~15.4%,根系分泌物中有機(jī)酸總量在抽穗前平均降低 11.6%,整體上根系活力降低、有機(jī)酸的分泌量顯著減少。 【結(jié)論】輕度水分脅迫耦合適量氮處理的水稻根系超微結(jié)構(gòu)最優(yōu),細(xì)胞結(jié)構(gòu)特征典型,核膜最為清晰,細(xì)胞完整,根系代謝能力最強(qiáng)。表明通過適宜的水氮耦合調(diào)控,能夠提高根尖細(xì)胞的生理功能,增強(qiáng)根系活力、促進(jìn)根系有機(jī)酸的分泌,能為水稻的生長創(chuàng)造良好的根際環(huán)境。
水稻;水氮耦合;根系超微結(jié)構(gòu);根系活力;有機(jī)酸
根尖是根系生理活性中最活躍的部分,對(duì)土壤環(huán)境的反應(yīng)比較敏感,具有響應(yīng)和傳遞環(huán)境信號(hào)、感知重力方向、吸收養(yǎng)分與水分以及合成物質(zhì)等重要功能[1–2]。根尖細(xì)胞的線粒體、內(nèi)質(zhì)網(wǎng)、核糖體、液泡、高爾基體、質(zhì)膜 ATPase 和微體等對(duì)執(zhí)行根的功能發(fā)揮重要作用[3–4]。根系的結(jié)構(gòu)與功能及其與作物生長發(fā)育的關(guān)系一直是水稻根系研究的一個(gè)熱點(diǎn)。水分與氮肥是作物生長發(fā)育過程中不可或缺的重要因素,水分和氮肥因子融為一體,對(duì)改善作物生長環(huán)境和提高肥料的利用效率有著重要作用[5]。國內(nèi)外學(xué)者就氮鉀用量、氮素形態(tài)、水分脅迫、外源激素、重金屬污染、鹽分脅迫等方面對(duì)根細(xì)胞超微結(jié)構(gòu)及根系代謝功能進(jìn)行了眾多的研究[6–17],表明當(dāng)土壤水分和養(yǎng)分等條件改變,根重、根數(shù)、根長、根系氧化力等形態(tài)生理指標(biāo)還沒有明顯變化時(shí),根尖細(xì)胞中細(xì)胞器如高爾基體、線粒體、內(nèi)質(zhì)網(wǎng)、核糖體等數(shù)目已有明顯不同[6, 8, 16]。不同組織以及不同細(xì)胞器對(duì)干旱脅迫的敏感程度不同[8],在通氣條件下根尖細(xì)胞中的核糖體和線粒體脊明顯多于嫌氣條件下[16]。過量施氮后,作物細(xì)胞中線粒體失去完整的膜結(jié)構(gòu),嵴結(jié)構(gòu)較為模糊,原生質(zhì)體收縮,細(xì)胞失水嚴(yán)重,明顯影響作物生長[17],可見根系細(xì)胞超微結(jié)構(gòu)與根的生長發(fā)育、根系生理活性及產(chǎn)量形成均有密切的關(guān)系[16],但有關(guān)水氮耦合對(duì)于根系細(xì)胞超微結(jié)構(gòu)及功能的研究較少,且大多集中在番茄、生姜、甘草、馬藺、小麥、玉米、棉花等旱作植物上,這些植物水分管理方式與水稻完全不同。根系分泌物中有機(jī)酸種類及含量與根系合成的激素等物質(zhì)一起構(gòu)成根系化學(xué)信號(hào),向根際周圍及地上部輸出,從而對(duì)根際及地上部作物的生長起調(diào)控作用[18–21]。水氮耦合下根際分泌物中有機(jī)酸有何差異?與根系活力及細(xì)胞超微結(jié)構(gòu)數(shù)量變化有何關(guān)系?前人對(duì)此研究較少。本試驗(yàn)通過對(duì)水分的動(dòng)態(tài)控制,研究整個(gè)生育期不同水氮條件對(duì)水稻根系細(xì)胞器數(shù)量及根系代謝功能的影響,以此探索水氮耦合機(jī)理,為水稻高產(chǎn)高效及根際生態(tài)學(xué)提供理論依據(jù)。
1.1 材料與試驗(yàn)點(diǎn)概況
試驗(yàn)于 2014~2015 年在河南科技大學(xué)盆栽場(chǎng)進(jìn)行。供試品種為新稻 20,試驗(yàn)地氣候?qū)贉貛О霛駶櫚敫珊荡箨懶约撅L(fēng)氣候,年降水量 600 mm,年輻射量 491.5 kJ/cm2,年日照時(shí)數(shù) 2300~2600 h,無霜期215~219 d。試驗(yàn)采用盆栽方式,塑料大棚擋雨。盆缽為直徑 25 cm,高 30 cm,盆缽內(nèi)裝過篩土 15 kg左右。土壤為粘壤土,土壤有機(jī)質(zhì) 14.9 g/kg、堿解氮65.3 mg/kg、有效磷 5.9 mg/kg、速效鉀 115.6 mg/kg。1.2試驗(yàn)設(shè)計(jì)
進(jìn)行灌溉方式和氮肥水平 2 因素隨機(jī)試驗(yàn)。設(shè)計(jì) 3 種灌溉方式:保持淺水層 (分蘗末期進(jìn)行曬田,其余生育期保持 1~2 cm 水層)、輕度水分脅迫 (分蘗末期進(jìn)行曬田,其余生育期先灌 1~2 cm 水層,至土壤水勢(shì)降到 –20 kPa 再灌淺水層,如此反復(fù))、重度水分脅迫 (分蘗末期進(jìn)行曬田,其余生育期先灌1~2 cm 水層,至土壤水勢(shì)降到 –40 kPa 再灌淺水層,如此反復(fù)),盆缽內(nèi)用負(fù)壓計(jì)測(cè)定土壤水勢(shì),陶土頭底部置于 15 cm 土層處,生育期間塑料大棚擋雨。全生育期氮肥水平為 3 個(gè)水平:不施氮肥,適量氮 (N 1.18 g/pot,相當(dāng)于大田 N 240 kg/hm2) 和高氮 (N 1.77 g/pot,相當(dāng)于大田 360 kg/hm2),氮肥運(yùn)籌按照 4∶1∶5 于移栽前 1 d、移栽后 7 d 和穗分化期(二次枝梗分化期) 施用。磷、鉀肥各處理均一致,移栽前施用過磷酸鈣 (P2O513.5%) 300 kg/hm2和氯化鉀 (K2O 52%) 195 kg/hm2。大田育秧,5 月 6 日播種,6 月 10 日移栽,每盆栽插 3 穴,每穴 2 苗,每個(gè)處理 30 盆,全生育期嚴(yán)格監(jiān)測(cè)水分及病蟲害,其余管理與高產(chǎn)田一致。
1.3 測(cè)定項(xiàng)目與方法
1.3.1 根系細(xì)胞超微結(jié)構(gòu)測(cè)定 分別于分蘗盛期及穗分化始期,取主莖或 1 次分蘗不定根的根尖,各處理取樣 3 穴,參考 Hayashi[1]及 Zhang等[22]方法觀察根尖細(xì)胞的超微結(jié)構(gòu)。用鋒利刀片分別在距離根端1.5~2.0、2.1~3.0、3.1~4.0、4.1~5.0 和 5.1~6.0 mm 處截?cái)?,材料離體后立即投入到預(yù)冷的 2.5% 戊二醛中進(jìn)行固定;2 h 后用 pH 7.2 的 0.1 mol/L 磷酸緩沖液 (PBS) 清洗 3 次,每次 15 min;再用 1% OsO4固定,2 小時(shí)后再用 PBS 清洗,方法同上;再經(jīng)梯度濃度乙醇脫水,環(huán)氧丙烷過渡,環(huán)氧樹脂浸透和包埋,聚合成包埋塊后在 Ultra-Jung 超薄切片機(jī)上切成 50~70 nm 的切片,醋酸雙氧鈾和檸檬酸鉛雙重染色,最后置于 Philips Tecnai12-TWIN 透射電鏡下觀察、攝影并記錄。每次取樣重復(fù) 5 次[22]。
1.3.2 根系氧化力測(cè)定 分別于分蘗盛期、穗分化始期、抽穗期和成熟期,各處理取樣 3 穴,用 α-萘胺法測(cè)定根系氧化力[22]。
1.3.3 根系傷流液收集 分別于分蘗盛期、穗分化始期、抽穗期和抽穗后 20 天 (成熟期取樣傷流液極少,故取抽穗后 20 天),各處理取樣 3 穴,于下午 6時(shí)在莖離土表約 12 cm 處剪去植株地上部分,將預(yù)先稱重的帶有脫脂棉的玻璃試管倒套于留在田間的稻莖的剪口處,蓋上塑料薄膜,于第 2 天早 8 時(shí)取回試管稱重,兩次的差值即為根系傷流量[22]。
1.3.4 根系分泌物中有機(jī)酸含量測(cè)定 分別于分蘗盛期、穗分化始期、抽穗期和成熟期,各處理取樣 3穴,用自來水和蒸餾水洗凈后,置于裝有去離子水的燒杯 (800 mL) 中并封上燒杯口,每杯放 1 穴 (水分脅迫處理在水中加入 PEG-6000,輕度水分脅迫為10%,重度水分脅迫為 30%)。在光下 [光強(qiáng)為 700~800 μmol/(m2·s),冠層溫度 28~30℃] 培養(yǎng) 4 h,收集燒杯中的溶液,用高效液相色譜 (HPLC,Waters) 測(cè)定溶液中有機(jī)酸濃度[23]。
1.4 數(shù)據(jù)處理與分析
試驗(yàn)數(shù)據(jù)用 SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA) 進(jìn)行方差分析,SigmaPlot 10.0 軟件繪制圖表。
2.1 水氮耦合對(duì)水稻細(xì)胞超微結(jié)構(gòu)的影響
圖1 水氮耦合對(duì)水稻生育過程中根系超微結(jié)構(gòu)的影響Fig. 1 Effect of water and nitrogen coupling on root ultrastructure during the growth and development of rice[注(Note): 1~4 為無氮 + 保持水層 No Nand submerged irrigation; 5~8 為無氮 + 輕度水分脅迫 No Nand moderate water stress; 9~12 為無氮 + 重度水分脅迫 No Nand severe water stress; 13~16 為適量氮 + 保持水層 Normal Nand submerged irrigation; 17~20 為適量氮+輕度水分脅迫 Normal Nand moderate water stress; 21~24 為適量氮 + 重度水分脅迫 Normal Nand severe water stress; 25~28 為高氮 + 保持水層HighN and submerged irrigation; 29~32 為高氮 + 輕度水分脅迫 High Nand light water stress; 33~36 為高氮 + 重度水分脅迫 High Nand severe water stress. CW—細(xì)胞壁 Cell wall;CY—細(xì)胞質(zhì) Cytoplasm;N—細(xì)胞核 Nucleus;Nu—核仁 Nucleolus;NM—核膜 Nuclear membrane;M—線粒體 Mitochondrion;S—淀粉體 Starch grain;O—嗜鋨體 Osmiophilic bodies;V—液泡 Vacuole;ER—內(nèi)質(zhì)網(wǎng) Endoplasmic reticulum;CC—胞間隙 Cell clearance;G—高爾基體 Golgi apparatus;OF—細(xì)胞器碎片 Organelles fragments.]
不同水氮處理對(duì)根細(xì)胞超微結(jié)構(gòu)的影響不同。無氮水層條件下,根冠細(xì)胞在發(fā)育的前后期均未出現(xiàn)細(xì)胞裂解現(xiàn)象,但細(xì)胞壁較其他處理明顯增厚[圖 1 (1~4)]。輕度水分脅迫條件下,在脅迫后期,細(xì)胞器數(shù)量明顯減少,核膜在脅迫的前后期均比較清晰、細(xì)胞壁與無氮水層處理相比則顯著變薄,細(xì)胞間隙增多,細(xì)胞中的嗜鋨體 (是次生代謝產(chǎn)物產(chǎn)生變化所致) 數(shù)量增多 [圖 1 (5~8)]。重度水分脅迫條件下,前期細(xì)胞器數(shù)量具有減少趨勢(shì),后期細(xì)胞扭曲皺縮,細(xì)胞器降解,細(xì)胞基質(zhì)中僅存細(xì)胞器碎片,細(xì)胞壁出現(xiàn)斷裂 [圖 1 (9~12)]。
中氮水層條件下,細(xì)胞基本能夠維持正常形態(tài),細(xì)胞間隙較多,細(xì)胞質(zhì)電子密度較低,發(fā)育后期胞間隙劇烈增大,細(xì)胞器的數(shù)量較少,細(xì)胞核有扭曲現(xiàn)象,說明發(fā)育受到一定的影響 [圖 1 (13~16)]。中氮輕度水分脅迫條件下,細(xì)胞結(jié)構(gòu)特征典型;核膜界限清晰;液泡數(shù)量較多。中氮重度水分脅迫條件下,前期嗜鋨體增多,細(xì)胞質(zhì)電子密度較高 [圖 1 (17~20)]。
長期高氮對(duì)水稻根冠結(jié)構(gòu)具有明顯的破壞作用[圖 1 (25~32)]。高氮水層條件下,前期細(xì)胞中液泡數(shù)量較多,具有一定量的細(xì)胞器;到了發(fā)育后期,細(xì)胞完全扭曲變形,細(xì)胞器完全解體,僅存碎片,但細(xì)胞壁完整,未出現(xiàn)斷裂情況 [圖 1 (25~28)]。高氮輕度水分脅迫條件下,細(xì)胞發(fā)育前期細(xì)胞結(jié)構(gòu)正常,后期細(xì)胞壁局部劇烈變厚 [圖 1 (29~32)]。高氮重度水分脅迫條件下,前期嗜鋨體和淀粉體較多,細(xì)胞器也比較豐富,發(fā)育后期細(xì)胞器數(shù)量則明顯減少,細(xì)胞間隙明顯增多、增大 [圖 1 (33~36)]。
從以上分析可知,在同一氮肥水平下,輕度水分脅迫后細(xì)胞中細(xì)胞器數(shù)量均比其它處理多,細(xì)胞結(jié)構(gòu)正常;而重度水分脅迫條件下,細(xì)胞器數(shù)量減少,后期細(xì)胞扭曲皺縮,細(xì)胞壁出現(xiàn)斷裂;在同一灌溉方式下,中氮處理根細(xì)胞中細(xì)胞器數(shù)量多,核膜界限清晰;長期高氮對(duì)水稻根冠結(jié)構(gòu)具有明顯的破壞作用。從水氮耦合方面分析,中氮輕度水分脅迫對(duì)水稻根冠結(jié)構(gòu)的影響具有正面效應(yīng),細(xì)胞中細(xì)胞器數(shù)量較多,結(jié)構(gòu)特征典型。
2.2 水氮耦合對(duì)水稻根系氧化力及根系傷流的影響
隨著生育進(jìn)程,根系氧化力表現(xiàn)為先增加后降低的趨勢(shì),在幼穗分化期達(dá)到峰值 (圖 2)。在同一施氮量條件下,輕度水分脅迫明顯提高新稻 20 根系氧化力,如分蘗盛期根系活性增加了 25.6%~32.0%;在同一灌溉方式下,根系氧化力在中氮下最高,進(jìn)一步增施氮肥反而降低根系活力,如分蘗盛期至抽穗期,根系氧化力降低了 6.6%~9.8%,說明重施氮肥并不能顯著提高根系氧化力的大小。從水氮耦合來看,中氮輕度水分脅迫下根系氧化力最強(qiáng)。
隨著生育進(jìn)程,根系傷流先增加后降低,在抽穗期達(dá)到峰值 (圖 3)。在同一氮肥水平下,輕度水分脅迫增加根系傷流量,分蘗盛期根系傷流量平均增加 14.5%;重度水分脅迫則顯著降低根系傷流量,不同生育期表現(xiàn)一致。在同一灌溉方式下,根系傷流量在中氮下最高,進(jìn)一步增施氮肥反而降低根系活力,說明重施氮肥并不能明顯提高根系活力。從水氮耦合來看,中氮輕度水分脅迫下根系活力最大。
2.3 水氮耦合對(duì)水稻根系有機(jī)酸總量的影響
不同水氮耦合下根系分泌物中有機(jī)酸總量存在明顯差異 (圖 4)。隨著生育進(jìn)程,根系分泌物中有機(jī)酸總量先增加后降低,在抽穗期達(dá)到峰值。在同一氮肥水平下,輕度水分脅迫增加根系有機(jī)酸總量。分蘗盛期至幼穗分化始期,輕度水分脅與對(duì)照保持水層相比分別增加 18.5% 及 14.3%,重度水分脅迫則顯著降低根系有機(jī)酸總量,不同生育期表現(xiàn)一致,與對(duì)照保持水層相比,有機(jī)酸總量平均降低 22.8%。在同一灌溉方式下,根系分泌物中有機(jī)酸在中氮下最高,進(jìn)一步增施氮肥反而降低有機(jī)酸總量,如分蘗盛期至幼穗分化始期,與中氮相比,高氮根系分泌物中有機(jī)酸含量降低了 7.7% 及 15.4%,說明重施氮肥并不能明顯提高有機(jī)酸總量。從水氮耦合來看,中氮輕度水分脅迫下根系分泌物中有機(jī)酸總量最高。
3.1 不同水氮組合對(duì)水稻根系超微結(jié)構(gòu)的影響
圖2 水氮耦合對(duì)水稻生育過程中根系氧化力的影響Fig. 2 Effect of water and nitrogen coupling on root oxidation activity during the growth and development of rice[注(Note):方柱上不同字母表示處理間差異顯著(P<0.05)Different letters above the bars are significant among different treatments at the P<0.05 level.]
圖3 水氮耦合對(duì)水稻生育過程中根系傷流強(qiáng)度的影響Fig. 3 Effect of water and nitrogen coupling on root bleeding during the growth and development of rice[注(Note):方柱上不同字母表示處理間差異顯著(P<0.05)Different letters above the bars are significant among different treatments at the P<0.05 level.]
圖4 水氮耦合對(duì)水稻生育過程中根系有機(jī)酸總量的影響Fig. 4 Effect of water and nitrogen coupling on root organic acid contents during the growth and development of rice[注(Note):方柱上不同字母表示處理間差異顯著(P<0.05)Different letters above the bars are significant among different treatments at the P<0.05 level.]
水分和養(yǎng)分是作物生長發(fā)育的兩大重要因素,合理的水肥管理有利于作物高產(chǎn)和資源的高效利用。根系作為水分和養(yǎng)分吸收的主要器官,其形態(tài)結(jié)構(gòu)和功能與作物生長發(fā)育及產(chǎn)量品質(zhì)形成有著非常密切的關(guān)系。良好發(fā)育的根系超微結(jié)構(gòu),能夠提高細(xì)胞生理功能,有利于根系各種生理代謝,促進(jìn)地上部生長發(fā)育。
氮素的施用對(duì)于細(xì)胞超微結(jié)構(gòu)的影響較為明顯,合理施用氮肥可以改善細(xì)胞的超微結(jié)構(gòu),提高水稻的單位面積產(chǎn)量[6, 23]。本研究結(jié)果表明,不施氮肥根細(xì)胞在前期基本能夠維持正常形態(tài),幼穗分化后細(xì)胞器的數(shù)量較少,說明根細(xì)胞發(fā)育受到一定的影響。在生長前期水稻生長發(fā)育較慢,從土壤中吸收的養(yǎng)分基本能夠滿足根系及地上部的生長需要,對(duì)水稻脅迫較小,根細(xì)胞超微結(jié)構(gòu)功能得以維持;幼穗分化后,水稻吸收養(yǎng)分急劇增加,此時(shí)土壤釋放的養(yǎng)分已經(jīng)不能滿足植株生長的需求,脅迫程度加重,根系形態(tài)及細(xì)胞發(fā)育受到限制,影響其功能的發(fā)揮。王秀娟等[17]研究發(fā)現(xiàn),在施氮量太多的環(huán)境之下,番茄植株的細(xì)胞會(huì)表現(xiàn)出質(zhì)壁分離的狀況。在高氮脅迫環(huán)境之下,美國白蠟的細(xì)胞核降解非常明顯,細(xì)胞核中染色質(zhì)的濃度降低[24]。本試驗(yàn)結(jié)果表明,長期高氮對(duì)水稻根冠結(jié)構(gòu)具有明顯的破壞作用。前期根細(xì)胞中液泡數(shù)量較多,具有一定量的細(xì)胞器;但到了發(fā)育后期,細(xì)胞完全扭曲變形,細(xì)胞器完全解體,僅存碎片。說明高氮下水稻根細(xì)胞超微結(jié)構(gòu)受損,細(xì)胞核內(nèi)外物質(zhì)的相互交換遭到破壞,細(xì)胞核的代謝活力受到很大抑制,從而影響到整個(gè)細(xì)胞的完整代謝過程,抑制根系功能的發(fā)揮。
許振柱等[25]的試驗(yàn)表明,水分脅迫環(huán)境下,小麥細(xì)胞的線粒體膜發(fā)生內(nèi)陷,線粒體膜的某些部分產(chǎn)生破損,而重度水分脅迫環(huán)境下,小麥細(xì)胞的某些線粒體膜產(chǎn)生開裂,基本上觀察不到嵴的存在。劉艷等[8]研究得出,隨著干旱脅迫時(shí)間的延長,甘草細(xì)胞核變形,線粒體內(nèi)腔空化,葉綠體基粒片層結(jié)構(gòu)逐漸模糊,淀粉粒降解??梢娝置{迫對(duì)細(xì)胞器結(jié)構(gòu)有著明顯的影響,但前人研究多數(shù)集中在旱作條件下,不同土壤水勢(shì)對(duì)水稻根細(xì)胞超微結(jié)構(gòu)影響如何?Hayashi[1]曾比較水稻種子發(fā)芽過程中處于嫌氣和通氣條件下根尖細(xì)胞的超微結(jié)構(gòu),發(fā)現(xiàn)在通氣條件下根尖細(xì)胞中的線粒體脊和核糖體明顯多于嫌氣條件。本試驗(yàn)結(jié)果表明,輕度水分脅迫后細(xì)胞中線粒體、高爾基體和內(nèi)質(zhì)網(wǎng)細(xì)胞器數(shù)量均比其它處理多,細(xì)胞結(jié)構(gòu)正常;而重度水分脅迫條件下,細(xì)胞器數(shù)量減少,后期細(xì)胞扭曲皺縮,細(xì)胞壁出現(xiàn)斷裂。這可能是由于輕度水分脅迫后土壤通透性增加,根系土壤含氧量提高,降低還原性物質(zhì)對(duì)細(xì)胞的傷害程度,有利于根細(xì)胞中各器官的發(fā)育,而重度水分脅迫后土壤含水量急劇下降,細(xì)胞滲透勢(shì)改變,導(dǎo)致細(xì)胞膜內(nèi)不飽和脂肪酸的減少,引起膜蛋白的不穩(wěn)定性和膜結(jié)構(gòu)功能的喪失,可見適宜的土壤水分對(duì)于水稻根細(xì)胞結(jié)構(gòu)的維持及功能的發(fā)揮有著重要的作用。
本試驗(yàn)還表明,輕度水分脅迫耦合中氮下,水稻根細(xì)胞超微結(jié)構(gòu) (如線粒體、高爾基體、液泡等的結(jié)構(gòu)) 完整且個(gè)數(shù)較多,質(zhì)膜清楚,細(xì)胞結(jié)構(gòu)功能較優(yōu)。這些結(jié)果啟示我們:在生產(chǎn)實(shí)際中,設(shè)置適宜的水氮組合,有利于改善水稻根系超微結(jié)構(gòu),促進(jìn)根系功能的發(fā)揮,能夠?yàn)樗镜纳L發(fā)育提供良好的根際環(huán)境。
3.2 水氮耦合對(duì)水稻根系活性的影響
根系代謝特性與養(yǎng)分吸收利用及地上部生長發(fā)育關(guān)系密切。根系分泌的有機(jī)酸、糖、酚及各種氨基酸等物質(zhì)可以通過改變根際理化性質(zhì),調(diào)節(jié)根際微生態(tài)功能,從而提高根系對(duì)養(yǎng)分的吸收利用和外界環(huán)境的適應(yīng)[26–27]。關(guān)于根系分泌物中有機(jī)酸的研究,單因子的試驗(yàn)較多,而對(duì)于水氮耦合下根系分泌特性研究仍然較少。常二華等[28]的研究表明,水稻缺少氮素時(shí)會(huì)抑制根系有機(jī)酸的分泌。本研究表明,中氮條件下根系分泌的有機(jī)酸含量整體較高,而高氮?jiǎng)t抑制了根系分泌有機(jī)酸,說明重施氮肥后根系分泌受到抑制,不利于根系功能的發(fā)揮。常二華等的研究關(guān)注的是低氮條件下根系的分泌特性,當(dāng)?shù)睾枯^低時(shí),水稻可以從土壤中吸收的就比較少,這個(gè)時(shí)候根系分泌的有機(jī)酸含量就相對(duì)較低。本試驗(yàn)觀察了中氮及高氮條件下的根系分泌特性,更加貼近生產(chǎn)實(shí)際,對(duì)于不同的氮肥用量下根系分泌觀察更為系統(tǒng)。本試驗(yàn)得出,輕度干濕交替灌溉后根系分泌物中有機(jī)酸含量明顯增加,而重度干濕交替灌溉則明顯降低。這與 Henry 等[29]研究保持一致。輕度水分脅迫下水稻根系處于良好的根際環(huán)境中,根細(xì)胞分裂旺盛,功能結(jié)構(gòu)突出,根系能夠主動(dòng)分泌有機(jī)酸,從而提高根系的生理功能,為地上部的生長發(fā)育提供物質(zhì)與能量;而重度水分脅迫下根細(xì)胞器數(shù)量減少,后期細(xì)胞扭曲皺縮,從而影響到整個(gè)細(xì)胞的完整代謝過程,抑制根系分泌能力,從而影響根系的生理功能。
根系活性的高低影響其吸收、合成和分配等生理功能的發(fā)揮。有研究表明[5],增施氮肥可以減輕因土壤含水量減少而對(duì)根系活性所造成的不利影響,生長發(fā)育后期提高土壤含水量、增施氮肥可以保持根系活性。另有一些研究則表明[30],生長發(fā)育中期施氮量較高,后期施氮不能提高根系活力。本試驗(yàn)表明,根系活性在輕度水分脅迫耦合中氮處理下最大,進(jìn)一步增施氮肥并不能顯著提高根系活性,降低“以肥調(diào)水”的效果,加劇土壤水分脅迫的程度,說明適宜的水分脅迫及施氮量才能改善根系的生理狀況,促進(jìn)根系功能的發(fā)揮。
水稻根細(xì)胞超微結(jié)構(gòu)及活性在不同水氮處理間存在明顯差異。中氮輕度水分脅迫創(chuàng)造良好的根際環(huán)境,具有根細(xì)胞超微結(jié)構(gòu)完整、根系氧化力較強(qiáng)及根系分泌物中有機(jī)酸含量較高的特點(diǎn)。重度水分脅迫則破壞根細(xì)胞器形態(tài)結(jié)構(gòu)、抑制根系代謝特性,降低“以肥調(diào)水”的效果。通過適宜的水氮耦合提高水稻根系細(xì)胞形態(tài)功能,提高根系代謝能力,協(xié)調(diào)地上地下部生長,能為水稻生長創(chuàng)造良好的環(huán)境。
[1]Hayashi S. Effect of limiting oxygen supply on the ultrastructure of root tip cells in the germinating stage of rice seeds[J]. Japanese Journal of Crop Science, 1998, 67: 41–48.
[2]Sievers A, Braun M, Monshausen GB. The root cap: structure and function[A]. Waisel Y, Eshel A, Kafkafi U. Plant roots: the hidden half[C]. New York: Marcel Dekker, 2002. 33–47.
[3]Zhang MP, Zhang CJ, Yu GH, et al. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll afluorescence transient in flag leaves of asuper-highyield hybrid rice and its parents during the reproductive stage[J]. Journal of Plant Physiology, 2010, 167: 277–285.
[4]HaWes MC, Gunawardena U, Miyasaka S. The role of root border cells in plant defense[J]. Trends in Plant Sciences, 2000, 5: 128–133.
[5]Li YJ, Chen X, Shamsi IH, et al. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J]. Pedosphere, 2012, 22(5): 661–672.
[6]張金政, 劉岳路, 李曉東, 等. 過量施氮對(duì)嵌合體‘金旗’玉簪葉色、氮代謝關(guān)鍵酶活性及葉綠體超微結(jié)構(gòu)的影響[J]. 草業(yè)學(xué)報(bào), 2011, 20(5): 93–101. Zhang JZ, Liu YL, Li XD, et al. Effects of excessive application of nitrogen fertilizer on leaf color, key enzymes activities of nitrogen metabolism and chloroplast ultrastructure of achimera Hosta ‘Gold Standard’[J]. Acta Prataculturae Sinica, 2011, 20(5): 93–101.
[7]馮立娟, 苑兆和, 尹燕雷, 等. 多效唑?qū)Υ篼惢ㄈ~片光合特性和超微結(jié)構(gòu)的影響[J]. 草業(yè)學(xué)報(bào), 2014, 23(4): 114–121. Feng LJ, Yuan ZH, Yin YL, et al. Effects of paclobutrazol on the photosynthetic characteristics and ultrastructure of Dahlia pinnata leaves[J]. Acta Prataculturae Sinica, 2014, 23(4): 114–121.
[8]劉艷, 岳鑫, 陳貴林. 水分脅迫對(duì)甘草葉片和根系細(xì)胞超微結(jié)構(gòu)與膜脂過氧化的影響[J]. 草業(yè)學(xué)報(bào), 2010, 19(6): 79–86. Liu Y, Yue X, Chen GL. Effects of water stress on ultrastructure and membrane lipid peroxidation of leaf and root cells of Glycyrrhiza uralensis[J]. Acta Prataculturae Sinica, 2010, 19(6): 79–86.
[9]Yuan HY, Guo Z, Huang SZ. Effects of Pb on growth, heavy metals accumulation and chloroplast ultrastructure of Iris lactea var. Chinensis[J]. Acta Ecologica Sinica, 2011, 31(12): 3350–3357.
[10]劉冉, 石峰, 劉偉成, 等. 不同形態(tài)氮素對(duì)鹽脅迫下番茄細(xì)胞超微結(jié)構(gòu)與光合作用的影響[J]. 園藝學(xué)報(bào), 2011, 31(12): 3350–3357. Liu R, Shi F, Liu WC et al. Effect of nitrogen forms on cell ultrastructure and photosynthesis of tomato under salinity[J]. Acta Horticulturae Sinica, 2011, 31(12): 3350–3357.
[11]張黛靜, 馬建輝, 楊淑芳, 等. 硅對(duì)銅脅迫下小麥幼根細(xì)胞超微結(jié)構(gòu)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(8): 2385–2389. Zhang DJ, Ma JH, Yang SF, et al. Effects of silicon on the ultrastructures of wheat radical cells under copper stress[J]. Chinese Journal of Applied Ecology, 2014, 25(8): 2385–2389.
[12]李文娟, 何萍, 金繼運(yùn). 鉀素對(duì)玉米莖髓和幼根超微結(jié)構(gòu)的影響及其與莖腐病抗性的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43(4): 729–736. Li WJ, He P, Jin JY. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk pot[J]. Scientia Agricultura Sinica, 2010, 43(4): 729–736.
[13]Lucía G, Mercedes FP, Daniel GS, et al. Spent metal working fluids produced alterations on photosynthetic parameters and cellultrastructure of leaves and roots of maize plants[J]. Journal of Hazardous Materials, 2013, 260: 220–230.
[14]李秀, 鞏彪, 徐坤. 外源亞精胺對(duì)高溫脅迫下生姜葉片內(nèi)源激素及葉綠體超微結(jié)構(gòu)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(1): 120–129. Li X, Gong B, Xu S. Effect of exogenous spermidine on levels of endogenous hormones and chloroplast ultrastructure of ginger leaves under heat stress[J]. Scientia Agricultura Sinica, 2015, 48(1): 120–129.
[15]姜艷麗, 史華平, 楊艷兵, 等. NaCl脅迫對(duì)棉花葉片及根系超微結(jié)構(gòu)的影響[J]. 華北農(nóng)學(xué)報(bào), 2014, 29(3): 95–100. Jiang YL, Shi HP, Yang YB, et al. Effect of NaCl stress on ultrastructure of mesophyll cells and root cells in cotton[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(3): 95–100.
[16]Yang JC, Zhang H, Zhang JH. Root morphology and physiology in relation to the yield formation of rice[J]. Journal of Integrative Agriculture, 2012, 11(6): 920–926.
[17]王秀娟, 袁興福, 婁春榮, 等. 不同氮鉀用量對(duì)番茄生長和葉片超微結(jié)構(gòu)的影響[J]. 中國土壤與肥料, 2014, (3): 44–48. Wang XJ, Yuan XF, Lou CR, et al. Effect of N, K amount on growth and leaf ultrastructure[J]. Soil and Fertilizer Science in China, 2014, (3): 44–48.
[18]Kato NH, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates[J]. Physiologia Plantarum, 2002, 115(3): 401–405.
[19]Sunghyun K, Hyewon L, Insook L. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates[J]. Journal of Bioscience and Bioengineering, 2010, 109(1): 47–50.
[20]Zhou N, Liu P, Wang ZY, Xu GD. The effects of rapeseed rootexudates on the forms of aluminum in aluminum stressed rhizosphere soil[J]. Crop Protection, 2011, 30(6): 631–636.
[21]徐國偉, 李帥, 趙永芳. 秸稈還田與施氮對(duì)水稻根系分泌物及氮素利用的影響研究[J]. 草業(yè)學(xué)報(bào), 2014, 23(2): 140–146. Xu GW, Li S, Zhao YF, et al. Effects of straw and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J]. Acta Prataculturae Sinica, 2014, 23(2): 140–146.
[22]Zhang H, Xue YG, Wang ZQ, et al. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice[J]. Field Crops Research, 2009, 113(1): 31–40.
[23]戢林, 李廷軒, 張錫洲, 等. 水稻氮高效基因型根系分泌物中有機(jī)酸和氨基酸的變化特征[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(5): 1046–1055. Ji L, Li YX, Zhang XZ, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1046–1055.
[24]楊靜, 陳金林, 徐柏森, 等. 鹽脅迫對(duì)美國白蠟和濱梅根系超微結(jié)構(gòu)的影響[J]. 西南林學(xué)院學(xué)報(bào), 2009, 29(5): 23–27. Yang J, Chen JL, Xu BS, et al. Effect of salt stress on root ultrastructure of Fraxinus americana and Prunus maritima[J]. Journal of Southwest Forestry College, 2009, 29(5): 23–27.
[25]許振柱, 于振文, 董慶裕, 等. 水分脅迫對(duì)冬小麥旗葉細(xì)胞質(zhì)膜及葉肉細(xì)胞超微結(jié)構(gòu)的影響[J]. 作物學(xué)報(bào), 1997, 23(3): 370–375. Xu ZZ, Yu ZW, Dong QY, et al. Effect of water on cell membrane and the ultrastructure of flag cell in winter wheat[J]. Acta Agronomica Sinica, 1997, 23(3): 370–375.
[26]Marzieh T, Mohsen J. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155: 395–404.
[27]吳林坤, 林向民, 林文雄. 根系分泌物介導(dǎo)下植物-土壤-微生物互作關(guān)系研究進(jìn)展與展望[J]. 植物生態(tài)學(xué)報(bào), 2014, 38(3): 298–310. Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298–310.
[28]常二華, 張慎鳳, 王志琴, 等. 結(jié)實(shí)期氮磷營養(yǎng)水平對(duì)水稻根系和籽粒氨基酸含量的影響[J]. 作物學(xué)報(bào), 2008, 34(4): 612–618. Chang EH, Zhang SF, Wang ZQ, et al. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4): 612–618.
[29]Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3): 904–912.
[30]王余龍, 姚慶友, 劉寶玉, 等. 不同生育時(shí)期氮素供應(yīng)水平對(duì)雜交水稻根系生長及其活力的影響[J]. 作物學(xué)報(bào), 1997, 23(6): 699–705. Wang YL, Yao QY, Liu BY, et al. Effect of nitrogen supplying levels and timings on the development of roots in hybrid indica rice[J]. Acta Agronomica Sinica, 1997, 23(6): 699–705.
Differences in ultrastructure and activity of rice roots under different irrigation and nitrogen supply levels
XU Guo-wei1,2, SUN Hui-zhong1, LU Da-ke1, WANG He-zheng1, LI You-jun1
( 1 Agricultural College, Henan University of Science and Technology, Luoyang, Henan 471003, China; 2 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China )
【Objectives】This study observed root ultrastructure and measured metabolism of japonica rice under different irrigation and nitrogen supply levels to help understanding the mechanism of suitable irrigation and nitrogen fertilization coupling in yield increase of rice. 【Methods】A pot experiment was conducted using a mid-season japonica rice cultivar of Xindao 20 as tested material in 2014 and 2015. Three nitrogen levels of 0, 240 and 360 kg/hm2and three irrigation regimes, including submerged irrigation, alternative wetting and moderate drying (–20 kPa) and alternative wetting and severe drying (–40 kPa) were designed. The root activity, root bleeding and total organic acid content in roots were measured, and root tip ultrastructure was scanned. 【Results】With the elongation of rice growth, the root oxidation was increased firstly and thendecreased with the peak at the panicle initial (PI) stage, the same trend was observed with the index of root exudates, and total organic acids in root exudates with the peak appeared at the heading stage. There was a significant interaction between irrigation regimes and nitrogen levels. At the same nitrogen level, the boundaries of nuclear membrane in root cells at the mid-tillering and PI stages were clear, and typical structure was found under the condition of moderate water stress. Compared with the submerged irrigation, the root activity was also increased at the main stages, the total contents of organic acid were enhanced significantly, such as root oxidative ability and the root exudates were increased by 25.6%–32.0% and 9.1%–18.8% at the mid-tillering stage, respectively, and the total organic acid production was improved by 16.4% at the preheading stage. The opposite results were observed under the condition of severe water stress, the number of organelles was reduced, osmiophilic bodies and amyloplast were increased, cells twisted and wrinkled at the later stages, organelles were broken and degraded, cell debris was remained in the cell matrix. Compared with the submerged irrigation, the root activity and root secretion of total organic acid were significantly decreased, such as the root oxidative ability and the root exudates were decreased by 8.8% and 25.6% at the PI stage respectively, and the total organic acids secretion was reduced by 22.8% at the whole stage. In the same irrigation regime, nuclear membrane at the main growth stages was clear and typical structure could be found under the condition of moderate Ntreatment, when compared with no nitrogen applied, meanwhile root activity and the total content of organic acid were enhanced significantly. The opposite result was observed under the condition of high Ntreatment, cells twisted and wrinkled in the later stage, organelles was broken and degraded, cell wall and membrane degradation was accelerated and cell debris was destroyed in the cell matrix, which indicated that heavy nitrogen application was not conducive to the maintenance of function of organelles, and root metabolic function declined. Compared with the moderate Ntreatment, the root oxidative ability and root exudates were reduced by 6.6%–9.8% and 7.7%–15.4% from the mid-tillering to PI stage respectively, meanwhile the content of organic acid in root exudates was reduced by an average of 11.6% under the condition of high Ntreatment before the heading. Overall, the root activity and the amount of organic acid secretion were significantly reduced. 【Conclusions】The nuclear envelope was most clear and root metabolism ability was strongest under the condition of moderate water stress and moderate Ninteraction. These results suggested increasing physiological function of root tip cells, enhancing root activity and improving root secretion of organic acids through the appropriate regulation of water and nitrogen will create agood rhizosphere environment for the growth of rice.
rice; water and nitrogen interaction; root ultrastructure; root activity; organic acid
2016–07–25 接受日期:2016–12–02
國家自然科學(xué)基金項(xiàng)目(U1304316);江蘇省作物栽培生理重點(diǎn)實(shí)驗(yàn)室開放基金(027388003K11009);河南省教育廳科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(13A210266)資助。
徐國偉(1978—),男,江蘇建湖人,博士,副教授,主要從事作物栽培生理研究。E-mail:gwxu2007@163.com