• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystallization of calcium silicate at elevated temperatures in highly alkaline system of Na2O-CaO-SiO2-H2O☆

    2017-06-01 03:32:18GanyuZhuHuiquanLiShaopengLiXinjuanHouXingruiWang
    Chinese Journal of Chemical Engineering 2017年10期

    Ganyu Zhu ,Huiquan Li,2,*,Shaopeng Li,Xinjuan Hou ,2,Xingrui Wang

    1 Key Laboratory of Green Process and Engineering,National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Chemistry and Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    High-alumina fly ash(HAFA)is mainly generated in Northwest of China,which is regarded as one of the most important energy base.Its annual emissions of 30 Mt and comprehensive utilization of 20%lead to serious pollutions to soil,air,and water[1].Given the high alumina content of over 45 wt%and the total resource amount of 15 billion ton,HAFA is regarded as a novel,valuable,and renewable mineral resource to substitute bauxite for alumina production[2].Soda-lime sintering is an effective method for alumina extraction,and has been used to treat HAFA in Inner Mongolia in China with an annual amount of 200 kt.In order to improve the Al/Si ratio in solid HAFA and reduce residue level,a desilication process is used to dissolve silica in HAFA(about 40 wt%)with alkali before sintering process[3-6].In order to achieve alkali recycling,silicon removed from HAFA,which exists as silicate in the highly alkaline solution after desilication,is preferred to prepare calcium silicate[7](the diagram is shown in Supplementary material A).Therefore,preparation of calcium silicate in highly alkaline solutions is critical for reduction and economic utilization of HAFA.Silicon treatment in HAFA can also contribute to environment-friendly utilization of low-grade ores and other kinds of solid wastes containing high silicon contents.

    There are various amorphous and crystalline forms of calcium silicate.Previous researches mainly focused on CaO-SiO2-H2O system at different temperatures and Ca/Si(C/S)ratios,which are the most important effects on forming calcium silicate of different phases and morphologies[8-11].Some studies have also been performed in NaO-CaO-SiO2-H2O system to investigate the influence of sodium ion on composition,phase,and morphology of calcium silicate[12-14].Blakemanet al.[15]found that semi-crystalline calcium-silicate-hydrate(C-S-H),tobermorite,pectolite,and xonotlite phases could form at constant CaO:SiO2molar ratio 0.83 and varying NaOH:SiO2molar ratio 0.05-0.63.Nocuń-Wczelik[16]obtained the Ca-Na-containing phases at over 20%Na2O by weight and at SiO2content exceeding 50%by weight.In these studies,amorphous silica or quartz was used as SiO2componentin starting materials.The presentstudy aims to the utilization of desilication solution,which contains large amount of sodium and silicate ions(Na/Si molar ratio=2-12),from the HAFA treatment process.Silicate ions in the solution are quite different from solid starting materials in previous reports[17-20],and may affect the structure,phase transition,and crystal lattice of calcium silicate.In addition,influence of sodium to the optimization of calcium silicate was only considered at a relatively low concentration of sodium(Na/Si molar ratio less than 1)in previous researches[21-23].Sodium ions may be arranged into the structure to affect the C/S ratio of calcium silicate to form different phases.Therefore,the research on crystallization control to form amorphous and crystalline calcium silicate of different phases and morphologies in highly alkaline system is very necessary.

    In this work,the influences of temperature,C/S ratio,and NaOH concentration,which dominantly affect phase and morphology of calcium silicate,were investigated.In the highly alkaline system,the synthesis condition regions of specific phases were obtained through X-ray diffractometry(XRD).In addition,the morphologies of different phases were determined.In order to reveal the formation mechanism of specific morphology,high resolution transmission electron microscope(HRTEM)and selected-area electron diffraction(SAED)analysis combined with calculations of surface energy were conducted.Meanwhile,the effect of temperature on crystal orientation of calcium silicate was also investigated.Through these studies,the morphology and phase can be controlled in Na2O-CaO-SiO2-H2O system with high alkalinity.

    2.Materials and Methods

    Model solutions were used to obtain the fundamental rules of crystallization behavior in Na2O-CaO-SiO2-H2O system.CaO,Na2SiO3·9H2O,and NaOH used in this work,which are all supplied by Xilong Chemical Reagent Co.,were analytical grade and used without any further purification.In the experiments,mass of distilled water and crystallization water in Na2SiO3·9H2O was 150.0 g,and the total mass of CaO and calculated Na2SiO3was 10.7 g(L/S=14).C/S ratio was 0.5,0.8,1,1.5,and 2,respectively.All the reactants above were added into a rotational autoclave with the volume of 0.25 L.Then NaOH was added to make the initial concentration of NaOH ranged from 0 mol·L-1to 5 mol·L-1without consideration of sodium in Na2SiO3.Hydrothermal reaction was carried out in the closed autoclave,in which the influence of CO2can be neglected,at 453 K to 533 K under saturated pressure for 5 h,followed by cooling down to room temperature naturally.The obtained solid was filtrated,washed with distilled water,and dried at 353 K for 24 h.

    Morphology and phase of the dried powders were detected by field emission scanning electron microscopy(FESEM,JEOL JSM 6700F)and XRD with CuKαdiffraction(PANalytical Empyrean),respectively.In addition,HRTEM and SAED were performed at 200 kV with FEI Tecnai G220S-TWIN to analyze the crystal structure.In order to certify the specific crystal orientation,surface energies of different crystal planes obtained by SAED were also calculated by density functional theory method.The calculation details are given in Supplementary material B.

    3.Results and Discussion

    In Table 1,all the experimental conditions are listed.The corresponding phases obtained at these conditions,which have been analyzed by XRD(typical figures are given in Supplementary material C),are also shown in the table.It needs to be specified that the mass of Na from Na2SiO3is not considered in the mentioned concentration below.Temperature,C/S ratio,and NaOH concentration have great influences on phases of C-S-H.Although many contributions have been made by the researchers to study the phase relation in CaO-SiO2-H2O or Na2O-CaO-SiO2-H2O system[13,14,24,25],interesting results have been obtained in our studies with the special system and a relatively short reaction time.

    3.1.Phase analysis

    The phases obtained at different concentrations of NaOH in Na2OCaO-SiO2-H2O system are shown in Fig.1.C-S-H,which is poorly ordered and crystallized,was obtained at 453 K due to the substitution of Na+in the structure to stabilize it against transformation to crystalline forms[23].

    In Fig.1(a),the main phases are foshagite,tobermorite,pectolite,and hillebrandite.It can be found that the compositions of the phases are different at different temperatures,while the C/S ratio is 0.5 to 1.5.It keeps stable at C/S ratio of 2.Hillebrandite is stable at hightemperature and will not transform to α-C2SH at the conditions,and this is contrary with previous results[25].Foshagite was obtained at C/S ratio of 1 and temperature of over 423 K in this work,compared with xonotlite as reported in previous work under the same conditions[25].Because the actual concentrations of sodium ions in these reactions were all about 0.8 mol·L-1without the addition of NaOH,the sodium ions brought with Na2SiO3are assumed to be the main reason to affect the phase.To illustrate the influence of alkali with small quantity on the phase change,the hydrothermal reactions were conducted with the C-S-H already synthesized(C/S ratio=1), filtered and completely washed to reach pH value of 9.The experiments have been performed for 5 h at different NaOH concentrations,L/S of 14,and 513 K.In Fig.2,the tiny excursions of the peak position may be caused by the different heights of the samples in the sampling process.It can be seen that xonotlite was obtained in nearly neutral system without the addition of NaOH.With the increasing of NaOH concentration,the enhancement of(210)reflection of foshagite and weakening of(-112)reflection of xonotlite indicates the mass increase of foshagite.Then,it becomes the only phase at NaOH concentration of 0.50 mol·L-1.It means that NaOH with a relatively low concentration in the system may affect the composition and combination during its crystallization process to form different phases.

    Table 1Phases obtained at different conditions

    Returning to Fig.1(b),pectolite and NaCaHSiO4that comprising sodium elements become the dominant phases at 533 K while NaOH concentration increases to 2 mol·L-1.It means that higher temperature is beneficial for the arrangement of Na into the structure of the compounds[16].With the further increasing of NaOH concentration to 4 mol·L-1and 5 mol·L-1in the system(Fig.1(c)and(d)),Na is easily to be combined into the structure.At the temperature of above 473 K,the main phases are Na2Ca3H8Si2O12in high C/S ratio region and NaCaHSiO4in low C/S ratio region,respectively.Meanwhile,the content of Na in the phase increases with C/S ratio and NaOH concentration.C/S ratios decrease and(Na+Ca)/Si ratio increases in the phases obtained at high NaOH concentration comparing with which at the same conditions of low NaOH concentration.

    Fig.1.Phases obtained at different conditions in Na2O-CaO-SiO2-H2Osystem.Extra concentration of NaO His(a)0 mol·L-1,(b)2 mol·L-1,(c)4 mol·L-1,and(d)5 mol·L-1,respectively.

    3.2.Morphology of different phases

    Through the investigations of the phase and morphology under different conditions in Na2O-CaO-SiO2-H2O system,the specific relations between phase and morphology are shown in Fig.3.Tobermorite obtained in this work is stacking and amorphous because of its poor crystallinity as reported in alkaline system[18].NaCaHSiO4is mainly cubic and well dispersed,and Na2Ca3H8Si2O12is plate-like.Only the morphologies of phases in wollastonite group[12],such as pectolite,foshagite,and hillebrandite are nanofibers.However,pectolite is the thinnest and flexible,which leads to the wrapping of the nanofibers.Foshagite is straighter,and mostly keeps separate from each other.Hillebrandite is the thickest in diameter,and the nanofibers grow together to form an aggregate.

    Fig.2.XRD patterns of calcium silicate hydrate at different NaOH concentrations and the temperature of 513 K.

    3.3.Growth analysis of nanofiber

    As the structure similarity of the inosilicates between the nanofibers,foshagite was taken as an instance to investigate the crystal growth mechanism.HRTEM analysis was studied as shown in Fig.4,which is a typical image of foshagite and has been characterized by XRD.It is obvious that the axial direction is the growth orientation of foshagite.Through the calculation of SAED patterns of foshagite,crystal planes of axial and radial direction are determined as(314)and(311)respectively.The surface energies were predicated by theoretical calculations for(14)and(311)surfaces of foshagite,which are 0.057×104eV·nm-3and 0.027× 104eV·nm-3,respectively.The higher surface energy of(14)indicates that the stability of(314)is weaker than that of(311)surfaces,which means that the growth speed of nanofiber along(314)direction is much faster than that along(311)direction.Therefore,the phase of foshagite has the morphology of nanofiber.

    It is noticeable that the morphology of the nanofibers shows different variations with temperature.Morphologies of foshagite and pectolite keep stable at 513 K and 533 K,and only morphology of hillerbrandite changes(Fig.5).The nanofibers of hillerbrandite are well crystallized and have aggregates of radiolitic texture at the temperature of513 K.When the temperature increases to 533 K,the aggregates have been damaged and the alignment of nanofibers becomes parallel,and then they grow together to be larger in width.

    Fig.3.Morphologies of different phases.(a)Tobermorite,C/S=0.8,C NaOH=0 mol·L-1,513 K,(b)NaCaHSiO4,C/S=0.5,C NaOH=5 mol·L-1,533 K,(c)Na2Ca3H8Si2O12,C/S=2,C NaOH=5 mol·L-1,473 K,(d)pectolite,C/S=0.5,C NaOH=0 mol·L-1,533 K,(e)foshagite,C/S=1,C NaOH=2 mol·L-1,533 K,and(f)hillebrandite,C/S=1.5,C NaOH=2 mol·L-1,513 K.

    Therefore,a further study of XRD patterns of hillerbrandite obtained at different temperatures has been shown in Fig.6.While the temperature varies from 513 K to 533 K,maxima of XRD patterns of hillerbrandite moves from 30.45°to 18.43°,and the peak at 31.49°is also strengthened.According to JCPDS no.00-042-0538,the intensity of the peak at 31.49°is usually maximum.The enhancement of(202)and(403)reflections and the weakening of(311)reflection indicate that the crystal orientation has changed with the increase of the temperature,while the temperature varies from 513 K to 533 K.The change of the growth orientation with the conditions can also be seen in previous reports about the crystal growth of other materials[26,27].

    To correlate the morphology change and growth orientation,HRTEM study of hillebrandite obtained at 533 K is shown in Fig.7.In the image,it can be seen that the samples were severely damaged because of fast electron-irradiation[28].Through the calculation of the d-spacing in SAED patterns,the crystal plane reflections of different diffraction patterns and the orientations of different planes were determined.To hillebrandite,crystal planes of axial and radial direction are(310)and(604)respectively.Meanwhile,the plane of(403),which reflection is enhanced as shown in Fig.6,is nearly parallel with(604)of radial direction.The enhancement of(403)reflections means the optimal orientation,which leads the larger in width at the temperature of 533 K.

    Fig.4.XRD patterns,TEM image,and SAED patterns of foshagite.

    Fig.5.Morphologies of pectolite,foshagite,and hillerbrandite obtained without extra NaOH.(a)Pectolite,513 K,(b)pectolite,533 K,(c)foshagite,513 K,(d)foshagite,533 K,(e)hillebrandite,513 K,and(f)hillebrandite,533 K.

    Fig.6.XRD patterns of hillerbrandite obtained without extra NaOH.

    Fig.7.TEM image and SAED patterns of hillebrandite.

    4.Conclusions

    In this work,systematic investigation of C-S-H morphology and phase was conducted with the range of 453 K to 533 K,initial NaOH concentration of 0 mol·L-1to 5 mol·L-1,and C/S ratio of 0.5 to 2 in Na2O-CaO-SiO2-H2O system for the utilization of silicon in HAFA.The experimental results show that crystal growth is along radial direction at higher temperature.Tobermorite and nanofibers of wollastonite group are the main products at relatively low concentration of NaOH in the system,and Na is rearranged into the structure to form NaCaHSiO4and Na2Ca3H8Si2O12with different C/S ratio at high concentration of NaOH.Only the phases in wollastonite group such as pectolite,foshagite,and hillebrandite,have the morphology of nanofiber.In addition,the formation of morphology as nanofiber is due to the difference of surface energies between axial and radial direction with HRTEM analysis and surface energy calculations.Through these works,C-S-H of specific morphologies and phases can be controlled synthesized.The results can provide the guidance for the preparation of different C-S-H phases and morphologies in the solutions with high alkalinity,which is critical for the utilization of silicon resources in HAFA and other low-grade ore with high silicon content.

    Acknowledgments

    The theoretical calculation results described in this paper are obtained on the Deepcomp 7000 of Supercomputing Center in the Computer Network Information Center of the Chinese Academy of Sciences.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2017.02.012.

    [1]S.Dai,L.Zhao,S.Peng,C.L.Chou,X.Wang,Y.Zhang,D.Li,Y.Sun,Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant,Inner Mongolia,China,Int.J.Coal Geol.81(2010)320-332.

    [2]J.M.Sun,P.Chen,Resourcing utilization of high alumina fly ash,Adv.Mater.Res.652-654(2013)2570-2575.

    [3]H.Q.Li,J.B.Hui,C.Y.Wang,W.J.Bao,Z.H.Sun,Extraction of alumina from coal fly ash by mixed-alkaline hydrothermalmethod,Hydrometallurgy147-148(2014)183-187.

    [4]G.H.Bai,T.Teng,A.G.Wang,J.G.Qin,P.Xu,P.C.Li,Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production,Trans.Nonferrous Met.Soc.20(2010)169-175.

    [5]X.B.Xu,Y.B.Zhu,S.Zhang,Z.K.Liang,X.X.Chen,Y.B.Gong,Research on optimizing process of pre-desilication of high-aluminum fly ash,Light Met.7(2013)18-21.

    [6]Z.H.Sun,W.J.Bao,H.Q.Li,J.B.Hui,C.Y.Wang,Q.Tang,Mineral phase change of highalumina fly ash during desilication and extraction of Al2O3by alkali dissolution process,Chin.J.Process.Eng.13(2013)403-407.

    [7]C.Feng,Y.Yao,Y.Li,X.M.Liu,H.H.Sun,Thermal activation on calcium silicate slag from high-alumina fly ash:A technical report,Clean Technol.Environ.Policy16(2014)667-672.

    [8]J.J.Chen,J.J.Thomas,H.F.W.Taylor,H.M.Jennings,Solubility and structure of calcium silicate hydrates,Cem.Concr.Res.34(2004)1499-1519.

    [9]D.R.Moorehead,E.R.Mccartney,Hydrothermal formation of calcium silicate hydrates,J.Am.Ceram.Soc.48(1965)565-569.

    [10]S.Garrault-Gauffinet,A.Nonat,Experimental investigation of calcium silicate hydrate(C-S-H)nucleation,J.Cryst.Growth200(1999)565-574.

    [11]N.Meller,C.Hall,J.S.Phipps,A new phase diagram for the CaO-Al2O3-SiO2-H2O hydro ceramic system at 200 degrees C,Mater.Res.Bull.40(2005)715-723.

    [12]E.B.Nelson,G.L.Kalousek,Effect of Na2O on calcium silicate hydrates at elevated temperature,Cem.Concr.Res.7(1977)687-694.

    [13]Y.Z.Xi,L.S.D.Glasser,Hydrothermal study in the system Na2O-CaO-SiO2-H2O at 300°C,Cem.Concr.Res.14(1984)741-748.

    [14]K.Baltakys,R.Siauciunas,The influence of γ-Al2O3and Na2O on the formation of gyrolite in the stirring suspension,J.Mater.Sci.41(2006)4799-4805.

    [15]E.A.Blakeman,J.A.Gard,C.G.Ramsay,H.F.W.Taylor,Studies on the system sodium oxide-calcium oxide-silica-water,J.Chem.Technol.Biotechnol.24(1974)239-245.

    [16]W.Nocuń-Wczelik,Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates,Cem.Concr.Res.29(1999)1759-1767.

    [17]I.G.Richardson,The calcium silicate hydrates,Cem.Concr.Res.38(2008)137-158.

    [18]X.L.Hu,K.Yanagisawa,A.Onda,K.Kajiyoshi,Stability and phase relations of dicalcium silicate hydrates under hydrothermal conditions,J.Ceram.Soc.Jpn.224(2006)174-179.

    [19]L.Black,K.Garbev,P.Stemmermann,K.R.Hallam,G.C.Allen,Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy,Cem.Concr.Res.33(2003)899-911.

    [20]J.A.Gard,H.F.W.Taylor,The crystal structure of foshagite,Acta Crystallogr.13(1960)785-793.

    [21]R.A.Rashid,R.Shamsudin,M.A.A.Habid,A.Jalar,In-vitro bioactivity of wollastonite materials derived from limestone and silica sand,Ceram.Int.40(2014)6847-6853.

    [22]W.Li,Z.L.Jin,Z.H.Zhang,Application and synthesis of inorganic whisker materials,Prog.Chem.15(2003)264-274.

    [23]M.Q.Li,Y.F.Chen,S.Q.Xia,J.H.Li,H.X.Liang,Microstructure and processing of ultralight calcium silicate insulation material,J.Chin.Ceram.Soc.28(2000)401-406.

    [24]G.O.Assarsson,Hydrothermal reactions between calcium hydroxide and amorphous silica:The reactions between 180°and 220°,J.Phys.Chem.61(1957)473-479.

    [25]S.Y.Hong,F.P.Glasser,Phase relations in the CaO-SiO2-H2O system to 200°C at saturated steam pressure,Cem.Concr.Res.34(2004)1529-1534.

    [26]F.Lu,B.Zhao,R.Li,W.D.Ruan,Crystal growth of barium nitrate on thiol-terminated self-assembled monolayers and a Raman spectroscopic investigation of the crystal facets,J.Cryst.Growth426(2015)33-37.

    [27]R.Li,J.S.Gandhi,R.Pillai,R.Forrest,D.Starikov,A.Bensaoula,Epitaxial growth of(111)-oriented ZrxTi1-xN thin films onc-plane Al2O3substrates,J.Cryst.Growth404(2014)1-8.

    [28]H.F.Xu,P.R.Buseck,TEM investigation of the domain structure and superstructure in hillebrandite,Ca2SiO3(OH)2,Am.Mineral.81(1996)1371-1374.

    在线精品无人区一区二区三| 久久影院123| 亚洲欧美清纯卡通| 精品人妻1区二区| 亚洲,欧美精品.| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 色播在线永久视频| 女人被躁到高潮嗷嗷叫费观| 黄色一级大片看看| 18在线观看网站| 国产成人啪精品午夜网站| 我要看黄色一级片免费的| www.自偷自拍.com| 黄色一级大片看看| 老司机午夜十八禁免费视频| 好男人视频免费观看在线| 欧美 日韩 精品 国产| 亚洲,欧美精品.| 亚洲精品日韩在线中文字幕| 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| 黄片小视频在线播放| 男的添女的下面高潮视频| 中文字幕色久视频| www日本在线高清视频| 精品亚洲成国产av| 老司机影院毛片| 国产国语露脸激情在线看| 久久99热这里只频精品6学生| 韩国高清视频一区二区三区| www.999成人在线观看| 亚洲人成电影观看| 黄色a级毛片大全视频| 一级黄片播放器| 国产av一区二区精品久久| cao死你这个sao货| 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 五月天丁香电影| 波多野结衣av一区二区av| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 国产亚洲欧美在线一区二区| 99国产精品一区二区蜜桃av | 亚洲国产中文字幕在线视频| 中文字幕最新亚洲高清| 国产男人的电影天堂91| 一级毛片电影观看| 久久青草综合色| 汤姆久久久久久久影院中文字幕| 捣出白浆h1v1| 叶爱在线成人免费视频播放| 大片电影免费在线观看免费| 日韩中文字幕欧美一区二区 | 精品少妇久久久久久888优播| 丰满饥渴人妻一区二区三| 免费少妇av软件| 国产伦人伦偷精品视频| 欧美国产精品一级二级三级| 性色av一级| 欧美黑人欧美精品刺激| 日本wwww免费看| 丝袜美足系列| 精品一区二区三卡| 超色免费av| 亚洲欧洲精品一区二区精品久久久| 国产精品99久久99久久久不卡| 美女中出高潮动态图| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 国产黄色视频一区二区在线观看| 国产又色又爽无遮挡免| 麻豆国产av国片精品| 日本av手机在线免费观看| 国产亚洲av高清不卡| 精品少妇一区二区三区视频日本电影| 纵有疾风起免费观看全集完整版| 亚洲精品一二三| 国产成人系列免费观看| 黄色视频不卡| 国产精品.久久久| 天天操日日干夜夜撸| 交换朋友夫妻互换小说| 欧美黄色淫秽网站| 亚洲欧美日韩高清在线视频 | 一区福利在线观看| 久久鲁丝午夜福利片| 日韩一本色道免费dvd| 免费av中文字幕在线| 在线 av 中文字幕| tube8黄色片| 九草在线视频观看| a级毛片在线看网站| 男人操女人黄网站| 国产激情久久老熟女| 精品第一国产精品| 久久国产精品影院| 精品一区二区三卡| 日韩精品免费视频一区二区三区| 人妻一区二区av| 麻豆av在线久日| 最新的欧美精品一区二区| 国产成人免费观看mmmm| 精品久久蜜臀av无| 亚洲欧美清纯卡通| 999精品在线视频| 老司机在亚洲福利影院| 男女午夜视频在线观看| 五月开心婷婷网| 一级,二级,三级黄色视频| 在线观看免费日韩欧美大片| 国产精品人妻久久久影院| 免费在线观看日本一区| 手机成人av网站| 国产免费又黄又爽又色| 99国产综合亚洲精品| 极品人妻少妇av视频| 日日夜夜操网爽| 国产精品99久久99久久久不卡| 亚洲精品第二区| 久久久欧美国产精品| 最近最新中文字幕大全免费视频 | 亚洲精品一区蜜桃| 亚洲,欧美,日韩| 只有这里有精品99| 黄色a级毛片大全视频| 免费在线观看影片大全网站 | 99热国产这里只有精品6| 久久精品久久精品一区二区三区| 久久久久久久大尺度免费视频| 岛国毛片在线播放| 精品国产乱码久久久久久小说| 中文字幕高清在线视频| 午夜免费成人在线视频| 欧美人与善性xxx| 这个男人来自地球电影免费观看| 中文字幕人妻熟女乱码| 国产精品三级大全| 好男人视频免费观看在线| 亚洲精品成人av观看孕妇| 国产精品香港三级国产av潘金莲 | 日本av手机在线免费观看| 啦啦啦中文免费视频观看日本| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 纯流量卡能插随身wifi吗| 少妇精品久久久久久久| 少妇被粗大的猛进出69影院| 日本黄色日本黄色录像| 欧美激情高清一区二区三区| 国产精品 国内视频| 观看av在线不卡| 可以免费在线观看a视频的电影网站| 男女边吃奶边做爰视频| 黄色怎么调成土黄色| 精品久久久精品久久久| 又紧又爽又黄一区二区| 国产无遮挡羞羞视频在线观看| 国产午夜精品一二区理论片| 国产男女超爽视频在线观看| 91国产中文字幕| 少妇的丰满在线观看| 老司机亚洲免费影院| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 只有这里有精品99| 欧美性长视频在线观看| 国产一区二区三区综合在线观看| 欧美黄色淫秽网站| 999精品在线视频| 精品国产乱码久久久久久男人| 多毛熟女@视频| 国产精品久久久久久精品古装| 丝袜美腿诱惑在线| 高潮久久久久久久久久久不卡| 十八禁高潮呻吟视频| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 国产成人系列免费观看| 99热国产这里只有精品6| 女性被躁到高潮视频| 亚洲成人国产一区在线观看 | 欧美97在线视频| 成人手机av| 亚洲国产最新在线播放| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 中文字幕亚洲精品专区| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 巨乳人妻的诱惑在线观看| 日本av免费视频播放| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 精品欧美一区二区三区在线| 欧美+亚洲+日韩+国产| cao死你这个sao货| 一级毛片我不卡| kizo精华| 婷婷丁香在线五月| 三上悠亚av全集在线观看| 国产成人精品久久二区二区91| 国产成人av激情在线播放| av在线app专区| 又大又爽又粗| 一边摸一边抽搐一进一出视频| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 欧美日韩福利视频一区二区| 午夜两性在线视频| 99国产精品一区二区蜜桃av | 99国产精品一区二区蜜桃av | 国产一级毛片在线| 91精品伊人久久大香线蕉| 一边摸一边抽搐一进一出视频| 在线观看一区二区三区激情| 亚洲av日韩精品久久久久久密 | 两性夫妻黄色片| 人人澡人人妻人| 自线自在国产av| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 91九色精品人成在线观看| 另类精品久久| 另类亚洲欧美激情| 老鸭窝网址在线观看| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 亚洲精品国产区一区二| 美女午夜性视频免费| 女人久久www免费人成看片| 一级片免费观看大全| 成人三级做爰电影| 日本五十路高清| 丝袜人妻中文字幕| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 久久中文字幕一级| 婷婷色综合大香蕉| 可以免费在线观看a视频的电影网站| 在线观看国产h片| 精品久久久精品久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲av美国av| 精品熟女少妇八av免费久了| av国产精品久久久久影院| 妹子高潮喷水视频| 午夜福利,免费看| 国产一区二区三区av在线| 亚洲欧洲精品一区二区精品久久久| 亚洲精品第二区| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 人人澡人人妻人| 成年av动漫网址| 叶爱在线成人免费视频播放| 一区二区av电影网| 亚洲成国产人片在线观看| 免费不卡黄色视频| 18禁黄网站禁片午夜丰满| 午夜久久久在线观看| 一本久久精品| 亚洲av成人不卡在线观看播放网 | 色网站视频免费| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产 | 宅男免费午夜| 精品久久久久久久毛片微露脸 | 亚洲国产看品久久| 90打野战视频偷拍视频| 在线观看免费午夜福利视频| netflix在线观看网站| 亚洲国产精品999| av网站在线播放免费| 亚洲av在线观看美女高潮| 中国美女看黄片| 真人做人爱边吃奶动态| 黑人巨大精品欧美一区二区蜜桃| 美女高潮到喷水免费观看| 久久免费观看电影| 国产男女内射视频| 下体分泌物呈黄色| 国产精品久久久人人做人人爽| 视频在线观看一区二区三区| 国产激情久久老熟女| 国产精品熟女久久久久浪| 日韩精品免费视频一区二区三区| 大码成人一级视频| 在线观看人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 国产精品av久久久久免费| 久久久精品94久久精品| 男女无遮挡免费网站观看| 精品国产一区二区久久| 少妇粗大呻吟视频| 99精品久久久久人妻精品| 午夜两性在线视频| 国产成人精品久久久久久| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 亚洲精品美女久久av网站| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 精品福利永久在线观看| svipshipincom国产片| 精品福利观看| 亚洲成av片中文字幕在线观看| 精品一区二区三区四区五区乱码 | 日韩制服丝袜自拍偷拍| 肉色欧美久久久久久久蜜桃| 激情五月婷婷亚洲| 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 国产成人系列免费观看| 汤姆久久久久久久影院中文字幕| 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 午夜影院在线不卡| 性色av乱码一区二区三区2| 2018国产大陆天天弄谢| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 极品人妻少妇av视频| 丝袜脚勾引网站| 九草在线视频观看| 国精品久久久久久国模美| www.999成人在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲 | 亚洲伊人色综图| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| av网站免费在线观看视频| 婷婷丁香在线五月| 午夜激情av网站| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 成年人午夜在线观看视频| 在线天堂中文资源库| 一区在线观看完整版| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 热re99久久国产66热| 十八禁高潮呻吟视频| 亚洲欧美一区二区三区黑人| 成人影院久久| 乱人伦中国视频| 日韩av不卡免费在线播放| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀 | 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 老司机影院毛片| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区蜜桃| 大话2 男鬼变身卡| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 日本色播在线视频| 亚洲欧美精品自产自拍| 最黄视频免费看| 精品一区二区三区av网在线观看 | 欧美精品高潮呻吟av久久| 交换朋友夫妻互换小说| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 中文字幕制服av| 亚洲七黄色美女视频| 美女福利国产在线| 精品一品国产午夜福利视频| 国产人伦9x9x在线观看| www.999成人在线观看| av在线播放精品| 看免费成人av毛片| 丰满迷人的少妇在线观看| 青春草视频在线免费观看| 99热国产这里只有精品6| 女性被躁到高潮视频| 日本黄色日本黄色录像| 日本wwww免费看| 欧美乱码精品一区二区三区| 午夜免费观看性视频| 又大又爽又粗| 精品少妇内射三级| 国产野战对白在线观看| 99国产精品一区二区蜜桃av | 18禁观看日本| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 中国国产av一级| 在线精品无人区一区二区三| 精品少妇内射三级| 日韩,欧美,国产一区二区三区| 成人三级做爰电影| 亚洲精品一区蜜桃| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 国产精品一区二区在线不卡| 狠狠精品人妻久久久久久综合| 永久免费av网站大全| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 国产精品一国产av| 婷婷成人精品国产| 最黄视频免费看| 亚洲伊人色综图| 国产一区亚洲一区在线观看| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 免费高清在线观看日韩| 在现免费观看毛片| 免费高清在线观看视频在线观看| 狠狠精品人妻久久久久久综合| 免费不卡黄色视频| 久久亚洲精品不卡| 精品一区二区三区av网在线观看 | 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 宅男免费午夜| 亚洲国产av影院在线观看| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 婷婷丁香在线五月| 欧美日韩亚洲高清精品| 1024视频免费在线观看| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 亚洲第一av免费看| 国产人伦9x9x在线观看| 美女高潮到喷水免费观看| 黑丝袜美女国产一区| 一级片免费观看大全| 一本综合久久免费| 亚洲第一青青草原| 高清av免费在线| 丁香六月天网| 午夜老司机福利片| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 久久久久网色| 肉色欧美久久久久久久蜜桃| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 不卡av一区二区三区| 亚洲av国产av综合av卡| 亚洲 国产 在线| 大码成人一级视频| 亚洲男人天堂网一区| 99久久综合免费| 美女高潮到喷水免费观看| 日日夜夜操网爽| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 性高湖久久久久久久久免费观看| 国产一区二区 视频在线| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 丝袜在线中文字幕| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 亚洲精品一二三| 欧美国产精品一级二级三级| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 久久久国产欧美日韩av| 最新在线观看一区二区三区 | 热99久久久久精品小说推荐| 亚洲av成人精品一二三区| 老司机靠b影院| 天天躁夜夜躁狠狠久久av| 99九九在线精品视频| 欧美人与善性xxx| 久久午夜综合久久蜜桃| h视频一区二区三区| 亚洲精品乱久久久久久| av在线老鸭窝| 亚洲精品乱久久久久久| 伊人久久大香线蕉亚洲五| 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 一级a爱视频在线免费观看| 免费高清在线观看视频在线观看| 一区二区三区激情视频| 欧美日韩成人在线一区二区| 又紧又爽又黄一区二区| 精品福利永久在线观看| 国产在视频线精品| 亚洲成色77777| 99久久99久久久精品蜜桃| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 亚洲av日韩精品久久久久久密 | 欧美亚洲日本最大视频资源| 亚洲av国产av综合av卡| av不卡在线播放| 欧美激情高清一区二区三区| 丝袜美足系列| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 尾随美女入室| svipshipincom国产片| 日韩电影二区| 高清av免费在线| 考比视频在线观看| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 搡老乐熟女国产| 黄片小视频在线播放| 黄色a级毛片大全视频| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| www.av在线官网国产| 亚洲国产欧美网| 免费观看av网站的网址| 国产成人欧美| 一本—道久久a久久精品蜜桃钙片| 美女中出高潮动态图| 国产片内射在线| 国产伦理片在线播放av一区| av天堂久久9| 国产淫语在线视频| 大片电影免费在线观看免费| 日本欧美视频一区| 成人国语在线视频| 丁香六月天网| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 欧美日韩一级在线毛片| 妹子高潮喷水视频| 一区在线观看完整版| 欧美日韩黄片免| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 日本vs欧美在线观看视频| 少妇精品久久久久久久| 免费在线观看日本一区| 久久久久久久久久久久大奶| 亚洲国产精品国产精品| 两个人看的免费小视频| 国产免费福利视频在线观看| 三上悠亚av全集在线观看| 久久久精品94久久精品| 国产欧美亚洲国产| 91九色精品人成在线观看| 国产福利在线免费观看视频| 日韩 亚洲 欧美在线| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 色精品久久人妻99蜜桃| 水蜜桃什么品种好| 亚洲国产欧美一区二区综合| 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 又大又爽又粗| 丰满饥渴人妻一区二区三| 观看av在线不卡| 亚洲av在线观看美女高潮| 各种免费的搞黄视频| 国产在线视频一区二区| 亚洲欧美精品综合一区二区三区| 麻豆国产av国片精品| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 欧美黑人精品巨大| av网站在线播放免费| 国产欧美日韩一区二区三 | 性色av乱码一区二区三区2| 在现免费观看毛片| 久久人妻熟女aⅴ| 久久久久网色| 久久精品成人免费网站| 美女国产高潮福利片在线看| 汤姆久久久久久久影院中文字幕| 国产高清视频在线播放一区 | 欧美人与性动交α欧美精品济南到| 成人国产一区最新在线观看 | 国产免费又黄又爽又色| 99国产精品99久久久久| 久久性视频一级片| 在线观看免费视频网站a站| 99九九在线精品视频| 国产熟女午夜一区二区三区| 天天影视国产精品| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲|