董旭,王雪,石磊,蔡紅梅,徐芳森,丁廣大
植物磷轉(zhuǎn)運(yùn)子 PHT1 家族研究進(jìn)展
董旭,王雪,石磊,蔡紅梅,徐芳森,丁廣大*
(華中農(nóng)業(yè)大學(xué)微量元素研究中心/資源與環(huán)境學(xué)院,武漢 430070)
【目的】磷是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素。植物 PHT1 磷轉(zhuǎn)運(yùn)蛋白家族在植物磷吸收、運(yùn)轉(zhuǎn)及再利用等過程中發(fā)揮了重要作用。迄今已在多種高等植物中相繼分離出大量 PHT1 家族基因。本文綜述了國(guó)內(nèi)外關(guān)于植物 PHT1 家族的主要研究進(jìn)展,詳細(xì)闡述了植物 PHT1 家族的表達(dá)模式、功能及可能的調(diào)控途徑?!局饕M(jìn)展】植物 PHT1 家族屬于 MFS (major facilitator superfamily) 超家族,不同物種 PHT1 家族蛋白的結(jié)構(gòu)非常保守,通常具有 12 個(gè)親脂跨膜結(jié)構(gòu)域,形成“6 螺旋–親水大環(huán)–6 螺旋”式的結(jié)構(gòu)鑲嵌于質(zhì)膜當(dāng)中。同時(shí),該家族具有 H2PO4–/nH+共運(yùn)子、糖轉(zhuǎn)運(yùn)子和 MFS 通用轉(zhuǎn)運(yùn)子等特征結(jié)構(gòu)域和一段保守的氨基酸特征序列GGDYPLSATIMSE。一般情況,植物 PHT1 家族基因吸收轉(zhuǎn)運(yùn) 1 個(gè)無機(jī)磷需要 2~4 個(gè)質(zhì)子協(xié)同進(jìn)入質(zhì)膜,并伴隨膜電位的變化。植物 PHT1 家族的磷轉(zhuǎn)運(yùn)特性差異較大,其動(dòng)力學(xué)參數(shù) Km 值差別較大。高等植物 PHT1家族成員眾多。在擬南芥、水稻、大豆、茄科植物及其他物種中的研究發(fā)現(xiàn),PHT1 家族各成員間的時(shí)空表達(dá)模式存在差異,多數(shù)成員受低磷信號(hào)調(diào)控且主要在根部表達(dá),少部分成員在除根以外的其他器官中表達(dá),并行使相應(yīng)的磷轉(zhuǎn)運(yùn)功能。已有研究表明,植物 PHT1 家族基因的轉(zhuǎn)錄水平受到多因素的調(diào)控,例如外界環(huán)境中的無機(jī)磷濃度,轉(zhuǎn)錄因子如 MYB 家族、WRKY 家族以及 ZAT6 等基因能與 PHT1 家族基因啟動(dòng)子區(qū)的特殊調(diào)控元件如 MYCS 元件、P1BS 元件及 W-box 元件等結(jié)合,調(diào)控基因的轉(zhuǎn)錄。此外,部分 PHT1 家族基因的轉(zhuǎn)錄水平受叢枝菌根真菌 (arbuscular mycorrhizal fungi,AMF) 的調(diào)控。除了轉(zhuǎn)錄水平的調(diào)控,關(guān)于植物 PHT1 家族轉(zhuǎn)錄后水平的調(diào)控途徑同樣取得了較大進(jìn)展。PHF1 基因、含 SPX 結(jié)構(gòu)域的蛋白家族、MicroRNA、蛋白磷酸化與去磷酸化、染色質(zhì)修飾及其他等一系列調(diào)控途徑均參與到 PHT1 家族基因的轉(zhuǎn)錄后調(diào)控及信號(hào)轉(zhuǎn)導(dǎo)。植物激素如生長(zhǎng)素、乙烯和細(xì)胞分裂素等也參與這一調(diào)控過程。 【建議與展望】植物對(duì)磷吸收利用的分子調(diào)控機(jī)理及信號(hào)轉(zhuǎn)導(dǎo)途徑十分復(fù)雜,因此,培育磷高效利用基因型作物任重而道遠(yuǎn)。關(guān)于植物 PHT1 家族基因的研究已從模式植物向作物及其他高等植物中擴(kuò)展,然而對(duì)該家族蛋白的生化及結(jié)構(gòu)生物學(xué)等研究還待進(jìn)一步深入。同時(shí),對(duì)于一些基因組較復(fù)雜的多倍體物種如甘藍(lán)型油菜、小麥、大麥及棉花等,仍有待開展進(jìn)一步研究。
高等植物;磷轉(zhuǎn)運(yùn);PHT1 家族;轉(zhuǎn)錄調(diào)控;信號(hào)轉(zhuǎn)導(dǎo)通路
磷是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素。雖然土壤中總磷的含量非常高,但大約 80% 的磷以有機(jī)態(tài)的形式存在,并且可溶性磷酸根離子極易被酸性土壤中的鐵鋁氧化物及石灰性土壤中的碳酸鹽化合物吸附固定,而難以被植物吸收利用。因此,土壤中實(shí)際可溶性磷的濃度遠(yuǎn)遠(yuǎn)低于植物組織中的磷濃度[1]。植物 PHT1 磷轉(zhuǎn)運(yùn)蛋白家族是一類高親和性的磷轉(zhuǎn)運(yùn)蛋白,它在植物磷吸收、轉(zhuǎn)運(yùn)、體內(nèi)磷分配及再利用等過程中發(fā)揮了重要作用[2–4]。近年來,隨著研究的不斷深入,全世界的研究人員相繼發(fā)表了大量關(guān)于植物 PHT1 家族基因參與磷吸收轉(zhuǎn)運(yùn)過程及其調(diào)控途徑等方面的研究報(bào)道,逐漸揭開了高等植物磷吸收轉(zhuǎn)運(yùn)及調(diào)控的奧秘。
從 20 世紀(jì) 90 年代開始,PHT1 家族基因逐漸被發(fā)現(xiàn),它們是定位于細(xì)胞膜負(fù)責(zé)吸收和轉(zhuǎn)運(yùn)磷的蛋白。釀酒酵母 PHO84 是第一個(gè)被發(fā)現(xiàn)的高親和磷轉(zhuǎn)運(yùn)子[5]。隨后,研究人員以酵母 PHO84 的 EST (expressed sequence tag) 序列作為探針,首次在高等植物擬南芥中分離到 2 個(gè)磷轉(zhuǎn)運(yùn)子基因 AtPT1 和 AtPT2[6]。之后,幾個(gè)研究團(tuán)隊(duì)幾乎同時(shí)從擬南芥中分離出若干相同的高親和磷轉(zhuǎn)運(yùn)子,分別命名為 PT 或 PHT。直到 2000 年,擬南芥全基因組測(cè)序工作完成,9 個(gè)PHT1 家族成員被全部確定下來,并被統(tǒng)一命名為PHT1;1-PHT1;9[7],但是在某些物種如大豆、番茄、小麥等中仍然沿用 PT 的命名方式[8–10]。截止目前,在高等植物中相繼分離出大量的 PHT1 家族同源基因,物種包括擬南芥、水稻、玉米、大豆、大麥、小麥、番茄、土豆、辣椒、茄子、煙草、甘藍(lán)型油菜、菊花等[2–4]。
已有研究表明,植物 PHT1 家族屬于 MFS (major facilitator superfamily) 超家族的第九亞家族,不同物種 PHT1 家族蛋白的結(jié)構(gòu)非常保守。一般情況,該家族蛋白的等電點(diǎn)為 7.6~9.2,分子量約為 57~61 kDa,含有 520~560 個(gè)氨基酸殘基,通常具有 12 個(gè)親脂跨膜結(jié)構(gòu)域,主要由含 17~25 個(gè)氨基酸殘基的α 螺旋構(gòu)成,在第六個(gè)與第七個(gè)跨膜區(qū)間普遍存在一個(gè)親水環(huán),約由 60 個(gè)氨基酸殘基構(gòu)成,最終形成“6 螺旋–親水大環(huán)–6 螺旋”式的結(jié)構(gòu),其中 C-端、N-端和親水大環(huán)都在質(zhì)膜內(nèi)部[11–15]。同時(shí),該家族還具有 H2PO4–/nH+共運(yùn)子、糖轉(zhuǎn)運(yùn)子和 MFS 通用轉(zhuǎn)運(yùn)子等的特征結(jié)構(gòu)域和一段保守的氨基酸特征序列GGDYPLSATIMSE[16–17]。
研究表明,在多種類型的細(xì)胞中,無機(jī)磷的吸收是與質(zhì)子共轉(zhuǎn)運(yùn)的過程,這一過程需要能量介導(dǎo),并會(huì)導(dǎo)致膜外介質(zhì) pH 值的升高,而且磷吸收活性受質(zhì)子載體效率的限制[18-19]。一般情況,轉(zhuǎn)運(yùn)1個(gè)磷酸根離子需要 2~4 個(gè)質(zhì)子協(xié)同進(jìn)入質(zhì)膜,磷與質(zhì)子共轉(zhuǎn)運(yùn)的同時(shí)會(huì)引起膜電位的變化,從而使硫酸根離子及少量的硝酸根離子和氯離子轉(zhuǎn)運(yùn)至膜內(nèi)[20–22]。
PHT1 家族非常龐大,其成員對(duì)磷的轉(zhuǎn)運(yùn)特性存在較大差別。根據(jù)其動(dòng)力學(xué)參數(shù) Km 值,植物磷轉(zhuǎn)運(yùn)子可以分為高親和力磷轉(zhuǎn)運(yùn)系統(tǒng)和低親和力磷轉(zhuǎn)運(yùn)系統(tǒng)兩類。但是對(duì)兩種轉(zhuǎn)運(yùn)子的劃分依據(jù)眾說紛紜,究其原因在于對(duì) Km 值界限、轉(zhuǎn)運(yùn)子構(gòu)象改變或個(gè)別氨基酸變異引起的 Km 值變化等界定不清晰。一般認(rèn)為,高親和 PHT1 基因受磷脅迫誘導(dǎo),可將膜外低濃度磷轉(zhuǎn)運(yùn)到膜內(nèi),其 Km 值在幾十毫摩爾級(jí)別;而低親和 PHT1 基因是組成型表達(dá),只有在磷充足供應(yīng)時(shí)才將膜外的磷轉(zhuǎn)運(yùn)到膜內(nèi),其表達(dá)水平不受外界磷濃度影響,其 Km 值在幾十毫摩爾到上百毫摩爾甚至更高級(jí)別[1, 23]。
目前對(duì) PHT1 轉(zhuǎn)運(yùn)子的磷轉(zhuǎn)運(yùn)動(dòng)力學(xué)研究主要利用酵母突變體 pho84/pho89 (酵母中主要的高親和磷轉(zhuǎn)運(yùn)子) 進(jìn)行酵母互補(bǔ)試驗(yàn)來測(cè)試。利用該技術(shù)檢測(cè)的 PHT1 家族成員 Km 值變化較大,例如菊花 CmPT1為 35.2 μmol/L[24],小麥 TaPHT1;4 為 35.3 μmol/L[25],大豆 GmPT1 和 GmPT2 分別為 6.65 和 6.63 mmol/L[13]。蒺藜狀苜蓿 MtPT1、MtPT2、MtPT3 和 MtPT5 分別為 587 ± 60、641 ± 64、858 ± 91 和 13 ± 2 μmol/L[26],水稻 OsPHT1;8 為 21 μmol/L[27]。利用酵母互補(bǔ)試驗(yàn)測(cè)算植物 PHT1 轉(zhuǎn)運(yùn)子 Km 值有其弊端。該方法只能估算 PHT1 基因在酵母中 Km 的大致范圍,而且不同研究得到的 Km 值可能存在較大差異,且與植物本體 PHT1 轉(zhuǎn)運(yùn)子 Km 值有明顯差別[12]。因此,在酵母中的 Km 測(cè)值只能部分代表植物 PHT1 轉(zhuǎn)運(yùn)子的真實(shí)轉(zhuǎn)運(yùn)活力。為了更準(zhǔn)確地測(cè)試各種植物 PHT1 轉(zhuǎn)運(yùn)子的轉(zhuǎn)運(yùn)效率,通常用幾種方法驗(yàn)證同一 PHT1 基因的轉(zhuǎn)運(yùn)活性,如瓜蟾卵母細(xì)胞試驗(yàn)、植物懸浮細(xì)胞試驗(yàn)等[28]。
此外,PHT1 轉(zhuǎn)運(yùn)子序列變異可能會(huì)引起 Km 值的變化。例如,蒺藜苜蓿 MtPT5 與 MtPT1、MtPT2、MtPT3 有 84% 的氨基酸序列相似性,但表現(xiàn)出對(duì)磷酸鹽不同的親和性 (MtPT5 為高親和性,MtPT1、MtPT2、MtPT3 為低親和性),研究人員對(duì)這 4 個(gè)基因編碼的氨基酸序列進(jìn)行比較和建模發(fā)現(xiàn),MtPT5和其他 3 個(gè)基因編碼的氨基酸序列存在 2 個(gè)片段的差異[26]。擬南芥 AtPHT1;1 轉(zhuǎn)運(yùn)子的 312 位絡(luò)氨酸作為無機(jī)磷酸鹽結(jié)合位點(diǎn),將其突變?yōu)楸彼峄蛘弑奖彼岵粫?huì)影響 PHT1;1 轉(zhuǎn)運(yùn)活力,而將其突變?yōu)樘於彼釙r(shí),AtPHT1;1 編碼蛋白的同源多聚體瓦解,由此可推測(cè)植物PHT1蛋白之間會(huì)通過形成復(fù)合物降低轉(zhuǎn)運(yùn)磷素效率進(jìn)而調(diào)控體內(nèi)磷平衡[29]。
高等植物 PHT1 家族成員眾多,各成員間的時(shí)空表達(dá)模式有相似之處,但也存在較大差異。一般認(rèn)為,PHT1 家族大多數(shù)成員受低磷信號(hào)調(diào)控且主要在根部表達(dá)。至今發(fā)現(xiàn)擬南芥除 PHT1;6 以外的 8 個(gè)成員至少在根中表達(dá),其表達(dá)部位分布在主根皮層、中柱,根毛區(qū)表皮、皮層、中柱,側(cè)根以及根冠等[3]。下面以擬南芥、水稻、大豆、茄科作物及其他高等植物為例簡(jiǎn)要綜述各物種中 PHT1 家族成員的時(shí)空表達(dá)模式及功能。
3.1 擬南芥
研究表明,擬南芥中的 PHT1 家族有 9 個(gè)成員[30],AtPHT1;1、AtPHT1;2 和 AtPHT1;3 對(duì)磷吸收的貢獻(xiàn)相當(dāng)高,而 AtPHT1;1 在長(zhǎng)距離轉(zhuǎn)運(yùn)磷的過程中也發(fā)揮重要作用[31]。除 AtPHT1;6 主要在花器官中表達(dá)外,其余 8 個(gè)在根中表達(dá)的 PHT1 基因中,AtPHT1;1和 AtPHT1;4 轉(zhuǎn)錄水平最高,且這 2 個(gè)基因都是高親和轉(zhuǎn)運(yùn)子[3]。低磷培養(yǎng)下,PHT1;4 突變體對(duì)磷的吸收顯著減少 40%,而在高磷培養(yǎng)下 AtPHT1;1/AtPHT1;4雙突變體對(duì)磷的吸收減少 75%,表明 AtPHT1;1 和AtPHT1;4 無論在低磷還是高磷下對(duì)磷的吸收都起到重要作用[32–33]。AtPHT1;5 超表達(dá)會(huì)增加角果無機(jī)磷含量,提高一些負(fù)責(zé)清除多余磷相關(guān)基因的轉(zhuǎn)錄水平,而 AtPHT1;5 突變導(dǎo)致磷酸鹽向地上部的分配減少。因此 AtPHT1;5 可能對(duì)無機(jī)磷從源到庫(kù)的分配是至關(guān)重要的[34]。AtPHT1;8 和 AtPHT1;9 在根中受缺磷強(qiáng)烈誘導(dǎo)表達(dá),研究表明這 2 個(gè)基因在長(zhǎng)期低磷脅迫下發(fā)揮了重要作用[35]。通過對(duì) AtPHT1;8 和 AtPHT1;9突變體磷的吸收和積累量進(jìn)行分析,發(fā)現(xiàn)它們都參與磷從根部向地上部運(yùn)輸。抑制 AtPHT1;5 或 AtPHT1;9的表達(dá)會(huì)引起其它磷響應(yīng)基因轉(zhuǎn)錄水平的變化[34, 36]。
3.2 水稻
研究表明,水稻 PHT1 家族成員共有 13 個(gè)[37]。在磷充足的條件下,OsPT1 超表達(dá)株系磷含量顯著提高而 RNAi 干涉株系表型相反,研究表明高磷背景下 OsPT1 是吸收和轉(zhuǎn)運(yùn)磷的關(guān)鍵 PHT1 成員[38]。缺磷能顯著誘導(dǎo) OsPT2、OsPT4、OsPT8、OsPT9 和OsPT10 等的表達(dá),OsPT2 僅在主根和側(cè)根的中柱中表達(dá),而 OsPT6 在新生根的表皮細(xì)胞和皮層細(xì)胞中表達(dá)。Ai 等[39]研究表明 OsPT2 是低親和磷轉(zhuǎn)運(yùn)子,主要負(fù)責(zé)轉(zhuǎn)運(yùn)和積累磷,而 OsPT6 對(duì)整個(gè)植株的磷吸收轉(zhuǎn)運(yùn)起到廣泛作用。OsPT4 在根、葉、舌葉、雄蕊和穎果中都有表達(dá),主要負(fù)責(zé)向根、莖和糙米中轉(zhuǎn)運(yùn)累積磷[40]。另有研究發(fā)現(xiàn),OsPT4 在根和胚中的表達(dá)非常強(qiáng),超表達(dá)或 knockout/knockdown OsPT4會(huì)改變植株磷積累,同時(shí)影響胚的發(fā)育和種子的形成[41]。OsPT8 幾乎在每個(gè)器官都有強(qiáng)烈表達(dá),似乎是組成型轉(zhuǎn)運(yùn)子,但仍受缺磷誘導(dǎo)。在正常磷條件下,超表達(dá) OsPT8 會(huì)使轉(zhuǎn)基因植株表現(xiàn)出生長(zhǎng)遲緩、植株矮小和葉片發(fā)黃等典型的磷中毒癥狀[27]。OsPT8 下調(diào)表達(dá)會(huì)導(dǎo)致老葉磷含量上升、新葉磷含量下降,在灌漿期胚乳和胚中的磷含量都急劇下降,表明該基因?qū)α姿貜脑吹綆?kù)的再分配方面起到關(guān)鍵作用[42]。OsPT9 和 OsPT10 在根表皮、根毛及側(cè)根中表達(dá),無論在高磷還是低磷下,基因超表達(dá)體都會(huì)顯著增強(qiáng)對(duì)磷的吸收[43]。
3.3 大豆
研究人員通過對(duì)大豆的基因組數(shù)據(jù)庫(kù)進(jìn)行檢索發(fā)現(xiàn)大豆有 14 個(gè) PHT1 家族成員[44]。RT-PCR 分析表明大豆 GmPT1 和 GmPT2 等 2 個(gè)基因在幼苗根部和地上部表達(dá),缺磷使 GmPT1 和 GmPT2 的表達(dá)發(fā)生輕微變化[13]。GmPT5 主要在根與新生成結(jié)瘤的連接處、幼嫩或成熟結(jié)瘤的叢枝中表達(dá),意味著 GmPT5可能負(fù)責(zé)將磷從根維管組織向結(jié)瘤中轉(zhuǎn)運(yùn),尤其在缺磷脅迫下 GmPT5 轉(zhuǎn)運(yùn)活力更強(qiáng),因此 GmPT5 可能是調(diào)控結(jié)瘤磷穩(wěn)態(tài)的關(guān)鍵轉(zhuǎn)運(yùn)子[44]。GmPT7 在根部成熟的叢枝菌根 (arbuscular mycorrhiza,AM)皮層細(xì)胞、根冠小柱細(xì)胞和無菌根組織的側(cè)根原基細(xì)胞表達(dá),在衰老葉片的維管束末端局部管胞細(xì)胞也有表達(dá),主要負(fù)責(zé)把再活化的磷向種子轉(zhuǎn)運(yùn)[8]。研究表明,GmPT7、GmPT10 和 GmPT11 受 AM 誘導(dǎo)表達(dá)[45]。
3.4 茄科作物
茄科作物 (Solanaceous species) 是僅次于禾本科和豆科作物的世界第三大類經(jīng)濟(jì)作物,共超過200000 種茄科作物可與 AM 真菌形成共生菌根[46]。低磷會(huì)誘導(dǎo)番茄 LePT1 和 LePT2 兩基因在根和葉中大量表達(dá),在高磷條件下轉(zhuǎn)入番茄 LePT1 或 LePT2的水稻植株有效磷出現(xiàn)過量積累,導(dǎo)致植株矮小、分蘗數(shù)減少[47]。同時(shí),也有研究表明 LePT1 和 LePT7被檢測(cè)到在所有組織中都有表達(dá),低磷促使 LePT2和 LePT6 主要在根中表達(dá),而 LePT3、LePT4 和LePT5 僅在低磷條件下受菌根菌強(qiáng)烈誘導(dǎo)表達(dá),高磷條件下則不會(huì)被菌根誘導(dǎo)[9]。土豆與番茄 PHT1;1~PHT1;5 同源基因的表達(dá)模式相似:缺磷增強(qiáng)葉片和根部 PHT1;1 的表達(dá),無磷特異誘導(dǎo)根部 PHT1;2 的表達(dá),菌根能增強(qiáng) PHT1;3 表達(dá),并誘導(dǎo) PHT1;4 和PHT1;5 的表達(dá)[48]。PHT1 家族同源基因在辣椒、茄子和煙草中也具有相似的表達(dá)模式:PHT1;1 在根系中的表達(dá)量高于葉片,而 PHT1;2 只在根系中有表達(dá);PHT1;1 和 PHT1;2 受缺磷信號(hào)誘導(dǎo)上調(diào)表達(dá),但是接種菌根菌后 2 個(gè)基因的表達(dá)量均下降;在高磷供應(yīng)下,被菌根菌侵染后植株中的 PHT1;2 在根系中表達(dá)增強(qiáng);PHT1;3 被菌根誘導(dǎo)增強(qiáng)表達(dá),PHT1;4和 PHT1;5 為菌根特異性誘導(dǎo)表達(dá)[23, 49]。
小麥 TaPT2 受缺磷誘導(dǎo)表達(dá),其表達(dá)水平與外界磷酸鹽濃度密切相關(guān)且只在根中表達(dá)[10]。小麥TaPHT1;4 同樣在根中受低磷脅迫誘導(dǎo)表達(dá),有趣的是 TaPHT1;4 白天表達(dá)量高,夜間表達(dá)量低[25]。大麥HORvu;PHT1;1 只在根中表達(dá)且強(qiáng)烈受到缺磷誘導(dǎo),而 HORvu;PHT1;6 在葉片和葉耳的維管束韌皮部表達(dá)[15]。HvPHT1;1 和 HvPHT1;2 的表達(dá)模式相似,受缺磷誘導(dǎo),且都在次生根根毛的生毛細(xì)胞和節(jié)生根的中柱有高水平表達(dá),葉片表達(dá)相對(duì)較低[50]。甘藍(lán)型油菜 BnPHT1;4 主要在根部表達(dá),在擬南芥中超表達(dá)BnPHT1;4 能促進(jìn)主根生長(zhǎng),抑制側(cè)根生長(zhǎng)并提高磷利用率[51]。Liu 等[24]研究發(fā)現(xiàn)菊花 CmPT1 受低磷誘導(dǎo)表達(dá),在根、莖、葉中的表達(dá)量依次降低,超表達(dá)CmPT1 使植物的株高、根體積、生物量、磷吸收量等增加。研究人員 2011 年首次對(duì)大葉楊的 12 個(gè) PHT1家族基因進(jìn)行研究,發(fā)現(xiàn)低磷脅迫使大多數(shù) PHT1家族成員上調(diào)表達(dá),尤其是 PHT1;9 和 PHT1;11,而PHT1;10 僅在 AM 中強(qiáng)烈轉(zhuǎn)錄[52]。
4.1 介質(zhì)無機(jī)磷濃度
外界環(huán)境中的無機(jī)磷 (inorganic phosphate,Pi)濃度是調(diào)控 PHT1 表達(dá)水平的重要因子之一,Pi 可以作為信號(hào)分子調(diào)控部分 PHT1 家族成員的轉(zhuǎn)錄水平 (詳見本文第三部分)[3]。例如,Misson 等[33]利用GUS 報(bào)告基因和原位雜交技術(shù)分析了不同無機(jī)磷水平下擬南芥磷轉(zhuǎn)運(yùn)子基因 Pht1;4 的轉(zhuǎn)錄水平,結(jié)果發(fā)現(xiàn) AtPht1;4 在低磷濃度的介質(zhì)中主要在根表皮、皮層和根冠中表達(dá),該基因突變可以使植物磷吸收能力下降 40%。有意思的是,植物 PHT1 家族基因的表達(dá)水平不但受到介質(zhì)磷濃度的調(diào)控,而且不同磷濃度對(duì) PHT1 基因轉(zhuǎn)錄的調(diào)控程度不同。在外界無機(jī)磷濃度低于 10 μmol/L 的時(shí)候,基因的表達(dá)顯著上升,而當(dāng)外界無機(jī)磷濃度高于 250 μmol/L 的時(shí)候,基因的表達(dá)則維持在較低的水平,而且這種表達(dá)變化反應(yīng)非常迅速[3, 33]。
4.2 啟動(dòng)子元件
基因表達(dá)是由眾多順式作用元件和反式作用因子相互作用調(diào)控的。研究表明,在植物 PHT1 家族基因的啟動(dòng)子區(qū)存在一些特殊的元件,通過與其他基因相互作用調(diào)控 PHT1 家族基因的表達(dá)水平。分析發(fā)現(xiàn)在茄子和煙草 PHT1 家族同源基因的啟動(dòng)子區(qū)至少包括 MYCS (TTTCTTGTTCT) 和 P1BS (GNATATNC) 2 個(gè)順式調(diào)控元件,負(fù)責(zé)激活菌根誘導(dǎo) PHT1 轉(zhuǎn)運(yùn)子基因的轉(zhuǎn)錄,對(duì) 2 個(gè)元件的任意一個(gè)進(jìn)行缺失或部分突變都會(huì)造成啟動(dòng)子活性顯著減弱甚至全部喪失。因此,可以推測(cè)在雙子葉植物中,叢枝菌根真菌 (arbuscular mycorrhizal fungi,AMF) 介導(dǎo)的無機(jī)磷吸收過程至少受 MYCS 和 P1BS元件的調(diào)控[53]。甘藍(lán)型油菜 BnPHT1;4 啟動(dòng)子區(qū)有 2個(gè) P1BS 元件和 2 個(gè) W-box (TTGAC/T) 元件。研究表明,P1BS 元件是該基因被缺磷信號(hào)誘導(dǎo)表達(dá)的必需序列,而 W-box 對(duì) WRKY75 結(jié)合 BnPHT1;4 啟動(dòng)子是重要的[51]。此外,除了上述順式作用元件外,研究人員還發(fā)現(xiàn)了另一類似于 P1BS 的元件,命名為P1BS-like 元件,該元件同樣可以調(diào)控 PHT1 家族基因的表達(dá)。例如,Schünmann 等[50]發(fā)現(xiàn)大麥 PHT1 家族基因的啟動(dòng)子區(qū)都包含 P1BS-like 元件,該元件能促進(jìn) HvPHT1;1 和 HvPHT1;2 等基因在低磷脅迫下表達(dá)上升。大麥 HvPHT1;1 啟動(dòng)子區(qū)包含 1 個(gè) PHO-like motif 和 3 個(gè)與雙子葉植物 P1BS 元件相似的motifs,把啟動(dòng)子區(qū)的 3 個(gè) P1BS 縮減為一個(gè)后會(huì)增加 HvPHT1;1 對(duì)低磷脅迫的響應(yīng)[54]。
4.3 轉(zhuǎn)錄因子 (TF)
PHR1 基因?qū)儆?MYB 超家族轉(zhuǎn)錄因子。該基因可以結(jié)合到磷脅迫誘導(dǎo)基因啟動(dòng)子區(qū)的 P1BS 元件上,進(jìn)而調(diào)控基因的表達(dá)[3, 28, 55–57]。受 PHR1 基因調(diào)控的基因包括 PHT1 家族基因、PHO1、At4 和miRNA399 等 (圖 1)[28, 53, 55–57]。AtPHR1 是第一個(gè)在維管植物中分離的參與低磷脅迫轉(zhuǎn)錄調(diào)控的 MYB 超家族轉(zhuǎn)錄因子[57]。水稻中分離到 2 個(gè) AtPHR1 同源基因(OsPHR1 和 OsPHR2),其中 OsPHR2 的功能與AtPHR1 類似。正常供磷條件下,超表達(dá) OsPHR2 會(huì)使水稻地上部 OsPT1、OsPT5、OsPT7、OsPT9 和OsPT12 等的表達(dá)上調(diào)[58]。同樣,在油菜和擬南芥中超表達(dá)油菜 BnPHR1 同源基因會(huì)使高親和磷轉(zhuǎn)運(yùn)子BnPT2 及 ATPT2 的表達(dá)量顯著升高[59]。對(duì)小麥 PHR1同源基因 Ta-PHR1-A1 的研究結(jié)果顯示該基因可以激活 Ta-PHT1.2 的表達(dá)[60]。然而 MYB 家族的另外一個(gè)轉(zhuǎn)錄因子 MYB62 與 PHR1 的作用正好相反,超表達(dá)該基因會(huì)顯著抑制 Pht1;1 和 Pht1;4 的表達(dá)[61]。
WRKY 轉(zhuǎn)錄因子家族基因在調(diào)控 PHT1 轉(zhuǎn)錄中同樣扮演了重要角色,該家族可以結(jié)合到基因啟動(dòng)子區(qū)的 W-box 元件上,調(diào)控基因的轉(zhuǎn)錄 (圖 1)。擬南芥 WRKY75 受缺磷誘導(dǎo)表達(dá),調(diào)節(jié)磷的吸收和根系的發(fā)育。抑制該基因的表達(dá)導(dǎo)致 Pht1;1 和 Pht1;4的表達(dá)下降,進(jìn)而影響植株磷吸收[62]。Wang 等[63]研究發(fā)現(xiàn)擬南芥 WRKY45 可以與 PHT1;1 啟動(dòng)子區(qū)的 2個(gè) W-box 結(jié)合,進(jìn)而激活 PHT1;1 基因的轉(zhuǎn)錄,超表達(dá) WRKY45 基因使得 PHT1;1 基因的表達(dá)顯著上升,而抑制 WRKY45 基因的表達(dá)則出現(xiàn)相反的結(jié)果。此外,當(dāng)磷供應(yīng)充足時(shí),擬南芥 WRKY42 蛋白同樣通過與 PHT1;1 啟動(dòng)子區(qū)結(jié)合正調(diào)控該基因的轉(zhuǎn)錄,在缺磷條件下因 WRKY42 蛋白的降解而導(dǎo)致調(diào)控解除[64]。
Vessel Scheduling Optimization in Two-Way Traffic Ports
圖1 植物 PHT1 家族基因可能的調(diào)控途徑Fig. 1 Possible regulation pathway of plant PHT1 family genes[注(Note):圖中綠色箭頭代表正調(diào)控,紅色“T”型線條代表負(fù)調(diào)控 Green arrows denote positive effect; whereas red lines ending with short bars indicate negative effect.]
除此之外,其它轉(zhuǎn)錄因子基因在 PHT1 家族基因的轉(zhuǎn)錄調(diào)控中起作用。例如,擬南芥 ZAT6 基因是一個(gè)編碼具有 C2H2 (cysteine-2/histidine-2) 鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子,超表達(dá) AtZAT6 可以抑制 Pht1;1 和 Pht1;4的表達(dá),減少轉(zhuǎn)基因植株的磷吸收量[65]。
4.4 叢枝菌根
叢枝菌根 (arbuscular mycorrhiza,AM) 是植物根部和真菌互惠共生的結(jié)果,大多數(shù)維管開花植物都能形成菌根。一般認(rèn)為營(yíng)養(yǎng)交換是菌根共生的重要特征,AMF 在協(xié)助植物從土壤中吸收磷酸鹽的同時(shí)從宿主植物中獲得碳[66]。例如,有研究表明水稻吸收的磷酸鹽 70% 來自共生菌根[67],而且不同種類的菌根真菌與宿主的結(jié)合程度強(qiáng)烈影響菌根對(duì)磷酸鹽的吸收[2]。研究表明,AM 可以誘導(dǎo)植物根系中高親和磷轉(zhuǎn)運(yùn)基因的表達(dá) (圖 1)[68]。目前在很多植物中均發(fā)現(xiàn)受菌根誘導(dǎo)表達(dá)的 PHT1 家族基因。例如水稻OsPT11 和 OsPT13[69],玉米 ZmPT6[70],馬鈴薯 StPT3、StPT4 和 StPT5[71],大豆 GmPT10 和 GmPT11[45],番茄 LePT3、LePT4 和 LePT5[48, 72],苜蓿 MtPT4[73],矮牽?;?PhPT4[74],白楊 PtPT8 及 PtPT10[52],栗SiPHT1;8 和 SiPHT1;9[14],以及在其它植物中的同源基因等[75–77]。這些 PHT1 家族基因的表達(dá)水平會(huì)隨著磷及菌根的存在與否而發(fā)生變化。有些磷轉(zhuǎn)運(yùn)子受菌根誘導(dǎo)表達(dá),如 OsPT11、MtPT4 等,而有些磷轉(zhuǎn)運(yùn)子尤其是位于根系表皮中的磷轉(zhuǎn)運(yùn)子則受到菌根抑制表達(dá),如 OsPHT1;1、MtPHT1;1 等。植物利用磷轉(zhuǎn)運(yùn)子基因通過根系表皮途徑以及菌根途徑進(jìn)行磷的吸收,并保持很好的平衡[78]。同時(shí),Xie 等[79]研究發(fā)現(xiàn),在低磷條件下紫云英 AsPT1 和 AsPT4 基因在菌根皮層細(xì)胞被誘導(dǎo)表達(dá),AsPT1 的超表達(dá)能提高菌根的生物量,而 AsPT1 的表達(dá)受到抑制時(shí)植株的叢枝會(huì)出現(xiàn)退化或死亡現(xiàn)象,Aspt4 沉默株系出現(xiàn)相同表型。這些結(jié)果表明 AM 共生體系依賴于 PHT1家族基因 AsPT1 和 AsPT4 的表達(dá)。
5.1 PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR 1 (PHF1)
磷轉(zhuǎn)運(yùn)子的活性取決于其向質(zhì)膜的轉(zhuǎn)運(yùn)過程。擬南芥 AtPHF1 基因編碼的蛋白主要負(fù)責(zé)將 PHT1 轉(zhuǎn)運(yùn)蛋白從內(nèi)質(zhì)網(wǎng)運(yùn)輸至質(zhì)膜,參與 PHT1 蛋白的細(xì)胞內(nèi)運(yùn)輸調(diào)節(jié) (圖 1)。該基因主要在根系、花和衰老的葉片中表達(dá)。當(dāng) AtPHF1 發(fā)生突變時(shí),內(nèi)質(zhì)網(wǎng)中的AtPHT1;1 磷轉(zhuǎn)運(yùn)蛋白發(fā)生滯留,質(zhì)膜上的 Pht1;1 磷轉(zhuǎn)運(yùn)蛋白減少,植株體內(nèi)磷的累積下降。同時(shí)該基因的轉(zhuǎn)錄受 PHR1 基因的正調(diào)控[80]。水稻同源基因OsPHF1 的功能與 AtPHF1 類似,當(dāng)該基因發(fā)生突變時(shí),磷轉(zhuǎn)運(yùn)子基因 OsPT2 和 OsPT8 在內(nèi)質(zhì)網(wǎng)上發(fā)生滯留,導(dǎo)致植物整體磷積累不足。但與 AtPHF1 基因不同的是 OsPHF1 基因的轉(zhuǎn)錄并不受 AtPHR1 同源基因 OsPHR2 的調(diào)控[81]。
5.2 磷酸化 (phosphorylation)
研究表明,磷酸化在 PHT1 基因翻譯后調(diào)控的過程中發(fā)揮了重要作用[3, 28]。Bayle 等[82]發(fā)現(xiàn)擬南芥PHT1;1 從內(nèi)質(zhì)網(wǎng)的運(yùn)出受它的第 514 位絲氨酸磷酸化水平的調(diào)節(jié)。低磷脅迫時(shí),未被磷酸化的 PHT1蛋白在 PHF1 的協(xié)助下,從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)移至細(xì)胞膜上,幫助植物吸收轉(zhuǎn)運(yùn)磷。而磷供應(yīng)充足時(shí),PHT1;1 蛋白的第 514 位絲氨酸位點(diǎn)發(fā)生磷酸化,導(dǎo)致 PHF1 無法與該蛋白結(jié)合,從而使得該蛋白從內(nèi)質(zhì)網(wǎng)向質(zhì)膜的運(yùn)輸受阻,導(dǎo)致其滯留在內(nèi)質(zhì)網(wǎng)內(nèi)。Chen 等[83]在水稻中的研究發(fā)現(xiàn),CK2α3/β3 激酶在正常磷水平下可使 PT8 發(fā)生磷酸化,抑制 PT8 與 PHF1 的互作,進(jìn)而影響 PT8 從內(nèi)質(zhì)網(wǎng)向質(zhì)膜的運(yùn)輸。然而,磷脅迫會(huì)使 CK2α3/β3 激酶的 β3 亞基發(fā)生去磷酸化而降解,而使這種抑制作用解除進(jìn)而促進(jìn)磷的吸收,緩解植物的磷饑餓。因此,水稻 CK2α3/β3 激酶主要通過磷酸化 PHT1 蛋白負(fù)調(diào)控磷的吸收,而其自身的轉(zhuǎn)錄又受磷水平的調(diào)控 (圖 1)。
5.3 含 SPX 結(jié)構(gòu)域的蛋白家族
很多含 SPX (SYG/Pho81/XPR1) 功能域的基因參與了植物磷信號(hào)的傳導(dǎo)途徑,表明該類基因在植物磷信號(hào)傳遞及磷動(dòng)態(tài)平衡過程中發(fā)揮著重要的作用[28, 55–56]。擬南芥和水稻中分別發(fā)現(xiàn)了 4 個(gè)和 6 個(gè)SPX 家族基因,命名為 AtSPX1-4 和 OsSPX1-6[84-85]。擬南芥 AtSPX1 和 AtSPX3 受缺磷強(qiáng)烈誘導(dǎo)表達(dá)。抑制 AtSPX3 的表達(dá)使地上部 Pht1;4 和 Pht1;5 的表達(dá)量顯著上升,表明 AtSPX3 基因?qū)?PHT1 家族基因起負(fù)調(diào)控的作用。同時(shí) AtSPX3 自身的轉(zhuǎn)錄水平受到AtPHR1 基因的正調(diào)控 (圖 1)[84]。水稻 OsSPX1 同樣受低磷特異誘導(dǎo),超表達(dá) OsSPX1 會(huì)抑制 OsPT2、OsPT3、OsPT6 和 OsPT8 等 PHT1 家族基因的表達(dá),而抑制 OsSPX1 的表達(dá)則會(huì)引起植株體內(nèi)磷的超積累,說明 OsSPX1 負(fù)調(diào)控 PHT1 家族基因,進(jìn)而影響磷的吸收。同時(shí)研究表明 OsSPX1 在磷調(diào)控網(wǎng)絡(luò)中位于 OsPHR2 和 PHO2 的下游[85]。
近年來,研究人員發(fā)現(xiàn)了另外一類含 SPX 結(jié)構(gòu)域的基因 NLA,該基因編碼一個(gè)泛素 E3 連接酶,屬于 SPX-RING (really interesting new gene) 蛋白家族,除了含有 SPX 結(jié)構(gòu)域外還含有 RING 結(jié)構(gòu)域[86]。研究表明,NLA 基因能促使 PHO2 編碼的 E2 結(jié)合酶UBC24 對(duì)質(zhì)膜 PHT1 蛋白的泛素化,進(jìn)而參與對(duì)PHT1 家族基因的翻譯后調(diào)控。當(dāng)磷供應(yīng)充足時(shí),NLA 和 PHO2 (UBC24) 形成復(fù)合體對(duì) PHT1;4 進(jìn)行泛素化作用,促使細(xì)胞質(zhì)膜上的 PHT1;4 蛋白通過內(nèi)吞作用在液泡內(nèi)進(jìn)行。然而,NLA 和 PHO2 是 miR827和 miR399 的下游靶基因,當(dāng)磷缺乏時(shí) NLA 和 PHO2的轉(zhuǎn)錄本分別被 miR827 和 miR399 裂解,進(jìn)而解除對(duì) PHT1;4 蛋白的抑制,促進(jìn)無機(jī)磷的吸收 (圖 1)[86–87]。因此,NLA 和 PHO2 都是植物磷吸收的負(fù)調(diào)控因子。5.4MicroRNA
非編碼 RNA 雖然不能編碼蛋白質(zhì),但是可以產(chǎn)生具有生物學(xué)功能的 microRNA,進(jìn)而參與植物發(fā)育調(diào)控和逆境響應(yīng)等重要過程。已有研究表明,microRNA可以作為長(zhǎng)距離信號(hào)參與植物低磷脅迫響應(yīng)[28, 55–56]。目前研究較為清楚的是擬南芥 miR399,該基因受缺磷誘導(dǎo)表達(dá)。研究表明,miR399 能直接作用于 PHO2基因的 5’-UTR 區(qū),降解 PHO2 基因的 mRNA。PHO2 (UBC24) 基因編碼一個(gè) E2 泛素連接酶。在磷充足條件下該基因在植株根系中大量表達(dá),并負(fù)調(diào)控高親和磷轉(zhuǎn)運(yùn)子 Pht1;8 和 Pht1;9 的表達(dá),抑制磷的吸收,而在缺磷的條件下,轉(zhuǎn)錄因子 PHR1 基因能激活 miRNA399 的轉(zhuǎn)錄,miR399 大量增加抑制了PHO2 的表達(dá),從而使植株啟動(dòng)高親和磷轉(zhuǎn)運(yùn)系統(tǒng),促進(jìn)植株磷的吸收 (圖 1)[56, 88–89]。
另一個(gè)報(bào)道與植物響應(yīng)低磷脅迫信號(hào)途徑相關(guān)的 microRNA 是 miRNA827。在缺磷的條件下,miR827表達(dá)上升,降解 AtNLA 的 mRNA,從而激活植株磷的吸收以及磷從根系到地上部的轉(zhuǎn)運(yùn) (如本文 5.3 所述)。最新的研究發(fā)現(xiàn)除了 miR399 和 miRNA827 外,miRNA778 也參與植物磷動(dòng)態(tài)平衡過程。在低磷環(huán)境下,超表達(dá) miR778 導(dǎo)致 miR399、Pht1;4 等基因的表達(dá)量上升,地上部無機(jī)磷和花青素的累積增加[90]。miR778的靶基因 SUVH6 編碼 H3K9 甲基轉(zhuǎn)移酶,其表達(dá)水平受磷水平的調(diào)控,然而 SUVH6 參與植物響應(yīng)低磷脅迫的機(jī)理仍需進(jìn)一步研究。
5.5 植物激素
植物激素如生長(zhǎng)素 (auxin)、乙烯 (ethylene) 和細(xì)胞分裂素 (cytokinin) 等在植物響應(yīng)低磷脅迫的過程中發(fā)揮了重要作用[55]。研究表明,生長(zhǎng)素和細(xì)胞分裂素能抑制擬南芥高親和磷轉(zhuǎn)運(yùn)子 AtPT1 的表達(dá)[91]。Wang 等[92]在水稻中克隆一個(gè)生長(zhǎng)素響應(yīng)因子基因OsARF12,該基因發(fā)生突變時(shí),參與水稻低磷脅迫調(diào)控的重要基因 OsPHR2 上調(diào),其下游 PHT1 家族基因如 OsPT3、OsPT6、OsPT8 及 OsPT9 等的表達(dá)也顯著增加,植株磷吸收增加,表明 OsARF12 作為負(fù)調(diào)控因子影響水稻磷的吸收和轉(zhuǎn)運(yùn),而 OsARF12的突變同樣會(huì)影響缺磷條件下生長(zhǎng)素的積累。OsARF16基因是近年來在水稻中克隆的另外一個(gè)生長(zhǎng)素響應(yīng)因子。研究表明,該基因的表達(dá)同時(shí)受生長(zhǎng)素和低磷脅迫的誘導(dǎo)。OsARF16 基因突變會(huì)影響生長(zhǎng)素的極性運(yùn)輸,導(dǎo)致根系發(fā)育對(duì)生長(zhǎng)素信號(hào)不敏感,以及對(duì)缺磷脅迫的響應(yīng)能力減弱,表明 OsARF16 基因在生長(zhǎng)素和磷脅迫信號(hào)感知的過程中發(fā)揮重要作用[93]。有趣的是,OsARF16 基因參與磷脅迫響應(yīng)過程同時(shí)受細(xì)胞分裂素的調(diào)控。細(xì)胞分裂素會(huì)誘導(dǎo)OsARF16 的轉(zhuǎn)錄,抑制 PHT1 家族基因的表達(dá),降低磷從根系向地上部的轉(zhuǎn)運(yùn)。當(dāng) OsARF16 基因發(fā)生突變時(shí),OsPTs 基因的表達(dá)與野生型材料在磷脅迫條件下外源添加細(xì)胞分裂素相比顯著增加,表明OsARF16 基因參與了細(xì)胞分裂素介導(dǎo)的水稻磷轉(zhuǎn)運(yùn)和磷信號(hào)抑制過程[94]。此外,Talboys 等研究發(fā)現(xiàn)解淀粉芽孢桿菌 FZB42 (根際細(xì)菌) 能分泌生長(zhǎng)素促進(jìn)小麥根系生長(zhǎng),但強(qiáng)烈抑制 TaPHT1;8 和 TaPHT1.10的表達(dá),進(jìn)而降低磷的吸收[95]。
細(xì)胞分裂素的主要功能是誘導(dǎo)植物細(xì)胞分裂。CRE1 基因編碼一個(gè)組氨酸蛋白激酶,作為細(xì)胞分裂素受體參與激素信號(hào)感知過程。研究表明,細(xì)胞分裂素可以誘導(dǎo)該基因的表達(dá),而低磷脅迫則會(huì)抑制其轉(zhuǎn)錄水平。當(dāng) CRE1 基因發(fā)生突變時(shí),AtPT1 的轉(zhuǎn)錄水平上升[96]。
植株器官衰老期間,大分子物質(zhì)程序性降解,使得衰老組織中的養(yǎng)分被再活化進(jìn)而轉(zhuǎn)運(yùn)到新生組織中。研究表明,乙烯參與了牽牛花中核酸降解的調(diào)控過程,并且外源添加乙烯使花中 PhPht1;1 轉(zhuǎn)錄上升,表明乙烯可能在衰老期對(duì)磷的再移動(dòng)發(fā)揮重要作用[97]。擬南芥 Pht1;5 基因主要在子葉、下胚軸、花蕾和老葉中表達(dá),負(fù)責(zé)“源”和“庫(kù)”器官間磷酸鹽的移動(dòng)。超表達(dá) Pht1;5 基因會(huì)促進(jìn)根毛的形成而抑制主根的生長(zhǎng)。然而抑制轉(zhuǎn)基因植株乙烯合成和信號(hào)感知時(shí),該表型幾乎恢復(fù)至野生型水平,表明乙烯信號(hào)與 PHT1 家族基因存在顯著的互作關(guān)系[34]。
5.6 其他調(diào)控途徑
除上述信號(hào)調(diào)控途徑參與 PHT1 家族的調(diào)控外,其他調(diào)控途徑也有相關(guān)報(bào)道,包括染色質(zhì)修飾、PHT1 家族基因互作,以及鈣信號(hào)等。ARP6 基因編碼一個(gè)核肌動(dòng)蛋白相關(guān)蛋白 (nuclear actin-related protein),是 SWR1 染色質(zhì)重構(gòu)復(fù)合體的關(guān)鍵成分。該基因主要通過 H2A.Z 型組蛋白在染色質(zhì)上的沉積來調(diào)控 PHT1 家族基因的轉(zhuǎn)錄[98]。
PHT1 家族基因間的互作也會(huì)影響基因的表達(dá)。例如,在擬南芥中敲除 AtPHT1;8 基因會(huì)改變AtPHT1;5 和 AtPHT1;7 的轉(zhuǎn)錄本,AtPHT1;9 的突變會(huì)改變 AtPHT1;7 的轉(zhuǎn)錄本[36]。下調(diào)水稻 OsPT9 或OsPT10 的表達(dá)并不引起植株無機(jī)磷含量的改變,但同時(shí)下調(diào)這 2 個(gè)基因的表達(dá)會(huì)引起無機(jī)磷含量顯著降低,表明 OsPT9 和 OsPT10 對(duì)磷的吸收功能可能發(fā)生重疊[43]。
此外,研究表明鈣離子及相關(guān)蛋白參與植物響應(yīng)非生物脅迫的調(diào)節(jié)過程。破壞擬南芥液泡 Ca2+/H+轉(zhuǎn)運(yùn)子 CAX1 和 CAX3 基因會(huì)引起地上部磷酸鹽等離子組成的顯著變化。磷脅迫時(shí),地上部 CAX1 基因的表達(dá)受到抑制,地上部 Ca2+穩(wěn)態(tài)被打破,激發(fā)系統(tǒng)信號(hào),由地上部傳遞至根系,進(jìn)而對(duì) PHT1 家族基因進(jìn)行翻譯后調(diào)控,影響根系磷轉(zhuǎn)運(yùn)系統(tǒng)的活性[99]。
磷是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素,是植物體內(nèi)核酸、磷脂和 ATP 的重要組成成分。土壤總磷含量較高,然而植物可利用的有效磷含量卻很低。究其原因,主要是因?yàn)榱自谕寥乐腥菀妆晃焦潭ǎ苿?dòng)性很差,導(dǎo)致植物吸收磷不足[1]。農(nóng)業(yè)上往往大量施用磷肥以滿足植物生長(zhǎng)需要,但是磷肥利用率偏低,且磷礦資源儲(chǔ)量有限。為實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的要求,通過分子生物學(xué)技術(shù)和遺傳育種的辦法改良作物磷吸收率和利用率,成為解決農(nóng)業(yè)生產(chǎn)中磷缺乏脅迫的關(guān)鍵手段。目前,有關(guān)植物應(yīng)對(duì)磷缺乏脅迫機(jī)制的研究很多,也克隆出一些與磷吸收利用相關(guān)的基因,但是結(jié)果表明植物對(duì)磷吸收利用的分子調(diào)控機(jī)理相當(dāng)復(fù)雜,所以培育磷高效利用基因型作物任重而道遠(yuǎn)。
植物 PHT1 磷轉(zhuǎn)運(yùn)蛋白家族在植物磷吸收、轉(zhuǎn)運(yùn)、體內(nèi)磷分配及再利用等過程中發(fā)揮了重要作用[3–4, 28, 55–56]。自 1996 年在高等植物中克隆出第一個(gè)磷轉(zhuǎn)運(yùn)基因以來,植物 PHT1 家族的克隆與功能研究不斷推進(jìn)并取得了長(zhǎng)足的進(jìn)展。這一研究領(lǐng)域已從模式植物、作物向其他高等植物中擴(kuò)展,同時(shí)也進(jìn)一步拓寬我們對(duì)高等植物 PHT1 家族的認(rèn)識(shí)。已有研究表明,植物 PHT1 家族是一個(gè)龐大的家族,基因功能各異,基因表達(dá)調(diào)控機(jī)理復(fù)雜,涉及磷信號(hào)的感知、響應(yīng),轉(zhuǎn)錄水平的調(diào)控,以及功能基因蛋白 (PHT/PT) 活性的修飾等一系列過程 (圖 1)。然而,對(duì)該家族蛋白的生化及結(jié)構(gòu)生物學(xué)研究還待進(jìn)一步深入。此外,對(duì)于一些基因組較復(fù)雜的多倍體物種如甘藍(lán)型油菜、小麥、大麥及棉花等,關(guān)于PHT1 家族與磷吸收轉(zhuǎn)運(yùn)的調(diào)控機(jī)理研究仍需要大量努力。然而,隨著研究技術(shù)的不斷成熟及新的生物技術(shù)的不斷涌現(xiàn),我們相信關(guān)于植物 PHT1 家族的認(rèn)知必將推向一個(gè)新的高度。
[1]Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116: 447–453.
[2]Walder F, Brulé D, Koegel S, et al. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax[J]. New Phytologist, 2015, 205(4): 1632–1645.
[3]Nussaume L, Kanno S, Javot H, et al. Phosphate import in plants: focus on the PHT1 transporters[J]. Frontiers in Plant Science, 2011, 2: 83.
[4]丁廣大, 陳水森, 石磊, 等. 植物耐低磷脅迫的遺傳調(diào)控機(jī)理研究進(jìn)展[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(3): 733–744. Ding GD, Chen SS, Shi L, et al. Advances in genetic regulation mechanism of plant tolerance to phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 733–744.
[5]Bun-Ya M, Nishimura M, Harashima S, Oshima Y. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter[J]. Molecular and Cellular Biology, 1991, 11: 3229–3238.
[6]Muchhal US, Pardo JM, Raghothama KG. Phosphate transporters from the higher plant Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1996, 93: 10519–10523.
[7]Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216: 23–37.
[8]Inoue Y, Kobae Y, Omoto E, et al. The soybean mycorrhizainducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves[J]. Plant and Cell Physiology, 2014, 55(12): 2102–2111.
[9]Chen AQ, Chen X, Wang HM, et al. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato[J]. BMC Plant Biology, 2014, 14: 61.
[10]Guo CJ, Guo L, Li XJ, et al. TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation[J]. Acta Physiologiae Plantarum, 2014, 36: 1373–1384.
[11]Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis[J]. The Arabidopsis Book, 2002, : e0024.
[12]Qin L, Guo Y, Chen L, et al. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean[J]. PLoS One, 2012, 7(10): e47726.
[13]Wu Z, Zhao J, Gao R, et al. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max[J]. PLoS One, 2011, 6(6): e19752.
[14]Ceasar SA, Hodge A, Baker A, et al. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)[J]. PLoS One, 2014, 9(9): e108459.
[15]Anne LR, Daisy H, Janine MJ, Frank WS. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family[J]. Plant Molecular Biology, 2003, 53: 27–36.
[16]李慧, 叢郁, 常有宏, 等. 豆梨磷轉(zhuǎn)運(yùn)蛋白質(zhì)基因(PcPht1)的克隆,表達(dá)及啟動(dòng)子分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2013, 29(4): 842–850. Li H, Cong Y, Chang YH, et al. Cloning, expression and promoter analysis of aphosphate transporter protein gene PcPht1 from Pyrus calleryana Dcne[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(4): 842–850.
[17]Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas[J]. Trends in Plant Science, 2005, 10(1): 22–29.
[18]Ullrich CI, Novacky AJ. Extra- and intracellular pH and membrane potential changes induced by K, Cl, H2PO4, and NO3-uptake and fusicoccin in root hairs of Limnobium stoloniferum[J]. Plant Physiology, 1990, 94: 1561–1567.
[19]Norihiro M, Satoru O, Yumiko S, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Plant Biology, 1997, 94: 7098–7102.
[20]Ullrich-Eberius CI, Novacky A, Fischer E, Luttge U. Relationship between energy-dependent phosphate uptake and the electrical membrane potential in Lemnagibba G1[J]. Plant Physiology, 1981, 67: 797–801.
[21]Ullrich-Eberius CI, Novacky A, Van BA JE. Phosphate uptake in Lemnagibba G1: energetics and kinetics[J]. Planta, 1984, 161: 46–52.
[22]Preuss CP, Huang CY, Gilliham M, et al. Channel-like characteristics of the low-affinity barley phosphate transporter PHT1;6 when expressed in Xenopus oocytes[J]. Plant Physiology, 2010, 152(3): 1431–1441.
[23]陳愛群. 三種茄科作物Pht1家族磷轉(zhuǎn)運(yùn)蛋白基因的克隆及表達(dá)調(diào)控分析[D]. 南京: 南京農(nóng)業(yè)大學(xué)博士學(xué)位論文, 2009. Chen AQ. Isolation and analysis of expressional regulation of phosphate transporter genes in pht1 family from three solanaceous species[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2009.
[24]Liu P, Chen S, Song A, et al. A putative high affinity phosphate transporter, CmPT1, enhances tolerance to Pi deficiency of chrysanthemum[J]. BMC Plant Biology, 2014, 14: 18.
[25]Liu XM, Zhao XL, Zhang LJ, et al. TaPht1;4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation[J]. Functional Plant Biology, 2013, 40: 329–341.
[26]Liu JY, Versaw WK, Pumplin N, et al. Closely related members of the medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities[J]. The Journal of Biological Chemistry, 2008, 283(36): 24673–24681.
[27]賈宏昉. 水稻高親和磷轉(zhuǎn)運(yùn)蛋白基因OsPhtl;8的功能研究[D]. 南京: 南京農(nóng)業(yè)大學(xué)博士學(xué)位論文, 2011. Jia HF. Functional analysis of aphosphate transporter gene OsPht1;8 in rice[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2011.
[28]Baker A, Ceasar SA, Palmer AJ, et al. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants[J]. Journal of Experimental Botany, 2015, 66(12): 3523–3540.
[29]Fontenot EB, Ditusa SF, Kato N, et al. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions[J]. Plant, Cell and Environment, 2015, 38: 2012–2022.
[30]Mudge SR, Rae AL, Diatloff E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. The Plant Journal, 2002, 31: 341–353.
[31]Ayadi A, David P, Arrighi JF, et al. Reducing the genetic redundancy of Arabidopsis Phosphate transporter 1 transporters to study phosphate uptake and signaling[J]. Plant Physiology, 2015, 167: 1511–1526.
[32]Shin, H, Shin HS, Dewbre GR, Harrison MJ. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play amajor role in phosphate acquisition from both low- and high-phosphate environments[J]. The Plant Journal, 2004, 39: 629–642.
[33]Misson J, Thibaud MC, Bechtold N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Molecular Biology, 2004, 55: 727–741.
[34]Nagarajan VK, Jain A, Poling MD, et al. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling[J]. Plant Physiology, 2011, 156: 1149–1163.
[35]Remy E, Cabrito TR, Batista RA, et al. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation[J]. New Phytologist, 2012, 195: 356–371.
[36]Lapis-Gaza HR, Jost R, Finnegan PM. Arabidopsis phosphate transporter 1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate[J]. BMC Plant Biology, 2014, 14(1): 334.
[37]Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica)[J]. Science, 2002, 296: 92–100.
[38]Sun SB, Gu M, Cao Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiology, 2012, 159: 1571–1581.
[39]Ai PH, Sun SB, Zhao JN, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57: 798–809.
[40]Ye Y, Yuan J, Chang X, et al. The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice[J]. PLoS One, 2015, 10(5): e0126186.
[41]Zhang F, Sun YF, Pei WX, et al. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. The Plant Journal, 2015, 82: 556–569.
[42]Li YT, Zhang J, Zhang X, et al. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds[J]. Plant Science, 2015, 230: 23–32.
[43]Wang XF, Wang YF, Miguel AP, et al. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice[J]. Plant, Cell and Environment, 2014, 37: 1159–1170.
[44]Qin L, Zhao J, Tian J, et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiology, 2012, 159: 1634–1643.
[45]Tamura Y, Kobae Y, Mizuno T, et al. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean[J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76: 309–313.
[46]Nagy R, Karandashov V, Chague V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. The Plant Journal, 2005, 42: 236–250.
[47]洪帥. 番茄磷轉(zhuǎn)運(yùn)蛋白基因LePT1和LePT2在水稻中的功能鑒定[D]. 南京: 南京農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2011. Hong S. Function identification of two tomato phosphater transporter LePT1 and LePT2 genes in rice[D]. Nanjing: MS Thesis of Nanjing Agricultural University, 2011.
[48]Chen AQ, Hu J, Sun S, et al. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species[J]. New Physiology, 2007, 173(4): 817–831.
[49]Tan ZJ, Hu Y, Lin Z. Expression of NtPT5 is correlated with the degree of colonization in tobacco roots inoculated with Glomus etunicatum[J]. Plant Molecular Biology Reporter, 2012, 30: 885–893.
[50]Schünmann PH D, Richardson AE, Smith FW, Delhaize E. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.)[J]. Journal of Experimental Botany, 2004, 55(398): 855–865.
[51]Ren F, Zhao CZ, Liu CS, et al. A Brassica napus PHT1 phosphate transporter, BnPHT1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis[J]. Plant Molecular Biology, 2014, 86: 595–607.
[52]Loth-Pereda V, Orsini E, Courty PE, et al. Structure and expression profile of the phosphate PHT1 transporter gene family in mycorrhizal Populus trichocarpa[J]. Plant Physiology, 2011, 156: 2141–2154.
[53]Chen AQ, Gu M, Sun S, et al. Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species[J]. New Phytologist, 2011, 189: 1157–1169.
[54]Schünmann PH D, Richardson AE, Vickers CE, Delhaize E. Promoter analysis of the barley phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation[J]. Plant Physiology, 2004, 136: 4205–4214.
[55]Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62: 185–206.
[56]López-Arredondo DL, Leyva-González MA, González-Morales SI, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95–123.
[57]Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes & Development, 2001, 15(16): 2122–2133.
[58]Zhou J, Jiao FC, Wu Z, et al. OsPHR2 is involved in phosphatestarvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673–1686.
[59]Ren F, Guo QQ, Chang LL, et al. Brassica napus PHR1 gene encoding aMYB-like protein functions in response to phosphate starvation[J]. PLoS One, 2012, 7(8): e44005.
[60]Wang J, Sun J, Miao J, et al. A wheat phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat[J]. Annals of Botany, 2013, 111: 1139–1153.
[61]Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis[J]. Molecular Plant, 2009, 2(1): 43–58.
[62]Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is amodulator of phosphate acquisition and root development in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1789–1801.
[63]Wang H, Xu Q, Kong YH, et al. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1; 1 expression in response to phosphate starvation[J]. Plant Physiology, 2014, 164(4): 2020–2029.
[64]Su T, Xu Q, Zhang FC, et al. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiology, 2015, 167(4): 1579–1591.
[65]Devaiah BN, Nagarajan VK, Raghothama KG. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J]. Plant Physiology, 2007, 145(1): 147–159.
[66]Javot H, Penmetsa RV, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2007, 104(5): 1720–1725.
[67]Yang SY, Gr?nlund M, Jakobsen I, et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. The Plant Cell, 2012, 24(10): 4236–4251.
[68]Smith SE, Jakobsen I, Gr?nlund M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3): 1050–1057.
[69]Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2002, 99: 13324–13329.
[70]Glassop D, Smith SE, Smith FW. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots[J]. Planta, 2005, 222(4): 688–698.
[71]Rausch C, Daram P, Brunner S, et al. A phosphate transporter expressed in arbuscule-containing cells in potato[J]. Nature, 2001, 414: 462–466.
[72]Nagy R, Drissner D, Amrhein N, et al. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated[J]. New Phytology, 2009, 181(4): 950–959.
[73]Harrison MJ, Dewbre GR, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. Plant Cell, 2002, 14(10): 2413–2429.
[74]Tan Z, Hu Y, Lin Z. PhPT4 is amycorrhizal-phosphate transporter suppressed by lysophosphatidylcholine in petunia roots[J]. Plant Molecular Biology Reporter, 2012, 30: 1480–1487.
[75]Shu B, Xia RX, Wang P. Differential regulation of PHT1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings[J]. Scientia Horticulturae, 2012, 146: 115–123.
[76]Wegmüller S, Svistoonoff S, Reinhardt D, et al. A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia[J]. The Plant Journal, 2008, 54: 1115–1127.
[77]Saia S, Rappa V, Ruisi P, et al. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat[J]. Frontiers in Plant Science, 2015, 6.
[78]Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles[J]. Plant Cell & Environment, 2007, 30: 310–322.
[79]Xie X, Huang W, Liu F, et al. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2013, 198(3): 836–852.
[80]González E, Solano R, Rubio V, et al. Phosphate transporter traffic facilitator 1 is aplant-specific SEC12-related protein that enables the endoplasmic reticulum exit of ahigh-affinity phosphate transporter in Arabidopsis[J]. The Plant Cell, 2005, 17(12): 3500–3512.
[81]Chen J, Liu Y, Ni J, et al. OsPHF1 regulates the plasma membrane localization of low-and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice[J]. Plant Physiology, 2011, 157(1): 269–278.
[82]Bayle V, Arrighi JF, Creff A, et al. Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation[J]. The Plant Cell, 2011, 23(4): 1523–1535.
[83]Chen J, Wang Y, Wang F, et al. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels[J]. The Plant Cell, 2015, 27(3): 711–723.
[84]Duan K, Yi K, Dang L, et al. Characterization of asub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. The Plant Journal, 2008, 54(6): 965–975.
[85]Wang C, Ying S, Huang H, et al. Involvement of OsSPX1 in phosphate homeostasis in rice[J]. The Plant Journal, 2009, 57(5): 895–904.
[86]Lin WY, Huang TK, Chiou TJ. NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J]. The Plant Cell, 2013, 25(10): 4061–4074.
[87]Park BS, Seo JS, Chua NH. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. The Plant Cell, 2014, 26(1): 454–464.
[88]Bari R, Pant BD, Stitt M, et al. PHO2, microRNA399, and PHR1 define aphosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988–999.
[89]Huang TK, Han CL, Lin SI, et al. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots[J]. The Plant Cell, 2013, 25(10): 4044–4060.
[90]Wang L, ZengJ HQ, Song J, et al. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science, 2015, 238: 273–285.
[91]Karthikeyan AS, Varadarajan DK, Mukatira UT, et al. Regulated expression of Arabidopsis phosphate transporters[J]. Plant Physiology, 2002, 130(1): 221–233.
[92]Wang SK, Zhang SN, Sun CD, et al. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa)[J]. New Phytologist, 2014, 201(1): 91–103.
[93]Shen C, Wang S, Zhang S, et al. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.)[J]. Plant, Cell & Environment, 2013, 36(3): 607–620.
[94]Shen C, Yue R, Yang Y, et al. OsARF16 is involved in cytokininmediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.)[J]. PLoS One, 2014, 9(11): e112906.
[95]Talboys PJ, Owen DW, Healey JR, et al. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium[J]. BMC Plant Biology, 2014, 14(1): 1.
[96]Franco-Zorrilla JM, Martin AC, Solano R, et al. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis[J]. The Plant Journal, 2002, 32(3): 353–360.
[97]Chapin LJ, Jones ML. Ethylene regulates phosphorus remobilization and expression of aphosphate transporter (PhPT1) during petunia corolla senescence[J]. Journal of Experimental Botany, 2009, 60(7): 2179–2190.
[98]Smith AP, Jain A, Deal RB, et al. Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as atranscriptional activator[J]. Plant Physiology, 2010, 152(1): 217–225.
[99]Liu TY, Aung K, Tseng CY, et al. Vacuolar Ca2+/H+transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis[J]. Plant Physiology, 2011, 156(3): 1176–1189.
Advances in plant PHT1 phosphate transporter family research
DONG Xu, WANG Xue, SHI Lei, CAI Hong-mei, XU Fang-sen, DING Guang-da*
( Microelement Research Centre/College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China )
【Objectives】Phosphorus (P) is one of the essential macronutrients for plants. Plant PHT1 family proteins have vital roles in plant Pabsorption, mobilization and re-utilization. Numerous members of the PHT1 family have been cloned from various higher plant species. In this paper, researches in plant PHT1 phosphate transporter family were summarized, including gene expression profiles, gene function and possible regulation mechanism. 【Major advances】Plant PHT1 family belongs to amajor facilitator superfamily (MFS). The protein structure of PHT1 genes is extraordinarily conserved, sharing acommon topology with 12 membranespanning domains, which are separated into two groups of six domains by acharged hydrophilic loop, with the protein inserted in the plasma membrane. Meanwhile, PHT1 family genes have the same characterized domains asin Pi: H+co-transporters, sugar transporters, and MFS transporters as well as aconserved amino acid sequence (GGDYPLSATIMSE). Generally, two to four protons enter the plasma membrane simultaneously while plants uptake one phosphate ion via PHT1 family genes, with changes in membrane potential. There are massive members of PHT1 family in plants which are rather different from each other in transport characteristics. The variation of PHT1 gene sequences can give rise to significant changes of their kinetic parameters of Km value. Until now, a huge number of PHT1 family members have been identified in higher plants such as arabidopsis, rice, soybean, solanaceae etc. The expression profiles of PHT1 family genes vary largely. It is generally recognized that most of the PHT1 family members can be regulated by the signal of low Pstress and express in plant roots, while the expression of part of the family members can be detected in other organs of plants, and these genes function distinctly. The transcriptional levels of PHT1 family genes can be regulated by many factors such as external inorganic Pconcentration. Some transcriptional factors from MYB family and WRKY family as well as ZAT6 can interact with PHT1 family genes by binding with some special cis-elements existing in the promoter region of plant PHT1 family genes, such as MYCS element, P1BS element and W-box element, to regulate the expression levels of PHT1 family genes. Besides, the expression levels of PHT1 family genes can also be regulated by arbuscular mycorrhiza fugi (AMF). In addition to transcriptional regulation, post-transcriptional regulation and signal transduction pathway involved in the expression of PHT1 family genes are reported by different research groups. It shows that numerous genes including PHF1, genes containing SPX domain, MicroRNA, and other genes related to protein phosphorylation and chromatin modification are involved in the process of post-transcriptional regulation of PHT1 family members, as well as plant hormones such as auxin, ethylene and cytokinin etc. 【Suggestions and Expectations】There is an increasingly number of reports on the mechanism of how plants response to low Pstress until now, and some genes are cloned involving Pabsorption and utilization. The results show that complex mechanism exists in the process of Pabsorption and utilization as well as signal transduction pathway. Thus, it is along way to breeding genetically modified cultivars with enhanced Pefficiency. In terms of researches on PHT1 family genes, it has changed recently from model plants to crops and other higher plants. However, further researches might be conducted on biochemistry and structural biology of proteins of PHT1 family members. In addition, more researches about PHT1 family genes might also be performed towards polyploid species such as Brassica napus, wheat, barley, cotton etc.
higher plants; phosphate transport; PHT1 family; transcriptional regulation; signal transduction pathway
2016–06–03 接受日期:2016–09–12
國(guó)家自然科學(xué)基金項(xiàng)目(31672215,31201672);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2016PY051)資助。
董旭(1992—),男,內(nèi)蒙古包頭人,碩士研究生,主要從事油菜磷高效分子機(jī)理研究。
E-mail:dongjiuri@webmail.hzau.edu.cn *通信作者 Tel:027-87286872,E-mail:dgd@mail.hzau.edu.cn