• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toluene degradation by a water/silicone oil mixture for the design of two phase partitioning bioreactors

    2017-06-01 03:32:08MaximeGuillermAnnabelleCouvertAbdeltifAmraneEdithNorrantAudreyBretonricDumont
    Chinese Journal of Chemical Engineering 2017年10期

    Maxime Guillerm ,Annabelle Couvert,Abdeltif Amrane ,Edith Norrant,Audrey Breton ,éric Dumont*

    1 école Nationale Supérieure de Chimie de Rennes,UMR CNRS 6226,11 allée de Beaulieu,CS 50837,35708 Rennes Cedex 7,France

    2 UCB BioPharma sprl,Avenue de l'Industrie,B 1420 Braine l'Alleud,Belgium

    3 Total S.A.,CSTJF,Avenue Larribau,CA 374,64018 Pau Cedex,France

    4 UMR CNRS 6144 GEPEA,IMT-Atlantique,La Chantrerie,4 rue Alfred Kastler,B.P.20722,44307 Nantes Cedex 3,France

    1.Introduction

    Atmospheric emissions of volatile organic compounds(VOCs)represent an important environmental and human health issue.Biological treatment of VOC industrial emissions is particularly interesting due to its good performances obtained at low cost.However,traditional bioprocesses can be inadequate for removing hydrophobic VOCs as not only are such compounds usually poorly soluble in water,they can also be toxic for microorganisms.Toluene is a favorite hydrophobic model VOC among researchers because it is considered as an environmental priority pollutant and human carcinogen.Using a two-phase partitioning bioreactor(TPPB)could be an attractive alternative to remove such pollutants.A TPPB involves two immiscible liquid phases:an aqueous phase containing microorganisms and nutrients,and a nonaqueous phase liquid(NAPL)able to solubilize large amounts of hydrophobic VOCs.The targeted VOC is gradually transferred from the NAPL to the aqueous phase to be degraded by the microorganisms present in the TPPB,which thus enables the NAPL to be regenerated[1]while avoiding toxicity effects on the microorganisms.The VOCs can be removed from the air flux by absorption in a separate gas-liquid contactor before entering the TPPB(two-stage unit)or by direct blowing into the TPPB(one-stage unit).A hybrid system can also be considered[2].Several review papers have highlighted the pros and cons of this technology[3-7].Since the 2000s,some key scientific and technical limitations have gradually been solved.Thus,the selection of the most appropriate NAPL(i.e.immiscible with water,not biodegradable,not toxic for microorganisms and showing high affinity for hydrophobic VOCs)has been extensively studied[3,7,8].To date,silicone oils(polydimethylsiloxane,PDMS)with a viscosity ranging from 20 to 200 mPa·s,appear to be the only NAPLs with the desired characteristics[7].Once the best NAPL had been selected,efforts were focused on the determination ofthe gas/liquid partition coefficients between the target VOCs and silicone oils[1,9-15].Moreover,optimization of the volume fraction of silicone oil needed for an efficient mass transfer in the gasliquid contactor was considered[16,17]as well as the contactor hydrodynamics[2,18].Simultaneously,much research was centered on mathematical modeling to determine the most important parameters governing VOC mass transfer and kinetic biodegradation[19-25].Nevertheless,although significant data reported in the literature seem to demonstrate that TPPBs could be satisfactorily used at large-scale,no testin situin real conditions has yet been carried out because some design issues remain to be solved.Indeed,the design of a large-scale TPPB is still not possible because there is no sufficient reliable data concerning the VOCs'degradation performances in the presence of silicone oil.The results reported in the literature are extremely varied.Data can differ by one or two orders of magnitude for the same VOC.For instance,studying the treatment of toluene as representative VOC in the presence of silicone oil(PDMS 5 with a viscosity of 5 mPa·s),Darracqet al.[26]reported an elimination capacity(EC)of 0.95 g·m-3·h-1(25%v/v of PDMS 5 in the mixture)whereas Littlejohns and Daugulis[27]reported an EC of52 g·m-3·h-1(10%v/v ofPDMS 5 in the mixture).A toluene elimination capacity of 75 g·m-3·h-1(removal efficiency(RE)of 75%)was obtained by Volckaertet al.[28]in the case of the treatment of a mixture of dimethylsul fide,hexane and toluene by a mixture of water/PDMS 20(viscosity of 20 mPa·s)with a ratio of(75/25 v/v).The use of PDMS in stirred TPPBs has also been studied for the biodegradation of hexane,identified as a very hydrophobic pollutant.Elimination capacities of 21 g·m-3·h-1[29]and 60 g·m-3·h-1[30]were obtained using mixtures of water/PDMS 200(viscosity of 200 mPa·s)with ratios of(90/10 v/v)and(80/20 v/v),respectively.Using a(75/25 v/v)mixture of water/PDMS 20 for the treatment of hexane,Volckaertet al.[28]obtained elimination capacities up to 242 g·m-3·h-1(RE=69%).Such performances are lower than those reported by Monteset al.[31]for the biodegradation of α-pinene(a moderately hydrophobic VOC).Thus,using water/PDMS 200 mixtures with ratios of(98/2 v/v)and(95/5 v/v),these authors obtained RE=100%for loading rates up to around 100 g·m-3·h-1and reported a maximum elimination capacity of around 650 g·m-3·h-1(RE=55%).This short overview of data in the recent literature highlights that comparing results obtained for different VOCs is notreally relevant.Even if the comparison is informative,the hydrophobicity of the VOC as well as its toxicity towards microorganisms and the mass transfer limitations have to be taken into account.Consequently,with the final objective to implement a full TPPB for the treatment of air polluted with toluene under industrial conditions,there is a need to determine the ability of microorganisms contained in a water/PDMS mixture to degrade this VOC.The purpose of this study was therefore to obtain useful data from the determination of toluene degradation performances by activated sludge in order to design an industrial TPPB.On the basis of “dimensional analysis”,the experiments carried out in a semicontinuous stirred tank reactor at laboratory-scale will be used to design and build a large-scale apparatus.In this study,toluene was selected as targeted VOC because it is largely used and emitted by many industries.Moreover,toluene is considered by the Total Company,partner of this project,as a compound of interest for the development of TPPBs.

    2.Material and Methods

    2.1.Chemicals

    Toluene(C7H8;CAS number:108-88-3;purity≥99.5%;molecular weight:92.14·10-3kg·mol-1;density:867 kg·m-3;Sigma Aldrich)was selected as the target VOC because it is widely used in various industries and is highly hydrophobic.The silicone oil Rhodorsil 47V50(PDMS 50;dynamic viscosity 46 mPa·s;density 959 kg·m-3),provided by the Bluestar Silicones Company,was selected based on characteristics such as its affinity for toluene(partition coefficient at 25°C:(2.9±0.3)Pa·m3·mol-1;[14]),non-biodegradability,biocompatibility and low aqueous solubility[1].As the partition coefficient of toluene between water and air is 680 Pa·m3·mol-1at 25 °C[32],it can be calculated that the affinity of toluene is 234 times higher for PDMS 50 than for water.

    2.2.Experiments

    Two sets of experiments were carried out in a semi-continuous stirred tank reactor(Fig.1).The tank was aerated by a gas sparger and stirred by a Rushton turbine(300 rpm).In the first set of experiments,the reactor was sequentially supplied with toluene(10 toluene injections)whereas in the second series,toluene was supplied continuously.Liquid toluene was injected into the mixture of water/PDMS 50 using a syringe driver.The operating conditions for all experiments are detailed in Table 1.Liquid temperature and pHwere regulated at25°Cand 7,respectively.The liquid phase(10 L)consisted of75%water and 25%silicone oil(PDMS 50)in volume corresponding to an optimum ratio for biodegradation performances[26].The volume of the gasphase(head-space)was2.3 L.Taking the stirring rate and the bubbling due to the aeration system into account,both the liquid and gas phases could be reasonably considered to be perfectly mixed.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France)was used at an initial concentration of 0.5 gdryweightL-1mixture(i.e.0.38 gdryweightL-1water).Nutrients were added to the reactor at the beginning of experiments(all concentrations in g·(water L)-1:KH2PO4:3.5;K2HPO4·3H2O:8;NH4Cl:5.5;MgSO4·7H2O:0.25;CaCl2·2H2O:0.07;ZnSO4·7H2O:0.02;CuSO4·5H2O:0.005;(NH4)2Mo7O24·6H2O:0.004;FeSO4·7H2O:0.1).Since it was not regulated,biomass accumulated in the reactor during experiments.According to[33],half of the toluene degraded by the biomass is converted to cellular mass(C7H8+4O2+→C5H7O2N+2CO2+2H2O+H+)and halfis oxidized for energy(C7H8+9O2→7CO2).Consequently,the amount of oxygen required to biodegrade 1 mol of toluene corresponds to 6.5 mol(i.e.4.5 mol for energy production and 2 mol for biomass production).Moreover,it was recently evidenced that the presence of silicone oil has no significant influence on the microbial community in terms of richness and diversity[34].

    Table 1Operating conditions for the two sets of experiments

    Fig.1.Semi-continuous 10 L stirred tank reactor for toluene biodegradation.

    2.3.Analytical methods

    Biomass concentration was measured by extracting suspended solids from samples of the water/PDMS mixture by centrifugation(at 4000 r·min-1for 20 min)and weighing the dry matter(dried in an oven at 105°C for 16 h).However,this measurement was difficult to make accurately because after centrifugation,on the one hand,a small part of the sludge was removed with the supernatant and,on the other hand,some traces of silicone oil remained “stuck”to the dry matter,distorting the weight values obtained(error of±20%).This issue is inherent to the use of water/NAPL mixtures.In fact,Ascon-Cabrera and Lebeault[35]observed that approximately half of the total biomass adhered to the water/NAPL interface.For the sequential experiments,biomass measurements were carried out daily,before toluene injection.For the continuous experiments,biomass measurements were carried out at the end of each experiment.

    The oxygen and carbon dioxide in the output gas were monitored simultaneously and continuously using an IPOS analyzer(Abiss,France).The dissolved oxygen in the aqueous phase was also monitored using a standard electrode SZ10T-PB(Consort,Belgium).

    The toluene phase concentration in the gas phase was measured using a gas chromatograph(GC)coupled with a flame ionization detector(FID)from Thermo Scientific(USA)as described by Darracqet al.[36].Assuming that gas-liquid equilibrium was reached in the reactor,the toluene concentration in the water/PDMS 50 mixture was then deduced from the partition coefficient value determined from the calculation procedure developed by Dumontet al.[12].For a liquid phase consisting of75%water and 25%PDMS 50 in volume,the partition coefficient value is 11.5 Pa·m3·mol-1,corresponding to a dimensionless value of 0.0046(=Cgas/Cmixture).

    2.4.Biodegradation rate

    For the sequential experiments,the toluene degradation rate(EC in g m-3h-1)was calculated using Eq.(1):

    The volume of the mixture(Vmixture)was 10 L and the amount of injected toluene was 10 ml.The overall toluene stripping in the gas output during the whole experiment was deduced by monitoring the toluene concentration in the gas phase over time.Moreover,the degradation time was calculated from normalized curves(n(t)/n(t=0))describing the decrease in the toluene content in the liquid phase over time,as well as from the oxygen concentration curves in the liquid and gas phases monitored during the course of experiments,respectively.

    For the continuous experiments,the toluene biodegradation rate was calculated based on the mass balance between the toluene flow rate,toluene stripping,toluene degradation and toluene accumulation,as described in Eq.(2)and Fig.2.

    The toluene flow rate(Qtoluenein g·h-1)was a controlled parameter in the experiment and toluene stripping(QairCgas)was monitored over time.The overall toluene stripping in the gas output during the whole experiment was thus obtained by the cumulative addition of the stripping measured between two time intervals(Eq.(3)).

    Fig.2.Calculation of the toluene degradation rate.

    In the same way,the accumulation term was deduced from Eq.(4),whereCmixtureover time was calculated assuming that gas-liquid equilibrium was reached in the reactor(which can be reasonably assumed because the air residence time in the reactor was long,13 min,and the toluene flow rate was very small compared to the volume of the mixture;Table 1).

    3.Results and Discussion

    3.1.Sequential experiments

    Sequential experiment was carried out in duplicate in order to assess the reproducibility of degradation rates and biomass measurements.After the first toluene injection,corresponding to the first day of experiment(day 1),a lag phase due to an acclimation period of about 20 h was observed.After the acclimation period,biomass activity started immediately after each toluene injection.An example of the time-course of the normalized amount of toluene in the liquid phase(n(t)/n(t=0))recorded after the toluene injection(t=0)is shown in Fig.3.The beginning and the end of the degradation can be directly determined from the simultaneous and dramatic changes in the O2and CO2concentration curves in the gas phase,as well as O2dissolved in the aqueous phase.It should be noted that the real CO2level reached during experiments cannot be known due to the saturation of the analyzer(plateau at 3%CO2).As observed in Fig.3,the amount of oxygen dissolved in the liquid phase could not be considered a limiting factor.After each toluene injection,the biodegradation rate(accuracy±10%)was determined using the curves reported in Fig.3 and Eq.(1).It should be noted that for all experiments,the stripping of toluene in the air output was less than 10%of the total amount of toluene injected into the mixture.

    Fig.3.Sequential experiments:example of toluene biodegradation and parameters monitored in the gas phase and in the aqueous phase.

    Fig.4.Biodegradation rates and biomass concentrations determined during sequential experiments.

    The ten biodegradation rates determined during the sequential experiments are displayed in Fig.4,which also shows the biomass concentration measured before each toluene addition.After the acclimation period,the biodegradation rate was roughly constant(until day 7)at around 1 g·h-1,i.e.100 g·m-3·h-1.The amount of biomass increased daily.However,after day 7,the biodegradation rates dropped to 0.5 g h-1(i.e.50 g·m-3·h-1)while the biomass continued to increase.According to this figure,the biomass production can be correlated with the amount of degraded toluene.Taking into accountthe relative accuracy ofthe biomass concentration measurements due to the presence of PDMS,the yield was(0.055±0.011)biomass g·(toluene g)-1,which corresponds to data reported in the literature[37].The drop in the biodegradation rate is difficult to explain because(1)the dissolved oxygen concentration never became nil.As a result,the availability of O2also did not limit the degradation rate(a test carried out without aeration(not shown)highlighted that the concentration of dissolved O2could be nil,which limited biodegradation);(2)since the biomass increased continuously,the amount of available biomass did not limit the biodegradation;(3)since the nutrients were added in excess at the beginning of each experiment,they could not be considered as a limiting factor.As the supply of toluene was sequential,the drop in the biodegradation rate could be due to an irregular availability of toluene,which should not be observed in the series of continuous experiments.Moreover,the occurrence of inhibitory metabolites due to toluene degradation could be contemplated and should be investigated in future works.Compared with the literature data,it appears that the biodegradation rates obtained are of the same order of magnitude as performances usually reported for conventional bioreactors for air treatment,from 10 to 70 g·m-3·h-1[6,38,39].Studying toluene removal in laboratory-scale peat biofilters,álvarez-Hornoset al.[40]reported an elimination capacity of 93 g·m-3·h-1at an empty bed residence Time(EBRT)of 57 s.Moreover,it seems that higher performances could be reached using fungal strainsPaecilomyces variottiandExophiala oligosperma.Elimination capacity values as high as 164 g·m-3·h-1have been reported[41].Clearly,although the selection of a pure culture for VOC degradation leads to better removal efficiency,the use of a mixed culture,such as activated sludge,for industrial applications is preferable,owing to its robustness.

    3.2.Continuous experiments

    An example of the time-course of toluene changes during a continuous experiment is presented in Fig.5.This figure shows,in the upper part,the mass balance of the amountofinjected toluene between stripping,biodegradation and accumulation in the water/PDMS 50 mixture(Eq.(2))and,in the bottom part,the derivative curves corresponding to the stripping and biodegradation rates,respectively.As for sequential experiments,a lag phase was observed at the beginning of the experiment,due to the acclimation of the microorganisms to toluene.Hence,no degradation was observed during the first 20 h of culture and consequently toluene was predominantly accumulated in the liquid phase reactor.At the same time,a partoftoluene wasstripped from the reactor(between 5%and 10%).The greatest stripping rate was monitored for the maximum amount of toluene accumulated in the liquid phase.After the initial lag phase,the degradation began and a peak in the toluene removal rate was observed after 25 h of treatment(13.4 mmol·h-1).Once the toluene reserve was depleted,the microorganisms degraded toluene as soon as it was injected into the reactor,which is illustrated by the negligible residual gas-phase concentration from less than 45 h until the end of the experiment.Consequently,from this time,the toluene removal rate was equal to the injection rate(Fig.5(b)).Oxygen concentrations in the liquid and gas phases were monitored during the course of experiments(insert in Fig.5(b)).Concentrations in both phases followed the same trend.Roughly constant during the lag phase,the oxygen concentration dropped dramatically when toluene degradation started.The dramatic decrease in the oxygen concentration in both liquid and gas phases,down to values close to 50%for the former and 15%for the latter,corresponded to the high removal rate of toluene observed at the same time.It is noteworthy that even during this peak of consumption,oxygen remained not limiting.During toluene degradation at a constant rate(after 50 h),oxygen concentrations stabilized at values close to 70%and 16.5%for dissolved and gas phase oxygen,respectively.

    Toluene degradation was efficient(RE=100%)for toluene inputs ranging from 0.2 to 1.2 ml·h-1,(i.e.up to 11.3 mmol·h-1)which correspond to an elimination capacity of 104 g·m-3·h-1.It should be noted that this performance,which is consistent with the results recorded during the sequential experiments,corresponds to the degradation rate obtained at the end of the experiment,i.e.at steadystate(the biodegradation rate peak may be much higher as highlighted in Fig.5).This resultis two times higherthan data reported by[27]using an airlift TPPB(water/PDMS 5,90/10 v/v)to treat a mixture of BTEX(EC of 52 g·m-3·h-1corresponding to a toluene removal efficiency of 87.2%for a loading rate of 60 g·m-3·h-1).Using the oxygen measurements in the gas phase between the beginning and end of the experiments,it was possible to calculate the amount of oxygen transferred during the degradation of toluene at steady-state for these operating conditions.Results are ranged from 5.0 to 6.5 mol of oxygen per mole of toluene.Taken into account the part of toluene stripped during the experiment,such results are in agreement with the expected value.Indeed,as described in Section 2.2,it is usually assumed that half of the organic compound is converted to cellular mass and half oxidized for energy[33].With this assumption,the amount of oxygen required to biodegrade 1 mol of toluene is6.5 mol(i.e.4.5 mol for energy production and 2 molfor biomass production).The biomass production determined during the continuous experiments corresponded to that measured during the sequential experiments.Thus,at the end of the experiment displayed in Fig.5,the biomass concentration was 1.5 dry mass g·(mixture L)-1(toluene injection:0.4 ml·h-1),and values of 4.7 dry mass g·(mixture L)-1were recorded for a toluene injection of 1.2 ml·h-1.The trend of a linear increase in biomass concentration with elimination capacity is in agreement with the result reported by Littlejohns and Daugulis[27].Using an airlift TPPB to treat a mixture of BTEX(Benzene,Toluene,Ethylbenzene,o-Xylene),these authors obtained a linear correlation between the average EC and biomass concentration.However,this result was obtained using silicone rubber beads(10%v/v)as the non-aqueous phase.

    Fig.5.Continuous experiments:example of the determination of toluene biodegradation(toluene injection:0.4 ml·h-1,i.e.3.8 mmol·h-1).

    4.Conclusions

    Experiments were carried out in a semi-continuous stirred tank reactor to determine the ability of a mixture of water/silicone oil PDMS 50(75/25 v/v)to degrade toluene.The performances of biodegradation obtained from sequential and continuous experiments,up to 104 g·m-3·h-1(RE=100%),are thus of primary importance in designing the stirred tank reactor for large-scale applications.Based on this laboratory result,a pilot device coupling the absorption step of toluene by PDMS in a separate column with the biodegradation step in a TPPB can now be designed and tested on an industrial site to study the biodegradation performances on a real effluent loaded with toluene.The next work is to confirm over a long period the ability of a TPPB to degrade toluene and to study the impact of the possible accumulation of inhibitory metabolites due to biomass activity.The biodegradation performances will be studied for sequential and continuous operating conditions encountered in industrial companies.The transient-state conditions and shock-loads will be also investigated.

    Acknowledgments

    The authors would like to thank the French Environmentand Energy Management Agency(ADEME)for their support through a PhD fellowship for M.Guillerm.

    [1]G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,E.Dumont,Y.Andres,P.Le Cloirec,Silicone oil:An effective absorbent for the removal of hydrophobic volatile organic compounds,J.Chem.Technol.Biotechnol.85(2010)309-313.

    [2]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,Hydrophobic VOC absorption in two-phase partitioning bioreactors;influence of silicone oil volume fraction on absorber diameter,Chem.Eng.Sci.71(2012)146-152.

    [3]A.J.Daugulis,Two-phase partitioning bioreactors:A new technology platform for destroying xenobiotics,Trends Biotechnol.19(2001)457-462.

    [4]R.Mu?oz,S.Villaverde,B.Guieysse,S.Revah,Two-phase partitioning bioreactors for treatment of volatile organic compounds,Biotechnol.Adv.25(2007)410-422.

    [5]G.Quijano,M.Hernandez,F.Thalasso,R.Mu?oz,S.Villaverde,Two-phase partitioning bioreactors in environmental biotechnology,Appl.Microbiol.Biotechnol.84(2009)829-846.

    [6]C.Kennes,E.R.Rene,M.C.Veiga,Bioprocesses for air pollution control,J.Chem.Technol.Biotechnol.84(2009)1419-1436.

    [7]R.Mu?oz,A.J.Daugulis,M.Hernández,G.Quijano,Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds,Biotechnol.Adv.30(2012)1707-1720.

    [8]I.Béchohra,A.Couvert,A.Amrane,Absorption and biodegradation of toluene:Optimization of its initial concentration and the biodegradable non-aqueous phase liquid volume fraction,Int.Biodeterior.Biodegrad.104(2015)350-355.

    [9]R.Mu?oz,M.Chambaud,S.Bordel,S.Villaverde,A systematic selection of the nonaqueous phase in a bacterial two liquid phase bioreactor treating α-pinene,Appl.Microbiol.Biotechnol.79(2008)33-41.

    [10]L.Bailón,M.Nikolausz,M.K?stner,M.C.Veiga,C.Kennes,Removal of dichloromethane from waste gases in one-and two-liquid-phase stirred tank bioreactors and biotrickling filters,Water Res.43(2009)11-20.

    [11]M.Hernández,G.Quijano,F.Thalasso,A.J.Daugulis,S.Villaverde,R.Mu?oz,A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors,Biotechnol.Bioeng.106(2010)731-740.

    [12]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,Determination of partition coefficients of three volatile organic compounds(dimethylsulphide,dimethyldisulphide and toluene)in water/silicone oil mixtures,Chem.Eng.J.162(2010)927-934.

    [13]J.Rocha-Rios,G.Quijano,F.Thalasso,S.Revah,R.Mu?oz,Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation,J.Chem.Technol.Biotechnol.86(2011)353-360.

    [14]M.Guillerm,A.Couvert,A.Amrane,é.Dumont,E.Norrant,N.Lesage,C.Juery,Characterization and selection of PDMS solvents for the absorption and biodegradation of hydrophobic VOCs,J.Chem.Technol.Biotechnol.91(2016)1923-1927.

    [15]S.Tourani,A.Behvandi,F.Khorasheh,Prediction of Henry's constant in polymer solutions using PCOR equation of state coupled with an activity coefficient model,Chin.J.Chem.Eng.23(2015)528-535.

    [16]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures:Influence of silicone oil volume fraction,Chem.Eng.J.168(2011)241-248.

    [17]Z.Zhang,T.Xu,W.Li,Z.Ji,G.Xu,Mass transfer enhancement of gas absorption by adding the dispersed organic phases,Chin.J.Chem.Eng.19(2011)1066-1068.

    [18]M.Guillerm,A.Couvert,A.Amrane,E.Norrant,N.Lesage,é.Dumont,Absorption of toluene in silicone oil:Effect of the solvent viscosity on hydrodynamics and mass transfer,Chem.Eng.Res.Des.109(2016)32-40.

    [19]M.H.Fazaelipoor,A model for treating polluted air streams in a continuous two liquid phase stirred tank bioreactor,J.Hazard.Mater.148(2007)453-458.

    [20]D.R.Nielsen,A.J.Daugulis,P.J.McLellan,Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber:Part I:Model development,parameter estimation,and parametric sensitivity,Biochem.Eng.J.36(2007)239-249.

    [21]D.R.Nielsen,A.J.Daugulis,P.J.McLellan,Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber:Part II:Model calibration,validation,and predictions,Biochem.Eng.J.36(2007)250-261.

    [22]M.Hernández,G.Quijano,R.Mu?oz,S.Bordel,Modeling of VOC mass transfer in two-liquid phase stirred tank,biotrickling filter and airlift reactors,Chem.Eng.J.172(2011)961-969.

    [23]A.D.Dorado,E.Dumont,R.Mu?oz,G.Quijano,A novel mathematical approach for the understanding and optimization of two-phase partitioning bioreactors devoted to air pollution control,Chem.Eng.J.263(2015)239-248.

    [24]S.Shen,Y.Ma,S.Lu,C.Zhu,An unsteady heterogeneous mass transfer model for gas absorption enhanced by dispersed third phase droplets,Chin.J.Chem.Eng.17(2009)602-607.

    [25]S.Shen,Y.Ma,W.Liu,S.Lu,C.Zhu,Mass transfer enhancement of propane absorption into dodecane-water emulsions,Chin.J.Chem.Eng.18(2010)217-222.

    [26]G.Darracq,A.Couvert,C.Couriol,D.Thomas,A.Amrane,E.Dumont,Y.Andres,P.Le Cloirec,Optimization of the volume fraction of the NAPL,silicone oil,and biodegradation kinetics of toluene and DMDS in a TPPB,Int.Biodeterior.Biodegrad.71(2012)9-14.

    [27]J.V.Littlejohns,A.J.Daugulis,A two-phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases,Biotechnol.Bioeng.103(2009)1077-1086.

    [28]D.Volckaert,D.E.L.Ebude,H.Van Langenhove,SIFT-MS analysis of the removal of dimethyl sulphide,n-hexane and toluene from waste air by a two phase partitioning bioreactor,Chem.Eng.J.290(2016)346-352.

    [29]R.Mu?oz,E.I.H.H.Gan,M.Hernández,G.Quijano,Hexane biodegradation in twoliquid phase bioreactors:High-performance operation based on the use of hydrophobic biomass,Biochem.Eng.J.70(2013)9-16.

    [30]M.Hernández,G.Quijano,R.Mu?oz,Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors,Environ.Sci.Technol.46(2012)4059-4066.

    [31]M.Montes,M.C.Veiga,C.Kennes,Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors,J.Biotechnol.157(2012)554-563.

    [32]D.Mackay,W.-Y.Shiu,K.-C.Ma,S.C.Lee,Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals,second ed.CRC Press,2010.

    [33]L.K.Wang,N.K.Shammas,Y.-T.Hung,Advances in Hazardous Industrial Waste Treatment,CRC Press,2008.

    [34]R.Lebrero,E.Rodríguez,R.Pérez,P.A.García-Encina,R.Mu?oz,Abatement of odorant compounds in one-and two-phase biotrickling filters under steady and transient conditions,Appl.Microbiol.Biotechnol.97(2013)4627-4638.

    [35]M.Ascon-Cabrera,J.M.Lebeault,Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system,Appl.Environ.Microbiol.59(1993)1717-1724.

    [36]G.Darracq,A.Couvert,C.Couriol,A.Amrane,P.L.Cloirec,Removal of hydrophobic volatile organic compounds in an integrated process coupling absorption and biodegradation—selection of an organic liquid phase,Water Air Soil Pollut.223(2012)4969-4997.

    [37]P.J.J.Alvarez,P.J.Anid,T.M.Vogel,Kinetics of toluene degradation by denitrifying aquifer microorganisms,J.Environ.Eng.120(1994)1327-1336.

    [38]C.Kennes,F.Thalasso,Waste gas biotreatment technology,J.Chem.Technol.Biotechnol.72(1998)303-319.

    [39]C.Kennes,M.C.Veiga,Bioreactors for Waste Gas Treatment,Springer,Germay,2001.

    [40]F.J.álvarez-Hornos,C.Gabaldón,V.Martínez-Soria,P.Marzal,J.-M.Penya-roja,Biofiltration of toluene in the absence and the presence of ethyl acetate under continuous and intermittent loading,J.Chem.Technol.Biotechnol.83(2008)643-653.

    [41]E.Estévez,M.C.Veiga,C.Kennes,Bio filtration of waste gases with the fungiExophiala oligospermaandPaecilomyces variotii,Appl.Microbiol.Biotechnol.67(2005)563-568.

    一级毛片高清免费大全| 天堂动漫精品| 久久久久九九精品影院| 成人亚洲精品av一区二区| 搡老熟女国产l中国老女人| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 男人操女人黄网站| 人人澡人人妻人| 亚洲欧美精品综合一区二区三区| 美女免费视频网站| 制服丝袜大香蕉在线| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 可以在线观看的亚洲视频| 久久人妻av系列| 婷婷精品国产亚洲av| 亚洲第一av免费看| 亚洲国产欧美一区二区综合| 精品久久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| 巨乳人妻的诱惑在线观看| 精品久久久久久久毛片微露脸| av福利片在线| 亚洲精品av麻豆狂野| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3 | 丁香欧美五月| 久久中文字幕一级| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影| 国产蜜桃级精品一区二区三区| 人成视频在线观看免费观看| 成人18禁在线播放| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 国产又爽黄色视频| av超薄肉色丝袜交足视频| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 午夜福利高清视频| 国内揄拍国产精品人妻在线 | 亚洲五月天丁香| 欧美成人一区二区免费高清观看 | 国产又色又爽无遮挡免费看| 亚洲精品色激情综合| 99在线人妻在线中文字幕| 丝袜美腿诱惑在线| 日韩高清综合在线| 国产成人av教育| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3 | 亚洲欧美日韩无卡精品| 黄片小视频在线播放| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 亚洲无线在线观看| 亚洲欧美精品综合久久99| 亚洲va日本ⅴa欧美va伊人久久| 丁香欧美五月| 俺也久久电影网| 国产在线精品亚洲第一网站| 欧美日本视频| 欧美三级亚洲精品| 中文字幕人成人乱码亚洲影| 精品乱码久久久久久99久播| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 韩国av一区二区三区四区| 国产精品免费视频内射| 丝袜在线中文字幕| 亚洲自拍偷在线| 亚洲,欧美精品.| 男女之事视频高清在线观看| a级毛片在线看网站| 亚洲美女黄片视频| 成人免费观看视频高清| 18美女黄网站色大片免费观看| 女警被强在线播放| 亚洲avbb在线观看| 久久国产精品人妻蜜桃| 久久久久免费精品人妻一区二区 | 亚洲欧美一区二区三区黑人| 性欧美人与动物交配| 九色国产91popny在线| 国产精品一区二区精品视频观看| 成人特级黄色片久久久久久久| av欧美777| or卡值多少钱| 高清在线国产一区| 黄色毛片三级朝国网站| 色婷婷久久久亚洲欧美| 久久精品人妻少妇| 国产亚洲欧美在线一区二区| 桃色一区二区三区在线观看| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 久久精品成人免费网站| 久久久久国产一级毛片高清牌| 国产久久久一区二区三区| 99久久99久久久精品蜜桃| 老熟妇乱子伦视频在线观看| av天堂在线播放| 十八禁网站免费在线| av视频在线观看入口| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 国产激情欧美一区二区| 白带黄色成豆腐渣| 日韩免费av在线播放| 一a级毛片在线观看| 亚洲av日韩精品久久久久久密| 又大又爽又粗| 久久精品国产99精品国产亚洲性色| 男女那种视频在线观看| 欧美性长视频在线观看| 国内少妇人妻偷人精品xxx网站 | ponron亚洲| 黑丝袜美女国产一区| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 美女高潮到喷水免费观看| aaaaa片日本免费| 在线十欧美十亚洲十日本专区| 国产av一区二区精品久久| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 成年人黄色毛片网站| 色综合婷婷激情| 久久久久亚洲av毛片大全| 日韩 欧美 亚洲 中文字幕| 国产伦一二天堂av在线观看| 日韩国内少妇激情av| www.自偷自拍.com| 亚洲,欧美精品.| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 高清毛片免费观看视频网站| 熟女少妇亚洲综合色aaa.| 天天一区二区日本电影三级| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产1区2区3区精品| 国产99白浆流出| 久久久久久久久久黄片| 又大又爽又粗| 伦理电影免费视频| 在线观看66精品国产| 两个人免费观看高清视频| av视频在线观看入口| 亚洲av电影不卡..在线观看| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 午夜福利一区二区在线看| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看 | 韩国精品一区二区三区| 女性生殖器流出的白浆| 久久午夜亚洲精品久久| 国产aⅴ精品一区二区三区波| 又黄又粗又硬又大视频| 日本成人三级电影网站| 搡老岳熟女国产| 一个人免费在线观看的高清视频| tocl精华| 观看免费一级毛片| 精品福利观看| 日韩 欧美 亚洲 中文字幕| 欧美性猛交╳xxx乱大交人| 欧美日韩福利视频一区二区| 级片在线观看| 美女国产高潮福利片在线看| 午夜福利18| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 久久香蕉国产精品| 天堂影院成人在线观看| 亚洲国产毛片av蜜桃av| 女警被强在线播放| 亚洲熟女毛片儿| 一个人免费在线观看的高清视频| 人人澡人人妻人| 最好的美女福利视频网| 真人一进一出gif抽搐免费| 香蕉久久夜色| 亚洲,欧美精品.| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 精品人妻1区二区| 一本久久中文字幕| 色老头精品视频在线观看| 久久精品影院6| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 人成视频在线观看免费观看| www.精华液| 91在线观看av| 国产精品 欧美亚洲| 少妇熟女aⅴ在线视频| 亚洲专区中文字幕在线| 一二三四社区在线视频社区8| 国产麻豆成人av免费视频| 成人欧美大片| 欧美又色又爽又黄视频| 黑丝袜美女国产一区| 国产成人av教育| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩无卡精品| 久久精品成人免费网站| 看免费av毛片| 波多野结衣高清无吗| 欧美日韩亚洲综合一区二区三区_| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看| av在线播放免费不卡| 国产精品 国内视频| 久久人妻av系列| 国产爱豆传媒在线观看 | 午夜免费观看网址| 青草久久国产| 一区二区三区国产精品乱码| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 国产视频内射| 在线国产一区二区在线| 日本五十路高清| 听说在线观看完整版免费高清| 久久这里只有精品19| 一区二区三区国产精品乱码| 国产av在哪里看| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 亚洲一区二区三区不卡视频| 午夜福利18| 国产精品 国内视频| 男女那种视频在线观看| 日本免费一区二区三区高清不卡| 久久久国产精品麻豆| 亚洲成人久久爱视频| 精品卡一卡二卡四卡免费| 国产精品影院久久| 亚洲人成77777在线视频| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 日日夜夜操网爽| 妹子高潮喷水视频| 黄色视频不卡| 十分钟在线观看高清视频www| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| а√天堂www在线а√下载| 99久久综合精品五月天人人| 美女国产高潮福利片在线看| 亚洲片人在线观看| 高清毛片免费观看视频网站| 欧美一级a爱片免费观看看 | 亚洲真实伦在线观看| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 视频在线观看一区二区三区| 99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 久热这里只有精品99| 首页视频小说图片口味搜索| 国产三级在线视频| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 日本免费a在线| 免费一级毛片在线播放高清视频| 亚洲精品美女久久av网站| 国产av一区在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 999久久久国产精品视频| 亚洲国产精品sss在线观看| 99久久国产精品久久久| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 久久精品91蜜桃| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 成人免费观看视频高清| 热re99久久国产66热| 哪里可以看免费的av片| 久久青草综合色| 日韩欧美一区二区三区在线观看| 成人18禁在线播放| 男人舔女人下体高潮全视频| 免费看日本二区| 嫩草影视91久久| 午夜精品久久久久久毛片777| 亚洲三区欧美一区| 久久性视频一级片| 在线观看www视频免费| 麻豆av在线久日| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 91九色精品人成在线观看| 美女高潮到喷水免费观看| 人妻丰满熟妇av一区二区三区| 香蕉av资源在线| 午夜成年电影在线免费观看| 日本五十路高清| 美女 人体艺术 gogo| 国产高清视频在线播放一区| 在线观看日韩欧美| 久久精品人妻少妇| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 老司机靠b影院| 久久性视频一级片| 老汉色∧v一级毛片| 黄片大片在线免费观看| 动漫黄色视频在线观看| 1024手机看黄色片| 精品电影一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 精品电影一区二区在线| 在线观看免费午夜福利视频| 97碰自拍视频| 国产区一区二久久| 亚洲国产毛片av蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 美女免费视频网站| 午夜久久久在线观看| avwww免费| 亚洲avbb在线观看| 丰满的人妻完整版| 黑人欧美特级aaaaaa片| 哪里可以看免费的av片| 亚洲中文日韩欧美视频| 亚洲九九香蕉| 欧美国产精品va在线观看不卡| 一夜夜www| 日韩国内少妇激情av| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 两性夫妻黄色片| 亚洲精品国产区一区二| av福利片在线| 国产av在哪里看| av片东京热男人的天堂| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 午夜a级毛片| 国产久久久一区二区三区| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 免费在线观看日本一区| a级毛片a级免费在线| 9191精品国产免费久久| 日本a在线网址| www日本在线高清视频| а√天堂www在线а√下载| 欧美激情久久久久久爽电影| 18美女黄网站色大片免费观看| 黑人巨大精品欧美一区二区mp4| 午夜免费激情av| 亚洲精品在线美女| av福利片在线| 欧美日本亚洲视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 他把我摸到了高潮在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩中文字幕国产精品一区二区三区| 搡老熟女国产l中国老女人| 日本免费a在线| 又黄又爽又免费观看的视频| 视频在线观看一区二区三区| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 99精品在免费线老司机午夜| 极品教师在线免费播放| 亚洲午夜精品一区,二区,三区| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 波多野结衣高清无吗| 久久久久久亚洲精品国产蜜桃av| 久久精品夜夜夜夜夜久久蜜豆 | 在线国产一区二区在线| 久久精品国产亚洲av高清一级| 老熟妇乱子伦视频在线观看| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| av片东京热男人的天堂| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲精品综合一区在线观看 | 草草在线视频免费看| www.熟女人妻精品国产| 亚洲国产欧洲综合997久久, | 亚洲aⅴ乱码一区二区在线播放 | 一二三四社区在线视频社区8| 免费一级毛片在线播放高清视频| 制服丝袜大香蕉在线| 精品福利观看| 好男人在线观看高清免费视频 | 法律面前人人平等表现在哪些方面| 精品国产美女av久久久久小说| 最新美女视频免费是黄的| 啦啦啦 在线观看视频| 91在线观看av| 母亲3免费完整高清在线观看| 亚洲人成网站在线播放欧美日韩| 日韩有码中文字幕| 精品久久久久久,| www.精华液| 99热只有精品国产| 热re99久久国产66热| 男女之事视频高清在线观看| 国产视频一区二区在线看| 好男人在线观看高清免费视频 | svipshipincom国产片| 99热只有精品国产| 亚洲av成人一区二区三| 色播亚洲综合网| 在线观看www视频免费| 人人妻人人澡人人看| 美女大奶头视频| 日本在线视频免费播放| 在线天堂中文资源库| 香蕉久久夜色| 视频在线观看一区二区三区| 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| 香蕉av资源在线| 国产精品野战在线观看| 久久精品国产亚洲av高清一级| 在线观看免费视频日本深夜| 黄色片一级片一级黄色片| 美女免费视频网站| 男女那种视频在线观看| 99国产综合亚洲精品| 成年版毛片免费区| 午夜精品久久久久久毛片777| 国产亚洲精品第一综合不卡| 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 国产成+人综合+亚洲专区| 1024视频免费在线观看| 亚洲 国产 在线| 免费看日本二区| 国产精品,欧美在线| 麻豆一二三区av精品| 两个人视频免费观看高清| 亚洲国产高清在线一区二区三 | 免费在线观看影片大全网站| 国内精品久久久久久久电影| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 黄片小视频在线播放| 亚洲国产欧美网| av超薄肉色丝袜交足视频| 一区二区三区高清视频在线| 亚洲 欧美一区二区三区| 久久人妻福利社区极品人妻图片| 久久国产精品影院| 国产精品美女特级片免费视频播放器 | 日本在线视频免费播放| 琪琪午夜伦伦电影理论片6080| 日韩精品中文字幕看吧| 欧美人与性动交α欧美精品济南到| 村上凉子中文字幕在线| 91大片在线观看| 嫩草影院精品99| 国产乱人伦免费视频| 给我免费播放毛片高清在线观看| 91成人精品电影| 正在播放国产对白刺激| 嫩草影院精品99| 久久国产精品影院| 亚洲人成伊人成综合网2020| 免费av毛片视频| 免费一级毛片在线播放高清视频| 一个人观看的视频www高清免费观看 | 亚洲人成伊人成综合网2020| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| 久久精品91无色码中文字幕| 伊人久久大香线蕉亚洲五| 法律面前人人平等表现在哪些方面| 国产午夜精品久久久久久| 亚洲国产精品合色在线| 欧美日韩一级在线毛片| 午夜a级毛片| 久久国产亚洲av麻豆专区| 满18在线观看网站| 国产精品综合久久久久久久免费| 亚洲精品国产一区二区精华液| 日韩三级视频一区二区三区| 少妇熟女aⅴ在线视频| 国产熟女午夜一区二区三区| 国产不卡一卡二| 丁香六月欧美| 男女视频在线观看网站免费 | 免费高清在线观看日韩| 国产亚洲av高清不卡| 国产视频内射| 美女高潮喷水抽搐中文字幕| 欧美 亚洲 国产 日韩一| 制服诱惑二区| 久久狼人影院| 99国产精品99久久久久| 免费看十八禁软件| 2021天堂中文幕一二区在线观 | 亚洲狠狠婷婷综合久久图片| 午夜两性在线视频| 性欧美人与动物交配| 十八禁网站免费在线| 又黄又爽又免费观看的视频| 一进一出抽搐动态| 免费av毛片视频| 香蕉久久夜色| tocl精华| av欧美777| 午夜日韩欧美国产| 久久久久国内视频| 亚洲自拍偷在线| 人妻丰满熟妇av一区二区三区| 亚洲一码二码三码区别大吗| 久久精品人妻少妇| 中文在线观看免费www的网站 | 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 777久久人妻少妇嫩草av网站| 非洲黑人性xxxx精品又粗又长| 1024香蕉在线观看| 日韩国内少妇激情av| av福利片在线| 他把我摸到了高潮在线观看| 亚洲专区字幕在线| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区视频在线观看| 国产亚洲精品av在线| 亚洲成av人片免费观看| av在线播放免费不卡| 色综合婷婷激情| 国产亚洲av嫩草精品影院| 日韩 欧美 亚洲 中文字幕| 一区二区三区国产精品乱码| 久久久久九九精品影院| www日本黄色视频网| 看片在线看免费视频| 国产成人影院久久av| 91成人精品电影| 99精品在免费线老司机午夜| 国产精品久久视频播放| 久久国产乱子伦精品免费另类| 成人一区二区视频在线观看| 欧美成人一区二区免费高清观看 | 自线自在国产av| 欧美大码av| 最近最新中文字幕大全免费视频| 97碰自拍视频| 国产成人av激情在线播放| 免费搜索国产男女视频| 国产三级在线视频| 99精品在免费线老司机午夜| 一边摸一边抽搐一进一小说| 天天躁狠狠躁夜夜躁狠狠躁| 看片在线看免费视频| 黄片大片在线免费观看| 男人舔女人下体高潮全视频| 亚洲国产日韩欧美精品在线观看 | 啦啦啦免费观看视频1| 热re99久久国产66热| 欧美乱妇无乱码| 草草在线视频免费看| 欧美绝顶高潮抽搐喷水|