• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于高光譜的油麥菜葉片水分CARS-ABC-SVR預(yù)測(cè)模型

      2017-06-05 15:00:27叢孫麗毛罕平武小紅張曉東
      關(guān)鍵詞:油麥波長(zhǎng)含水率

      孫 俊,叢孫麗,毛罕平,武小紅,張曉東,汪 沛

      基于高光譜的油麥菜葉片水分CARS-ABC-SVR預(yù)測(cè)模型

      孫 俊1,叢孫麗1,毛罕平2,武小紅1,張曉東2,汪 沛1

      (1. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013;2. 江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,鎮(zhèn)江 212013)

      為了實(shí)現(xiàn)油麥菜生長(zhǎng)期間更合理的灌水管理,研究一種基于高光譜技術(shù)的精確、快速、有效檢測(cè)油麥菜葉片水分的新方法。以5種不同水分脅迫水平的油麥菜為研究對(duì)象,通過高光譜成像系統(tǒng)獲取高光譜圖像并利用干燥法測(cè)量葉片含水率。采用多項(xiàng)式平滑(Savitzky-Golay,SG)結(jié)合標(biāo)準(zhǔn)變量變換(standard normalized variable,SNV)對(duì)高光譜數(shù)據(jù)去噪平滑。利用競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法(competitive adaptive reweighted sampling,CARS)進(jìn)行特征波長(zhǎng)選擇,并與逐步回歸分析(stepwise regression,SR)及連續(xù)投影算法(successive projections algorithm,SPA)進(jìn)行比較,利用支持向量回歸機(jī)(support vector regression,SVR)分別建立油麥菜葉片全光譜數(shù)據(jù)、3種特征光譜數(shù)據(jù)與干基含水率的關(guān)系模型。結(jié)果表明,基于競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法波長(zhǎng)選擇的支持向量回歸模型(CARS-SVR)效果最佳,但預(yù)測(cè)精度尚不夠理想,故引入人工蜂群算法(artificial bee colony,ABC)優(yōu)化模型的參數(shù)懲罰因子和核參數(shù)。最終,經(jīng)人工蜂群算法優(yōu)化后的模型(CARS-ABC-SVR)的預(yù)測(cè)集決定系數(shù)R2和均方根誤差RMSE分別為0.9214和2.95%。因此,利用高光譜技術(shù)結(jié)合CARS-ABC-SVR模型預(yù)測(cè)油麥菜葉片水分含量是可行的。

      水分;算法;模型;高光譜;油麥菜;競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法;人工蜂群算法

      0 引 言

      油麥菜,是一種常見的綠葉菜,富含維生素和鈣、鐵等營(yíng)養(yǎng)成分,在降低膽固醇、治療神經(jīng)衰弱、清燥潤(rùn)肺等方面都具有積極作用[1]。水分是決定油麥菜長(zhǎng)勢(shì)的一大重要因素,生長(zhǎng)期間若供水不足,會(huì)導(dǎo)致其葉球變?。蝗艄┧^多,不僅會(huì)造成葉球散裂,甚至?xí)?dǎo)致霜霉病的產(chǎn)生,而且浪費(fèi)了水資源。因此,研究一種快速、有效的水分狀況預(yù)測(cè)方法,能為油麥菜生長(zhǎng)期間的合理灌水提供有利依據(jù)。

      高光譜圖像技術(shù)作為近年來出現(xiàn)的一種新技術(shù),集圖像和光譜信息于一體,信息比較全面[2-4],應(yīng)用也愈加廣泛。目前,國(guó)內(nèi)外已有一些學(xué)者將高光譜技術(shù)應(yīng)用于農(nóng)作物水分的檢測(cè)。Jin等[5]通過高光譜圖像技術(shù)對(duì)花生仁中的水分含量進(jìn)行檢測(cè),建立了偏最小二乘回歸(partial least squares regression,PLSR)定量模型,最佳預(yù)測(cè)決定系數(shù)為0.91;李丹等[6]在高光譜成像技術(shù)的基礎(chǔ)上,采用PLSR對(duì)小黃瓜進(jìn)行特征波長(zhǎng)選擇,建立了偏最小二乘水分預(yù)測(cè)模型,預(yù)測(cè)集相關(guān)系數(shù)為0.9(決定系數(shù)為0.81);劉燕德等[7]利用高光譜成像技術(shù)結(jié)合PLSR模型對(duì)臍橙葉片的水分進(jìn)行定量分析,預(yù)測(cè)集相關(guān)系數(shù)達(dá)到0.91(決定系數(shù)為0.83);田喜等[8]通過提取玉米籽粒全表面和胚結(jié)構(gòu)區(qū)域的高光譜信息,建立并比較不同特征篩選方法下的PLSR模型對(duì)玉米籽粒水分含量的預(yù)測(cè)效果,結(jié)果最佳預(yù)測(cè)相關(guān)系數(shù)達(dá)到0.922 7(決定系數(shù)為0.85)。以上文獻(xiàn)雖然證明了利用高光譜圖像技術(shù)檢測(cè)農(nóng)作物水分的可行性,但預(yù)測(cè)精度仍有待進(jìn)一步提高。本研究采用具備解決小樣本、高維問題優(yōu)勢(shì)的支持向量回歸(support vector regression,SVR)[9]建立油麥菜葉片的高光譜信息與水分之間的關(guān)系模型。利用競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法(competitive adaptive reweighted sampling,CARS)選取最優(yōu)波長(zhǎng)組合,并與逐步回歸分析(stepwise regression,SR)、連續(xù)投影算法(successive projections algorithm,SPA)相比較。通過人工蜂群算法(artificial bee colony,ABC)對(duì)SVR模型參數(shù)智能尋優(yōu),建立預(yù)測(cè)精度更高的回歸模型。此套方法尚未見報(bào)道,為農(nóng)作物的水分檢測(cè)提供了新的方法與思路。

      1 試驗(yàn)材料與方法

      1.1 試驗(yàn)樣本采集與含水率測(cè)定

      試驗(yàn)樣本選用四季油麥菜,培育于江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)省部共建重點(diǎn)實(shí)驗(yàn)室的Venlo型溫室。在保證營(yíng)養(yǎng)元素均衡的前提下,對(duì)油麥菜的水分進(jìn)行精確控制,以獲取不同水分脅迫水平的樣本。選用5種不同水分水平的樣本,每種水平36片葉子,5種水平分別為:第1組在生長(zhǎng)期保持充足的水分灌溉,第2、3、4和5組葉片灌溉的水量按照梯度依次減少,灌溉水量分別為第1組灌水量的80%、60%、40%和20%。由于油麥菜葉片的葉面積大,蒸騰量大且易受氣溫影響蒸發(fā)水分,從溫室中采摘完葉片后立即將其依次裝入密封食品保鮮袋,并送往實(shí)驗(yàn)室利用高精度分析天平(精度為0.1 g)稱取鮮質(zhì)量,然后將葉片放入恒溫80 ℃的烘箱中烘干12 h,直至葉片出現(xiàn)明顯的脫水狀況為止。此時(shí),分別測(cè)量葉片的干質(zhì)量。

      通常情況下,表征葉片含水率的方法有2種[10-11]:濕基含水率(Cw)和干基含水率(Cd)。由于葉片的鮮質(zhì)量遠(yuǎn)大于干質(zhì)量,若采用濕基含水率葉片之間會(huì)無(wú)明顯差異,因此本文采用干基含水率來表征葉片的水分含量。

      式中Lw為葉片鮮質(zhì)量,Ld為葉片干質(zhì)量。

      1.2 高光譜圖像采集與數(shù)據(jù)提取

      利用高光譜成像系統(tǒng)[12]對(duì)所有樣本采集試驗(yàn),先將油麥菜葉片樣本放置在一個(gè)長(zhǎng)5 cm、寬10 cm的長(zhǎng)方形白紙上,然后將裝有樣本的白紙放置在移動(dòng)平臺(tái)上進(jìn)行高光譜圖像采集。試驗(yàn)過程中,相機(jī)的曝光時(shí)間為20 ms,位移臺(tái)移動(dòng)速度為1.25 mm/s。對(duì)采集到的高光譜圖像進(jìn)行黑白標(biāo)定[13],去除暗電流與光源干擾信息。

      選取每片葉子左上角較平整的64×64大小的區(qū)域作為感興趣區(qū)域(region of interest,ROI),分別計(jì)算每個(gè)ROI內(nèi)的平均光譜數(shù)據(jù)并作為樣本的光譜值[14],從而得到180個(gè)樣本的光譜數(shù)據(jù)。由于受硬件影響,得到的高光譜數(shù)據(jù)在波段開頭與結(jié)尾部分受噪聲的影響較大,因此剔除首尾分別22個(gè)和26個(gè)波段,最終采用的波段范圍為965~1 666 nm(208個(gè)波段)。將試驗(yàn)得到的180個(gè)數(shù)據(jù)樣本按照每個(gè)水平3∶1的比例劃分樣本集,其中校正集135個(gè)樣本,預(yù)測(cè)集45個(gè)樣本。

      1.3 建模方法

      1.3.1 競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法

      競(jìng)爭(zhēng)性自適應(yīng)加權(quán)算法CARS[15-17]是一種新型變量選擇方法。此算法將每個(gè)波長(zhǎng)作為一個(gè)個(gè)體,在波長(zhǎng)選擇過程中,每次利用指數(shù)衰減函數(shù)(exponentially decreasing function,EDF)和自適應(yīng)重加權(quán)采樣技術(shù)(adaptive reweighted sampling,ARS)挑選出PLS模型中回歸系數(shù)絕對(duì)值較大的個(gè)體,從而獲得多個(gè)波長(zhǎng)變量子集。根據(jù)交叉驗(yàn)證法從中篩選出交互驗(yàn)證均方根誤差(RMSECV)最小的子集,該子集所包含的變量即為最優(yōu)波長(zhǎng)組合。

      1.3.2 支持向量機(jī)

      支持向量機(jī)SVM算法是一種非常有潛力的高維信息處理工具,是多元建模分析中的一種快速有效的方法[18]。本文采用支持向量回歸機(jī)(SVR)對(duì)油麥菜葉片水分進(jìn)行預(yù)測(cè)分析,選用RBF核函數(shù)。

      1.3.3 人工蜂群算法優(yōu)化支持向量回歸機(jī)

      人工蜂群算法ABC[19-21]是一種模擬蜜蜂群體尋找優(yōu)良蜜源的仿生智能計(jì)算方法。ABC算法中,采蜜蜂和觀察蜂的數(shù)量各占蜜蜂總體數(shù)量的一半。其中,采蜜蜂同特定食物源相關(guān)聯(lián),觀察蜂觀察蜂巢內(nèi)采蜜蜂的舞蹈以決定選擇某個(gè)食物源,而偵察蜂會(huì)隨機(jī)搜索食物。

      ABC-SVR中蜜源、采蜜蜂和觀察蜂的數(shù)目均設(shè)置為SN,按照ABC算法的搜索過程,對(duì)SVR的參數(shù)c(懲罰因子)和g(核參數(shù))進(jìn)行尋優(yōu),算法的具體流程如下[22-23]:

      1)初始化參數(shù):設(shè)置終止迭代次數(shù)(MaxCycles)和蜜源的最大搜索次數(shù)(Limit)。

      2)隨機(jī)產(chǎn)生SN處蜜源,即SN對(duì)(c,g)的參數(shù)組合,每個(gè)蜜源的位置代表一個(gè)可能解。

      3)采蜜蜂做鄰域搜索,產(chǎn)生新解,鄰域范圍會(huì)隨著搜索接近最優(yōu)解而逐漸減小。

      4)計(jì)算每個(gè)個(gè)體的適應(yīng)度值,并在當(dāng)前蜜源和新蜜源之間進(jìn)行貪婪選擇。若搜索后的蜜源優(yōu)于搜索前,則替代之前的蜜源。

      5)計(jì)算每個(gè)蜜源被選擇的概率,觀察蜂會(huì)以輪盤賭機(jī)制選擇要跟隨的蜜源進(jìn)行采蜜成為采蜜蜂,并在其附近搜索新蜜源。直到達(dá)到Limit次搜索,否則繼續(xù)進(jìn)行鄰域搜索。

      6)放棄經(jīng)過Limit次搜索后仍不變的蜜源,且被放棄蜜源所對(duì)應(yīng)的采蜜蜂變?yōu)閭刹旆洌㈦S機(jī)產(chǎn)生新蜜源。

      7)達(dá)到最大迭代次數(shù)MaxCycles后停止迭代,輸出最佳適應(yīng)度值所對(duì)應(yīng)的c和g,代入SVR模型對(duì)樣本進(jìn)行校正和預(yù)測(cè)。

      2 結(jié)果與討論

      2.1 數(shù)據(jù)預(yù)處理

      由于高光譜數(shù)據(jù)易受儀器噪聲與隨機(jī)誤差的影響,油麥菜樣本的原始光譜曲線圖中存在較多肉眼可見的毛刺,這必然會(huì)嚴(yán)重影響到后續(xù)建模的準(zhǔn)確性與精度,因此通過光譜預(yù)處理盡可能地去除無(wú)關(guān)信息變量,對(duì)于提高校正模型的預(yù)測(cè)能力和穩(wěn)健性是非常必要的[24]。多項(xiàng)式平滑(Savitzky-Golay,SG)可以對(duì)光譜曲線進(jìn)行低通濾波,有利于消除光譜噪聲并提高信噪比[25]。標(biāo)準(zhǔn)變量變換(standard normalized variable,SNV)能夠消除因散射現(xiàn)象引起的光譜差異,削弱基線漂移和光散射,增強(qiáng)與成分含量相關(guān)的光譜吸收信息[26]。本文利用SG平滑與SNV變換相結(jié)合的方法對(duì)208個(gè)波段下的光譜數(shù)據(jù)進(jìn)行預(yù)處理,預(yù)處理前后的光譜曲線分別如圖1a和1b所示。對(duì)比兩圖發(fā)現(xiàn),圖1b曲線中的毛刺明顯減少,且曲線更光滑,該預(yù)處理方法達(dá)到了很好的效果。

      圖1 預(yù)處理前后的光譜曲線圖Fig.1 Spectral curves before and after pretreatment

      2.2 特征波長(zhǎng)篩選

      本文采用CARS算法對(duì)預(yù)處理后的光譜數(shù)據(jù)進(jìn)行特征波長(zhǎng)篩選,并與逐步回歸分析[27]及連續(xù)投影算法[28]比較。

      2.2.1 基于CARS的特征波長(zhǎng)篩選

      本次試驗(yàn)在MATLAB R2012a軟件環(huán)境中運(yùn)行CARS算法。由蒙特卡羅交叉驗(yàn)證法選擇最優(yōu)潛在波長(zhǎng)變量,其中設(shè)置MC采樣次數(shù)為50,并采用5折交叉驗(yàn)證方式。由于MC采樣具有隨機(jī)性,故每次運(yùn)行程序的結(jié)果均不相同,若要得到較優(yōu)的特征波長(zhǎng)組合,需經(jīng)過多次反復(fù)試驗(yàn)進(jìn)行比較。最終得到的最優(yōu)篩選結(jié)果如圖2所示。

      圖2 CARS波長(zhǎng)篩選過程Fig.2 Process of CARS wavelength selection

      從圖2a可以看出,由于指數(shù)衰減函數(shù)的作用,在前15次MC采樣過程中波長(zhǎng)數(shù)有明顯減少的趨勢(shì),之后逐漸平緩,體現(xiàn)了篩選過程中的“粗選”與“精選”2個(gè)階段。圖2b為5折交叉驗(yàn)證均方根誤差的變化趨勢(shì)圖,前22次(圖2c)誤差呈現(xiàn)遞減趨勢(shì),表明篩選過程中一些與葉片含水率無(wú)關(guān)的波長(zhǎng)已被剔除,而22次以后誤差有遞增趨勢(shì),表明光譜數(shù)據(jù)中少量的重要信息被剔除。圖2c中22次采樣次數(shù)時(shí)RMSECV最小,圖中各線表示隨著運(yùn)行次數(shù)的增加各波長(zhǎng)回歸系數(shù)的變化趨勢(shì)。因此,第22次采樣后所獲得的波長(zhǎng)被確定為所要選取的關(guān)鍵波長(zhǎng)(共28個(gè)),依次為973、993、997、1 050、1 140、1 181、1 184、1 188、1 191、1 198、1 237、1 240、1 243、1 259、1 263、1 285、1 310、1 336、1 348、1 354、1 376、1 389、1 392、1 395、1 408、1 414、1 601和1 662 nm。

      2.2.2 基于SR分析的特征波長(zhǎng)篩選

      利用SPSS軟件對(duì)全光譜數(shù)據(jù)進(jìn)行基于SR分析的特征波長(zhǎng)選取,表1為SR分析篩選特征波長(zhǎng)時(shí)的各項(xiàng)模型參數(shù)。

      表1 逐步回歸分析波長(zhǎng)篩選各參數(shù)指標(biāo)Table1 Parameter index of feature wavelengths selection by stepwise regression method

      從表1可以看出,通過SR分析后共建立了15個(gè)回歸模型,各模型的調(diào)整R2隨著波長(zhǎng)的選入逐漸增加,而標(biāo)準(zhǔn)估計(jì)誤差依次遞減。同時(shí),所有模型的sig.值均小于0.001(小于顯著性水平0.05),表明15個(gè)模型均具有顯著意義,也就是說,光譜數(shù)據(jù)對(duì)葉片含水率均具有較顯著的表征。但所有回歸模型中,第15個(gè)模型的R2最大,為0.843(最接近于1),說明其擬合度最佳。隨著引入波長(zhǎng)數(shù)的增加,R2和標(biāo)準(zhǔn)誤差的變化趨勢(shì)趨于平緩,且由于理論上模型中所包含的波長(zhǎng)數(shù)應(yīng)盡可能地少。因此,本文選取第15個(gè)模型,共15個(gè)對(duì)葉片含水率的影響較顯著的特征波長(zhǎng),依次為989、1 143、1 184、1 194、1 198、1 201、1 237、1 259、1 310、1 342、1 345、1 351、1 383、1 513和1 662 nm。

      2.2.3 基于SPA算法的特征波長(zhǎng)篩選

      利用MATLAB R2012a軟件運(yùn)行SPA程序,設(shè)定波長(zhǎng)數(shù)N的范圍為5~30,根據(jù)不同波長(zhǎng)數(shù)下的均方根誤差RMSE值確定最佳的建模波長(zhǎng)個(gè)數(shù)。圖3a為RMSE值隨選取波長(zhǎng)數(shù)的不同而變化的趨勢(shì)圖。從圖中可以看出,隨著波長(zhǎng)個(gè)數(shù)的增加,RMSE值呈現(xiàn)遞減趨勢(shì)。當(dāng)波長(zhǎng)個(gè)數(shù)大于9時(shí),RMSE值變化不再顯著,此時(shí)RMSE為0.760 5。由于波長(zhǎng)過多容易增加模型的運(yùn)算量及復(fù)雜度,因此本研究選取9個(gè)波長(zhǎng)作為最終特征波長(zhǎng),依次為1 058、1 383、1 392、1 430、1 507、1 594、1 651、1 655和1 666 nm,相應(yīng)的波長(zhǎng)點(diǎn)如圖3b所示。

      圖3 SPA篩選最優(yōu)組合波長(zhǎng)結(jié)果Fig.3 Optimal wavelength combination by SPA

      2.3 SVR回歸模型的建立

      分別以3種不同波長(zhǎng)篩選方法CARS、SR、SPA獲取的特征波長(zhǎng)數(shù)據(jù)作為SVR建模分析的自變量,油麥菜葉片干基含水率為因變量,建立SVR回歸模型。為了更好地分析波長(zhǎng)篩選的效果,將全光譜數(shù)據(jù)也用于建模對(duì)比。其中,模型的參數(shù)c和g為默認(rèn)值,建模結(jié)果分別如下表2所示。

      表2 不同波長(zhǎng)篩選方法下的SVR建模結(jié)果Table2 SVR modeling results based on different wavelength selection methods

      模型的預(yù)測(cè)能力和穩(wěn)定性由決定系數(shù)(R2)和均方根誤差(RMSE)2個(gè)參數(shù)進(jìn)行評(píng)價(jià),通常一個(gè)好的模型應(yīng)當(dāng)具備R2高和RMSE低的特點(diǎn)[29-30]。由表2的數(shù)據(jù)可以發(fā)現(xiàn),全光譜模型比較復(fù)雜,數(shù)據(jù)量較多,且模型精度相對(duì)較低,因此不會(huì)將其作為最佳結(jié)果。從特征選擇的角度看,不同的波長(zhǎng)篩選方法對(duì)所建SVR模型的性能會(huì)造成不同程度的影響。

      從表2可以看出,CARS-SVR、SR-SVR、SPA-SVR模型的預(yù)測(cè)效果較全光譜SVR模型均有了不同程度的提升,三者的預(yù)測(cè)集R2分別提高了0.105 7、0.078 9和0.063 8。在模型復(fù)雜度方面,CARS、SR、SPA這3種算法都大大簡(jiǎn)化了模型,波長(zhǎng)個(gè)數(shù)分別減少了86.5%、92.8%、95.7%,表明提取的少數(shù)波長(zhǎng)確實(shí)是建模過程中所需的有用信息,雖然減少了模型的運(yùn)算量,但預(yù)測(cè)能力卻沒有降低。在模型精度方面,CARS-SVR模型的R2最高,RMSE最低,建模效果最好。綜合這兩方面,CARS-SVR模型可以較好地預(yù)測(cè)油麥菜葉片未知樣本的含水率。圖4為CARS-SVR模型的校正與預(yù)測(cè)結(jié)果。

      圖4 CARS-SVR模型的校正與預(yù)測(cè)結(jié)果Fig.4 Calibrated and predicted results of CARS-SVR model

      雖然CARS算法比SR、SPA具有更好的波長(zhǎng)篩選效果,但CARS-SVR模型的預(yù)測(cè)R2為0.859 9,說明預(yù)測(cè)精度還有很大的提升空間。因此,引入ABC算法對(duì)模型的參數(shù)c和g進(jìn)行優(yōu)化。ABC算法中,終止迭代次數(shù)設(shè)為100,蜜源最大搜索次數(shù)設(shè)為50,參數(shù)c和g的范圍均為[2-4, 28]。經(jīng)ABC算法優(yōu)化后,SVR模型的c和g分別為11.113和0.128,沒有因參數(shù)過大或過小造成“過學(xué)習(xí)”或“欠學(xué)習(xí)”的狀態(tài)。優(yōu)化后模型(CARS-ABC-SVR)的校正集與預(yù)測(cè)集R2分別提升為0.942 7和0.921 4,RMSE分別降低為1.60%和2.95%,模型性能得到了提高,證明了ABC算法對(duì)模型參數(shù)優(yōu)選的作用。圖5為CARS-ABC-SVR模型的校正與預(yù)測(cè)結(jié)果。與圖4相比,圖5的樣本更集中于回歸線(y=x)附近,擬合效果更佳。因此,最終選取CARS-ABC-SVR作為油麥菜葉片含水率的預(yù)測(cè)模型。

      圖5 CARS-ABC-SVR模型的校正與預(yù)測(cè)結(jié)果Fig.5 Calibrated and predicted results of CARS-ABC-SVR model

      3 結(jié) 論

      1)利用高光譜圖像采集系統(tǒng)獲取油麥菜葉片的高光譜圖像,通過ENVI軟件提取所有樣本的高光譜數(shù)據(jù)。采用一種新近提出的CARS特征選擇算法對(duì)光譜數(shù)據(jù)進(jìn)行降維,并與逐步回歸算法和連續(xù)投影算法SPA相比較,建立預(yù)測(cè)葉片含水率的SVR模型。

      2)與全光譜模型相比,特征波段下的模型不僅復(fù)雜度降低,模型預(yù)測(cè)性能也得到了提高。其中,CARS-SVR模型性能最佳,其預(yù)測(cè)集決定系數(shù)R2為0.859 9,均方根誤差RMSE為3.95%。

      3)通過引入ABC算法優(yōu)化SVR的參數(shù)c和g,優(yōu)化后CARS-ABC-SVR模型的校正集和預(yù)測(cè)集R2分別提高到0.942 7和0.921 4,RMSE分別降低為1.60%和2.95%,模型性能得到了提高。

      綜上所述,利用CARS算法特征選擇,經(jīng)ABC算法參數(shù)優(yōu)化,可以極大地提高葉片含水率預(yù)測(cè)模型SVR的性能。故利用高光譜技術(shù)結(jié)合CARS-ABC-SVR模型對(duì)油麥菜葉片含水率進(jìn)行預(yù)測(cè)是可行的,同時(shí)也為農(nóng)作物葉片的水分檢測(cè)提供了參考。

      [1] 溫清琴.不同濃度營(yíng)養(yǎng)液對(duì)油麥菜生長(zhǎng)的影響[J].長(zhǎng)江蔬菜,2009(8):55-56.

      Wen Qingqin. Effects of different density nutrient solution on lettuce growth[J]. Journal of Changjiang Vegetables, 2009(8): 55-56. (in Chinese with English abstract)

      [2] Gowen A A, O’Donnell C P, Cullen P J, et al. Hyperspectral imaging: An emerging process analytical tool for food quality and safety control[J]. Trends in Food Science & Technology, 2007, 18(12): 590-598.

      [3] Johnson O N, Slidell M, Kreishman P, et al. Hyperspectral imaging: An emerging technology as a potential novel adjunct in assessing peripheral perfusion deficits and success of lower extremity revascularizations[J]. Journal of the American College of Surgeons, 2008, 207(3): 114.

      [4] 蔡健榮,王建黑,陳全勝,等.波段比算法結(jié)合高光譜圖像技術(shù)檢測(cè)柑橘果銹[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):127-131.

      Cai Jianrong, Wang Jianhei, Chen Quansheng, et al. Detection of rust in citrus by hyperspectral imaging technology and band ratio algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 127-131. (in Chinese with English abstract)

      [5] Jin H, Li L, Cheng J. Rapid and non-destructive determination of moisture content of peanut kernels using hyperspectral imaging technique[J]. Food Analytical Methods, 2015, 8(10): 1-9.

      [6] 李丹,何建國(guó),劉貴珊,等.基于高光譜成像技術(shù)的小黃瓜水分無(wú)損檢測(cè)[J].紅外與激光工程,2014,43(7):2393-2397.

      Li Dan, He Jianguo, Liu Guishan, et al. Non-destructive detection of moisture content in gherkin using hyperspectral imaging[J]. Infrared and Laser Engineering, 2014, 43(7): 2393-2397. (in Chinese with English abstract)

      [7] 劉燕德,姜小剛,周衍華,等.基于高光譜成像技術(shù)對(duì)臍橙葉片的葉綠素、水分和氮素定量分析[J].中國(guó)農(nóng)機(jī)化學(xué)報(bào),2016,37(3):218-224.

      Liu Yande, Jiang Xiaogang, Zhou Yanhua, et al. Quantitative analysis of chlorophyll, water and nitrogen for navel orange leaf based on hyper-spectral imaging technology[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 218-224. (in Chinese with English abstract)

      [8] 田喜,黃文倩,李江波,等.高光譜圖像信息檢測(cè)玉米籽粒胚水分含量[J].光譜學(xué)與光譜分析,2016, 36(10):3237-3242.

      Tian Xi, Huang Wenqian, Li Jiangbo, et al. Measuring the moisture content in maize kernel based on hyperspectral image of embryo region[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3237-3242. (in Chinese with English abstract)

      [9] 丁世飛,齊丙娟,譚紅艷.支持向量機(jī)理論與算法研究綜述[J].電子科技大學(xué)學(xué)報(bào),2011,40(1):2-10.

      Ding Shifei, Qi Bingjuan, Tan Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. (in Chinese with English abstract)

      [10] 毛罕平,張曉東,李雪,等.基于光譜反射特征葡萄葉片含水率模型的建立[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2008,29(5):369-372.

      Mao Hanping, Zhang Xiaodong, Li Xue, et al. Model establishment for grape leaves dry-basis moisture content based on spectral signature[J]. Journal of Jiangsu University: Natural Science Edition, 2008, 29(5): 369-372. (in Chinese with English abstract)

      [11] 張曉東,毛罕平,周瑩,等.基于高光譜成像技術(shù)的生菜葉片水分檢測(cè)研究[J].安徽農(nóng)業(yè)科學(xué),2011,39(33):20329-20331.

      Zhang Xiaodong, Mao Hanping, Zhou Ying, et al. Study on detection of moisture content in lettuce leaves based on hyperspectral imaging technology[J]. Journal of Anhui Agricultural Sciences, 2011, 39(33): 20329-20331. (in Chinese with English abstract)

      [12] 孫俊,金夏明,毛罕平,等.基于高光譜圖像的生菜葉片氮素含量預(yù)測(cè)模型研究[J].分析化學(xué)研究報(bào)告,2014,42(5):672-677.

      Sun Jun, Jin Xiaming, Mao Hanping, et al. A model for predicting nitrogen of lettuce leaves based on hyperspectral imaging[J]. Chinese Journal of Analytical Chemistry, 2014, 42(5): 672-677. (in Chinese with English abstract)

      [13] Shetty N, Gislum R. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR[J]. Field Crops Research, 2011, 120(1): 31-37.

      [14] 周竹,李小昱,陶海龍,等.基于高光譜成像技術(shù)的馬鈴薯外部缺陷檢測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):221-228.

      Zhou Zhu, Li Xiaoyu, Tao Hailong, et al. Detection of potato external defects based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 221-228. (in Chinese with English abstract)

      [15] 吳靜珠,徐云.基于 CARS-PLS 的食用油脂肪酸近紅外定量分析模型優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(10):162-166.

      Wu Jingzhu, Xu Yun. NIR quantitative model optimization of fatty acid in edible oil based on CARS-PLS[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(10): 162-166. (in Chinese with English abstract)

      [16] 孫通,許文麗,林金龍,等.可見/近紅外漫透射光譜結(jié)合CARS變量?jī)?yōu)選預(yù)測(cè)臍橙可溶性固形物[J].光譜學(xué)與光譜分析,2012,32(12):3229-3233.

      Sun Tong, Xu Wenli, Lin Jinlong, et al. Determination of soluble solids content in navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3229-3233. (in Chinese with English abstract)

      [17] 李江波,郭志明,黃文倩,等.應(yīng)用 CARS 和 SPA 算法對(duì)草莓 SSC 含量NIR光譜預(yù)測(cè)模型中變量及樣本篩選[J].光譜學(xué)與光譜分析,2015,35(2):372-378.

      Li Jiangbo, Guo Zhiming, Huang Wenqian, et al. Near-infrared spectra combining with CARS and SPA algorithms to screen the variables and samples for quantitatively determining the soluble solids content in strawberry[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 372-378. (in Chinese with English abstract)

      [18] 李曉麗,程術(shù)希,何勇.基于漫反射光譜的初制綠茶含水率無(wú)損檢測(cè)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(5):195-201.

      Li Xiaoli, Cheng Shuxi, He Yong. Nondestructive measurement of moisture content of green tea in primary processing based on diffuse reflectance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 195-201. (in Chinese with English abstract)

      [19] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.

      [20] 吳一全,殷駿,戴一冕,等.基于蜂群優(yōu)化多核支持向量機(jī)的淡水魚種類識(shí)別[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):312-319.Wu Yiquan, Yin Jun, Dai Yimian, et al. Identification method of freshwater fish species using multi-kernel support vector machine with bee colony optimization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 312-319. (in Chinese with English abstract)

      [21] 李璟民,郭敏.人工蜂群算法優(yōu)化支持向量機(jī)的分類研究[J].計(jì)算機(jī)工程與應(yīng)用,2015,51(2):151-155.

      Li Jingmin, Guo Min. Study on classification of artificial bee colony algorithm to optimization of support vector machine[J]. Computer Engineering and Applications, 2015, 51(2): 151-155. (in Chinese with English abstract)

      [22] 曾濤,趙嵐.基于人工蜂群支持向量機(jī)的模擬電路故障診斷[J].電力科學(xué)與工程,2013,29(8):16-20.

      Zeng Tao, Zhao Lan. Analog circuit fault diagnosis based on artificial bees colony support vector machine[J]. Electric Power Science and Engineering, 2013, 29(8): 16-20. (in Chinese with English abstract)

      [23] 朱志潔,張宏偉,王春明.基于人工蜂群算法優(yōu)化支持向量機(jī)的采場(chǎng)底板破壞深度預(yù)測(cè)[J].重慶大學(xué)學(xué)報(bào),2015,38(6):37-43.

      Zhu Zhijie, Zhang Hongwei, Wang Chunming. Prediction of floor damaged depth in working area based on support vector machine and artificial bee colony algorithm[J]. Journal of Chongqing University, 2015, 38(6): 37-43. (in Chinese with English abstract)

      [24] 吳靜珠,李慧,王克棟,等.光譜預(yù)處理在農(nóng)產(chǎn)品近紅外模型優(yōu)化中的應(yīng)用研究[J]. 農(nóng)機(jī)化研究,2011,33(3):178-181.

      Wu Jingzhu, Li Hui, Wang Kedong, et al. Application of spectrum preprocessing algorithms in optimizing NIR models of agricultural prooducts[J]. Journal of Agricultural Mechanization Research, 2011, 33(3): 178-181. (in Chinese with English abstract)

      [25] 李金夢(mèng),葉旭軍,王巧男,等.高光譜成像技術(shù)的柑橘植株葉片含氮預(yù)測(cè)模型[J].光譜學(xué)與光譜分析,2014,34(1):212-216.

      Li Jinmeng, Ye Xujun, Wang Qiaonan, et al. Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 212-216. (in Chinese with English abstract)

      [26] 湯修映,牛力釗,徐楊,等.基于可見/近紅外光譜技術(shù)的牛肉含水率無(wú)損檢測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(11):248-254.

      Tang Xiuying, Niu Lizhao, Xu Yang, et al. Nondestructive determination of water content in beef using visible/near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(11): 248-254. (in Chinese with English abstract)

      [27] 趙娟,彭彥昆.基于高光譜圖像紋理特征的牛肉嫩度分布評(píng)價(jià)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):279-286.

      Zhao Juan, Peng Yankun. Distribution of beef tenderness grading based on texture features by hyperspectral image analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 279-286. (in Chinese with English abstract)

      [28] 袁瑩,王偉,褚璇,等.光譜特征波長(zhǎng)的SPA選取和基于SVM的玉米顆粒霉變程度定性判別[J].光譜學(xué)與光譜分析,2016,36(1):226-230.

      Yuan Ying, Wang Wei, Chu Xuan, et al. Selection of characteristic wavelengths using SPA and qualitative discrimination of mildew degree of corn kernels based on SVM[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 226-230. (in Chinese with English abstract)

      [29] 劉潔,李小昱,李培武,等.基于近紅外光譜的板栗水分檢測(cè)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):338-341.

      Liu Jie, Li Xiaoyu, Li Peiwu, et al. Determination of moisture in chestnuts using near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 338-341. (in Chinese with English abstract)

      [30] Karunathilaka S R, Mossoba M M, Jin K C, et al. Rapid prediction of fatty acid content in marine oil omega-3 dietary supplements using a portable FTIR device and partial least squares regression (PLSR) analysis[J]. Journal of Agricultural and Food Chemistry, 2017, 65(1): 224-233.

      CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral

      Sun Jun1, Cong Sunli1, Mao Hanping2, Wu Xiaohong1, Zhang Xiaodong2, Wang Pei1
      (1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

      In order to realize more reasonably irrigation management during the growth of leaf -used lettuce, a new method for accurately, rapidly and effectively detecting leaf-used lettuce moisture based on hyperspectral technology was investigated in this study. Leaf-used lettuces of 5 different water stress levels were adopted as experimental objects. In the first group, sufficient water irrigation was maintained during the growth period of leaf-used lettuces, and the amount of water irrigated in the second, third, fourth and fifth groups decreased in turn according to the gradient. Firstly, hyperspectral images of leaf-used lettuce samples were acquired by using the hyperspectral image acquisition system, then the water contents of all leaves were measured by the drying method and the dry-basis moisture content was calculated according to formula. Secondly, the hyperspectral data was extracted from the images by selecting the region of interest (ROI) in the ENVI software. Thirdly, a method for data pretreatment, Savitzky-Golay (SG) combined with the standard normalized variable (SNV), was applied for smoothing and denoising of the original hyperspectral data. Fourthly, the competitive adaptive reweighted sampling (CARS) algorithm was used to extract the characteristic wavelengths ranged from 965 nm to 1666 nm of leaf-used lettuce samples, simultaneously the effect of CARS algorithm was compared with that of the stepwise regression (SR) analysis and the successive projections algorithm (SPA) in order to determine the optimal method for characteristic wavelength selection. Finally, the support vector regression (SVR) machine was respectively carried out to establish the relationship models between full spectral data, three kinds of characteristic spectral data and dry-basis moisture content of leaf-used lettuce samples. And the performances of all the models were evaluated by the index of determination coefficient for calibration set (R2c) , root mean square error for calibration set (RMSEC), determination coefficient for prediction set (RP2) and root mean square error for prediction set (RMSEP). The results showed that CARS-SVR model performed better than the other model with full-SVR, SR-SVR or SPA-SVR, selecting the optimal wavelength combination (973, 993, 997, 1 050, 1 140, 1 181, 1 184, 1 188, 1 191, 1 198, 1 237, 1 240, 1 243, 1 259, 1 263, 1 285, 1 310, 1 336, 1 348, 1 354, 1 376, 1 389, 1 392, 1 395, 1 408, 1 414, 1 601, 1 662 nm), and achieving the highest accuracy with R2c= 0.917 2, RMSEC = 2.33%, RP2= 0.859 9 and RMSEP = 3.95%. Whereas, the prediction accuracy of CARS-SVR model were not achieved the desired effect. For improving the prediction accuracy of SVR model, the artificial bee colony (ABC) algorithm was further introduced to intelligently optimize the parameters (c and g) in the SVR model to find the optimum, then the model on the basis of CARS characteristic data was reconstructed. Consequently, the optimised model, CARS-ABC-SVR, achieved the Rc2of 0.942 7, RMSEC of 1.60%, RP2of 0.921 4 and RMSEP of 2.95%, which was indeed improved significantly and proved that the method of selecting characteristic wavelengths by CARS algorithm combined with optimizing the parameters in SVR model by ABC algorithm can extremely raise the performance of prediction model for the moisture content of leaves. Hence, the method of hyperspectral technology combined with the CARS-ABC-SVR model is feasible for detecting the moisture content of leaf-used lettuces, also hopefully providing a new method and thought for water detection of other crops.

      moisture; algorithms; models; hyperspectral; leaf-used lettuce; competitive adaptive reweighted sampling algorithm; artificial bee colony algorithm

      10.11975/j.issn.1002-6819.2017.05.026

      S636; 0657.33

      A

      1002-6819(2017)-05-0178-07

      孫 俊,叢孫麗,毛罕平,武小紅,張曉東,汪 沛. 基于高光譜的油麥菜葉片水分CARS-ABC-SVR預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):178-184.

      10.11975/j.issn.1002-6819.2017.05.026 http://www.tcsae.org

      Sun Jun, Cong Sunli, Mao Hanping, Wu Xiaohong, Zhang Xiaodong, Wang Pei. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 178-184. (in Chinese with English abstract)

      doi:10.11975/j.issn.1002-6819.2017.05.026 http://www.tcsae.org

      2016-08-30

      2017-01-19

      國(guó)家自然科學(xué)基金資助項(xiàng)目(31471413);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目PAPD(蘇政辦發(fā)2011 6號(hào));江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(NZ201306);江蘇省六大人才高峰資助項(xiàng)目(ZBZZ-019)。

      孫 俊,男(漢族),江蘇泰興人,教授,博士,博士生導(dǎo)師。研究方向?yàn)橛?jì)算機(jī)技術(shù)在農(nóng)業(yè)工程中的應(yīng)用。Email:sun2000jun@ujs.edu.cn。中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:孫 ?。‥041200652S)

      猜你喜歡
      油麥波長(zhǎng)含水率
      HPLC-PDA雙波長(zhǎng)法同時(shí)測(cè)定四季草片中沒食子酸和槲皮苷的含量
      昆明森林可燃物燃燒機(jī)理研究
      油麥菜栽培要點(diǎn)
      基于表面能的濕煤顆粒含水率表征方法
      油麥菜的營(yíng)養(yǎng)價(jià)值
      飲食保健(2019年9期)2019-05-14 05:45:00
      油麥菜的作用
      飲食保健(2019年9期)2019-01-12 14:26:43
      弱膨脹土增濕變形量試驗(yàn)及路堤填筑分析
      慢性咽炎常吃油麥菜
      雙波長(zhǎng)激光治療慢性牙周炎的療效觀察
      原油含水率在線測(cè)量技術(shù)研究
      電子制作(2016年1期)2016-11-07 08:42:56
      尚义县| 大洼县| 盐津县| 芦溪县| 小金县| 屏东市| 喀喇| 琼海市| 渝北区| 高碑店市| 铜山县| 射阳县| 濉溪县| 六安市| 建德市| 信阳市| 昭平县| 鹤山市| 双牌县| 绥宁县| 潜江市| 东阿县| 武平县| 朝阳县| 河津市| 麻阳| 电白县| 芜湖市| 多伦县| 呼和浩特市| 伊春市| 延安市| 长沙县| 新巴尔虎左旗| 广宗县| 视频| 龙川县| 沿河| 永和县| 宝兴县| 兴山县|