姜曉東,吳旭干,何 杰,劉 青,4,王幼鵬,葛永春,成永旭,4
(1.上海海洋大學(xué),農(nóng)業(yè)部淡水種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室,上海 201306; 2.江蘇省宿遷旭邦水產(chǎn)科技有限公司,泗洪 223900; 3.上海登瀛水產(chǎn)養(yǎng)殖專業(yè)合作社,上海 202164; 4.上海海洋大學(xué),上海市教委水產(chǎn)動(dòng)物遺傳育種協(xié)同創(chuàng)新中心,上海 201306)
中華絨螯蟹2齡早熟、晚熟選育群體和非選育群體蟹種免疫性能的比較
姜曉東1,吳旭干1,何 杰1,劉 青1,4,王幼鵬2,葛永春3,成永旭1,4
(1.上海海洋大學(xué),農(nóng)業(yè)部淡水種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室,上海 201306; 2.江蘇省宿遷旭邦水產(chǎn)科技有限公司,泗洪 223900; 3.上海登瀛水產(chǎn)養(yǎng)殖專業(yè)合作社,上海 202164; 4.上海海洋大學(xué),上海市教委水產(chǎn)動(dòng)物遺傳育種協(xié)同創(chuàng)新中心,上海 201306)
免疫性能是評(píng)價(jià)中華絨螯蟹(Eriocheirsinensis,以下簡(jiǎn)稱河蟹)蟹種質(zhì)量的重要指標(biāo),采用攻毒實(shí)驗(yàn)和非特異免疫指標(biāo)測(cè)定方法,以常規(guī)養(yǎng)殖未經(jīng)遺傳選育的養(yǎng)殖群體蟹種為對(duì)照組,評(píng)價(jià)了河蟹2齡早熟、晚熟選育群體第2代(G2)扣蟹的攻毒成活率和非特異性免疫指標(biāo)。結(jié)果顯示:(1)嗜水氣單胞菌攻毒注射后,整體上未選育組扣蟹的死亡率略高于兩選育群體,但是雌雄個(gè)體間具有一定的性別差異,2齡晚熟群體雄蟹和2齡早熟群體雌蟹攻毒后死亡率分別最低;(2)就肝胰腺中非特異性免疫指標(biāo)而言,無(wú)論雌蟹還是雄蟹,2齡早熟群體肝胰腺中的堿性磷酸酶(ALP)活性顯著高于對(duì)照組(P<0.05),酸性磷酸酶(ACP)活性顯著高于2齡晚熟組(P<0.05);此外,兩個(gè)選育組雄體肝胰腺中的總抗氧化能力(T-AOC)和過(guò)氧化物酶(POD)活性均顯著高于對(duì)照組,2齡早熟G2雌體肝胰腺中的丙二醛(MDA)和谷胱甘肽過(guò)氧化物酶(GSH-Px)均顯著高于其它兩組雌體;(3)就血清中非特異免疫指標(biāo)而言,無(wú)論雌蟹還是雄蟹,2齡早熟G2扣蟹血清中的ACP活性均顯著高于對(duì)照組,2齡晚熟G2扣蟹血清中的谷胱甘肽還原酶(GR)活性均顯著低于其它兩組扣蟹,此外,2齡早熟G2雌蟹血清中的γ-谷氨酰轉(zhuǎn)移酶(γ-GT)和T-AOC活性均顯著高于2齡晚熟G2。綜上,兩個(gè)選育群體子二代扣蟹具有較強(qiáng)免疫性能及抗病力,其中2齡早熟群體扣蟹的免疫性能和抗氧化能力略強(qiáng)于2齡晚熟選育群體。
中華絨螯蟹; 遺傳選育; 蟹種質(zhì)量; 免疫性能; 攻毒實(shí)驗(yàn); 比較研究
中華絨螯蟹(Eriocheirsinensis,以下簡(jiǎn)稱河蟹),是我國(guó)重要的養(yǎng)殖蟹類之一,在我國(guó)淡水水產(chǎn)養(yǎng)殖中占有極其重要的地位[1]。目前,河蟹養(yǎng)殖遍及我國(guó)絕大部分地區(qū),其中長(zhǎng)江流域河蟹養(yǎng)殖規(guī)模最大,產(chǎn)量占全國(guó)的80%左右,主要養(yǎng)殖未經(jīng)遺傳選育的長(zhǎng)江水系河蟹[2-3]。研究表明,長(zhǎng)江水系河蟹種質(zhì)最佳[4],在池塘養(yǎng)殖條件下具有生長(zhǎng)快、成蟹規(guī)格大等優(yōu)點(diǎn),因此長(zhǎng)江水系河蟹成為我國(guó)最主要的養(yǎng)殖群體[5-7],但是由于多年人工繁殖和養(yǎng)殖過(guò)程中,采用小規(guī)格親本近親繁殖和不同水系間的盲目引種等原因,導(dǎo)致長(zhǎng)江水系池塘養(yǎng)殖群體種質(zhì)退化、不同品系混雜嚴(yán)重,表現(xiàn)為1齡早熟率升高,2齡商品蟹的規(guī)格變小和抗逆性降低等[6-8]。因此,我國(guó)相關(guān)單位針對(duì)河蟹生長(zhǎng)性能已經(jīng)啟動(dòng)多個(gè)河蟹遺傳選育項(xiàng)目,選育出長(zhǎng)江一號(hào)、長(zhǎng)江二號(hào)和光合一號(hào)等多個(gè)良種,其養(yǎng)殖性能得到一定程度的提升[9-11]。
上市時(shí)間過(guò)分集中(10~12月)是影響河蟹養(yǎng)殖產(chǎn)業(yè)進(jìn)一步發(fā)展的瓶頸問(wèn)題之一,由于河蟹上市通常需要性腺發(fā)育成熟或接近成熟[12-13],因此通過(guò)遺傳育種培育不同性腺成熟時(shí)間的河蟹新品種具有重要的現(xiàn)實(shí)意義[7]??坌肥呛有反笱塾左w養(yǎng)殖大半年(5~12月)后的苗種,通常體質(zhì)量為3~10 g,扣蟹質(zhì)量好壞直接關(guān)系到第二年成蟹養(yǎng)殖[1]。有研究表明,長(zhǎng)江水系養(yǎng)殖和野生群體扣蟹在池塘條件下養(yǎng)成,生殖蛻殼和性成熟時(shí)間不同,分別具有2齡早熟和晚熟特性[8],本課題組以此為奠基群體進(jìn)行良種選育,選育目標(biāo)主要為降低1齡性早熟率、培育2齡早熟和晚熟品系,同時(shí)兼顧生長(zhǎng)[7,14]。免疫性能和抗病力是評(píng)價(jià)河蟹蟹種質(zhì)量的重要指標(biāo)[15],課題組尚不清楚選育2齡早熟和晚熟品系扣蟹的免疫性能,這不利于選育效果的全面評(píng)價(jià)和將來(lái)的良種推廣應(yīng)用。有研究表明,對(duì)蝦類生長(zhǎng)性狀、抗病和成活率等性狀間存在一定的關(guān)系,對(duì)一個(gè)性狀的選育可能會(huì)影響到其它性狀[16-18],因此,對(duì)河蟹2齡性腺成熟時(shí)間選育是否會(huì)影響蟹種免疫性能和抗病力是值得關(guān)注和探討的一個(gè)科學(xué)問(wèn)題,對(duì)于進(jìn)一步優(yōu)化選育策略也具有一定的現(xiàn)實(shí)意義。鑒于此,本研究以未選育的池塘養(yǎng)殖群體為對(duì)照組,比較選育(2齡早熟和晚熟第2代選育群體)和非選育群體河蟹扣蟹攻毒后的成活率和免疫抗病性能,以期為進(jìn)一步河蟹良種選育和蟹種質(zhì)量評(píng)價(jià)提供科學(xué)依據(jù)和參考資料。
1.1 蟹種來(lái)源和養(yǎng)殖管理
實(shí)驗(yàn)用2齡早熟、2齡晚熟第2代選育群體(G2)和對(duì)照組非選育大眼幼體均來(lái)自上海海洋大學(xué)如東河蟹遺傳育種中心,2齡早熟、2齡晚熟群體均為偶數(shù)年選育群,由本課題組于2011年底選用長(zhǎng)江水系野生和養(yǎng)殖群體選育而來(lái),經(jīng)過(guò)多年選育,2014年已選育至第2代(G2)扣蟹階段,兩選育品系G2和對(duì)照組繁殖親本的數(shù)量及平均體質(zhì)量見(jiàn)表1,對(duì)照組雌雄親本平均體質(zhì)量分別為99 g和156 g左右,為生產(chǎn)上正常使用的親本規(guī)格。3種群親本和幼體培育均在相似的池塘條件下進(jìn)行,所得大眼幼體于2014年5月中旬運(yùn)至上海海洋大學(xué)崇明產(chǎn)學(xué)研基地進(jìn)行土池養(yǎng)殖,養(yǎng)殖方法參照何杰等[7]的報(bào)道,2015年1月底從實(shí)驗(yàn)池塘中挑選一定數(shù)量附肢健全、活力較好的扣蟹用于后續(xù)實(shí)驗(yàn)。
表1 2齡早熟、晚熟G2和對(duì)照組的繁殖親本數(shù)量及體質(zhì)量Tab.1 Numbers and weights of the parent E.sinensis for breeding
注:LM表示晚熟群體,EM表示早熟群體
Note:LM represents late-maturing strains,EM represents early-maturing strains
1.2 攻毒實(shí)驗(yàn)
2015年1月底,分別從實(shí)驗(yàn)池塘中,挑選2齡早熟、2齡晚熟G2和對(duì)照組扣蟹各80 ind (雌雄各半) 用于攻毒實(shí)驗(yàn),挑選扣蟹要求附肢健全、活力較好、體質(zhì)量為7~10 g。攻毒前實(shí)驗(yàn)用扣蟹先在循環(huán)系統(tǒng)中暫養(yǎng)7 d,以適應(yīng)養(yǎng)殖環(huán)境,暫養(yǎng)水族箱體積為150 L(長(zhǎng)×寬×高=75 cm×45 cm×55 cm),每箱放入扣蟹30 ind左右,雌雄各半。養(yǎng)殖環(huán)境條件為:日光燈光照,光照強(qiáng)度為800 lx左右,光照∶黑暗=12 h∶12 h,循環(huán)水養(yǎng)殖,水溫(28±1)℃,pH值7.5~8.5、DO>5 mg·L-1、NH3-N<0.5 mg·L-1、亞硝酸鹽<0.05 mg·L-1,投喂扣蟹配合飼料。暫養(yǎng)后采用毒力較強(qiáng)的嗜水氣單胞菌(Aeromonashydrophilia)Y-2-L-1菌株進(jìn)行攻毒實(shí)驗(yàn),菌株由上海海洋大學(xué)張慶華副教授提供。根據(jù)預(yù)實(shí)驗(yàn)結(jié)果確定嗜水氣單胞菌注射量為2.5×106cfu·g-1蟹體重,合適的注釋劑量為2.0 μL·g-1,根據(jù)每只蟹的體質(zhì)量、注射劑量和總菌數(shù)將嗜水氣單胞菌稀釋到合適的濃度進(jìn)行注射。采用微量注射器從扣蟹第三步足基部進(jìn)行注射,分別設(shè)置3個(gè)重復(fù)組和1個(gè)生理鹽水注射組,每組各20 ind扣蟹(雌雄各半),攻毒后的扣蟹也養(yǎng)殖于體積為150 L的循環(huán)水族箱中。注射后每日仍然正常投喂,觀察和記錄各組扣蟹死亡情況,及時(shí)取出死亡個(gè)體,并無(wú)菌操作分離肝胰腺和頭胸部肌肉中感染病原菌是否為攻毒的嗜水氣單胞菌,觀察時(shí)間持續(xù)7 d[15,19]。
1.3 樣品采集和非特異性免疫指標(biāo)測(cè)定
同時(shí)從每群體分別取雌雄扣蟹各10 ind采集血淋巴和肝胰腺用于非特異性免疫指標(biāo)的測(cè)定,扣蟹規(guī)格同攻毒實(shí)驗(yàn)。采用1 mL無(wú)菌注射器從第三只步足基部抽取0.4 mL左右血淋巴樣品裝于1.5 mL離心管中,然后解剖取出所有肝胰腺裝于凍存管中。所有肝胰腺和血淋巴樣品于-80 ℃超低溫冰箱中保存?zhèn)溆谩?/p>
非特異性免疫指標(biāo)測(cè)定:稱取0.2 g左右的肝胰腺,加入1 mL(W/V=1∶5)預(yù)冷的生理鹽水后用微型勻漿器(型號(hào):T10B,德國(guó)IKA公司生產(chǎn))勻漿30 s后在4 ℃、12 000 r·min-1條件下離心20 min,取中間清液再次離心,取中間清液用于后續(xù)分析。血淋巴解凍后用微型勻漿器勻漿30 s后,在4 ℃、12 000 r·min-1條件下離心20 min,取出上清液(血清)待測(cè)。采用南京建成生物工程研究所生產(chǎn)的試劑盒測(cè)定超氧化物歧化酶(SOD)、總抗氧化能力(T-AOC)、過(guò)氧化物酶(POD)、丙二醛(MDA)、酸性磷酸酶(ACP)、堿性磷酸酶(ALP)、谷胱甘肽過(guò)氧化物酶(GSH-Px)、一氧化氮(NO)、谷胱甘肽還原酶(GR);采用蘇州科銘生物科技有限公司生產(chǎn)的試劑盒測(cè)定γ-谷氨酰轉(zhuǎn)肽酶(γ-GT);血藍(lán)蛋白(Hc)的測(cè)定參考NICKERSON等[20]的方法,用Tris-Ca緩沖液(50 mM Tris-HCl +10 mM CaCl2, pH = 8.0)將血清稀釋70倍后,在335 nm波長(zhǎng)下比色測(cè)定OD值,血藍(lán)蛋白(Hc)含量(mg·mL-1)= 3.717×OD335×稀釋倍數(shù)。酚氧化酶(PO)的測(cè)定參考HERNNDEZ等[21]的方法,取50 μL待測(cè)樣品與50 μL胰蛋白酶溶液(0.1 mg·mL-1)放入酶標(biāo)孔中,室溫下溫育10 min,然后加入50 μL左旋多巴(L-dopa)溶液(3mg·mL-1),室溫下溫育10 min后,放入酶標(biāo)儀中在490 nm處測(cè)定吸光度值。1個(gè)酶活力單位定義為:每分鐘每毫克蛋白吸光值變化0.001為1個(gè)酶活力單位。
1.4 數(shù)據(jù)處理
所有數(shù)據(jù)采用平均值±標(biāo)準(zhǔn)誤表示。采用SPSS 17.0軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,用Levene法進(jìn)行方差齊性檢驗(yàn),當(dāng)數(shù)據(jù)不滿足齊性方差時(shí)對(duì)百分比數(shù)據(jù)進(jìn)行反正弦或者平方根處理,采用單因子ANOVA對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行方差分析,采用Tukey s-b(K)法進(jìn)行多重比較;當(dāng)數(shù)據(jù)轉(zhuǎn)換后仍不滿足齊性方差時(shí),采用Games-Howell非參數(shù)檢驗(yàn)對(duì)多重比較。取P<0.05為差異顯著,在Excel和Sigmaplot軟件上繪制相關(guān)圖表。
2.1 攻毒后的累計(jì)死亡率比較
結(jié)果表明,生理鹽水注射組均無(wú)死亡個(gè)體,圖1為2齡早熟、2齡晚熟及對(duì)照組扣蟹攻毒后的累計(jì)死亡率變化情況。無(wú)論雄體還是雌體,扣蟹攻毒后的死亡主要發(fā)生在12~48 h,72 h后基本無(wú)死亡發(fā)生。就雄體而言,2齡早熟組死亡率一直高于2齡晚熟組,其中2齡早熟組死亡率36 h后保持不變(43.33%),2齡晚熟組死亡率48 h后保持不變(36.67%),對(duì)照組攻毒期間死亡率不斷增加,最終死亡率(50%)高于兩選育組;雌體攻毒后的累計(jì)死亡率變化情況與雄體差異較大,主要表現(xiàn)為2齡晚熟組累計(jì)死亡率一直高于2齡早熟組扣蟹,但最終累計(jì)死亡情況類似,仍為對(duì)照組高于兩選育組;3組扣蟹雌雄平均累計(jì)死亡率變化情況為:對(duì)照組死亡率一直高于2齡早熟組和2齡晚熟組,而2齡早熟組和2齡晚熟組之間死亡率差異較小。
2.2 非特異性免疫指標(biāo)比較
2.2.1 肝胰腺中非特異性免疫指標(biāo)
2齡晚熟、2齡早熟及對(duì)照組扣蟹肝胰腺內(nèi)非特異免疫指標(biāo)如表2所示。就雄體而言,2齡早熟組ALP活性顯著高于對(duì)照組且ACP活性顯著高于2齡晚熟組,γ-GT活性從高到低依次為:2齡晚熟組>2齡早熟組>對(duì)照組,且差異顯著(P<0.05)。對(duì)雄蟹肝胰腺抗氧化能力的影響表現(xiàn)為:2齡晚熟組和2齡早熟組T-AOC和POD活性顯著高于對(duì)照組,2齡早熟組GSH-Px活性顯著高于2齡晚熟組和對(duì)照組,對(duì)照組SOD活性最低,且顯著低于2齡早熟組,各組間MDA和NO活性無(wú)顯著差異(P>0.05)。
就雌蟹而言,2齡早熟組ALP活性顯著高于對(duì)照組,且ACP、MDA及GSH-Px活性顯著高于2齡晚熟組和對(duì)照組,2齡晚熟組γ-GT活性顯著高于2齡早熟組和對(duì)照組;各組T-AOC、SOD、POD和NO活性從高到低依次為:2齡晚熟組>2齡早熟組>對(duì)照組,但差異均不顯著(P>0.05)。
圖1 河蟹2齡早熟、2齡晚熟選育和非選育扣蟹攻毒后的累計(jì)死亡率Fig.1 Comparison of accumulative mortality rate of three populations after challenged by Aeromonas hydrophila
表2 河蟹2齡早熟、2齡晚熟選育群體和非選育群體扣蟹肝胰腺中非特異性免疫指標(biāo)Tab.2 Comparison of immune indices and antioxidant ability in the hepantopancrea of juvenile E. sinensis from three populations
注:表中上標(biāo)不同小寫字母表示同一免疫指標(biāo)在不同群體間差異顯著(P<0.05)
Note:Data with different lowercase letters for the same immune index among different populations indicate significant differences(P<0.05)
2.2.2 血淋巴中非特異性免疫指標(biāo)
2齡晚熟、2齡早熟及對(duì)照組扣蟹血淋巴內(nèi)非特異免疫指標(biāo)如表3所示。就雄體而言,2齡早熟組和對(duì)照組GR活性顯著高于2齡晚熟組,對(duì)照組NO含量顯著高于2齡早熟組,ALP、ACP、PO及GSH-Px活性以2齡早熟組最高,其中ACP活性差異顯著,此外γ-GT、T-AOC、SOD、MDA及Hc活性以2齡晚熟組最高,其中SOD活性差異顯著,其余各指標(biāo)差異均不顯著。
就雌蟹而言,2齡早熟組ACP、γ-GT及T-AOC活性顯著高于2齡晚熟組和對(duì)照組,2齡早熟組和對(duì)照組GR活性顯著高于2齡晚熟組,2齡晚熟組和2齡早熟組SOD活性顯著高于對(duì)照組;ALP、NO及MDA活性以對(duì)照組最高,其中ALP活性差異顯著,而其余各指標(biāo)(PO、GSH-Px、NO、MDA及Hc)差異均不顯著。
3.1 攻毒后各組成活率差異及其原因
活體攻毒實(shí)驗(yàn)是綜合評(píng)價(jià)動(dòng)物體健康狀況和免疫性能的常用手段,在一定劑量致病原的攻擊下,免疫性能較強(qiáng)的個(gè)體或群體表現(xiàn)為較低的累積死亡率和較高的成活率,通常免疫性能較強(qiáng)的個(gè)體對(duì)病原的半致死濃度也較高[22]。本研究中在相同濃度的嗜水氣單胞菌注射條件下,整體上2齡早熟和2齡晚熟選育扣蟹的累計(jì)死亡率低于對(duì)照組,這顯示兩選育群體扣蟹的免疫性能得到了一定的提升。選育組攻毒后死亡率相對(duì)較低,可能與連續(xù)多代采用活力較強(qiáng)的親本進(jìn)行繁殖有關(guān),在對(duì)蝦遺傳選育過(guò)程中也有類似發(fā)現(xiàn)[17]。本研究中2齡早熟和2齡晚熟扣蟹攻毒最終死亡率相對(duì)于對(duì)照組分別降低了10.00%和8.34%,低于先前對(duì)蝦抗病選育后攻毒死亡率的降低量,如凡納濱對(duì)蝦 (Litopenaeusvannamei) 抗桃拉氏病毒選育三代后,攻毒成活率提高了15%~35%[23-25],這是由于抗病選育主要針對(duì)于特定病原,可以顯著提高該病原攻毒后成活率;而本研究中以提前或推遲性腺發(fā)育時(shí)間為主要選育指標(biāo),且嗜水氣單胞菌攻毒實(shí)驗(yàn)主要反映苗種的整體抗病性能,故攻毒后死亡率降低程度沒(méi)有針對(duì)特定病原選育后的效果明顯[17]。
表3 河蟹2齡早熟、2齡晚熟選育群體和非選育群體扣蟹血清中非特異性免疫指標(biāo)Tab.3 Comparison of immune indices and antioxidant ability in the hemolymph of juvenile E. sinensis from three populations
注:表中上標(biāo)不同小寫字母表示同一免疫指標(biāo)在不同群體間差異顯著(P<0.05)
Note:Data with different lowercase letters for the same immune index among different populations indicate significant differences(P<0.05)
3.2 非特異免疫和抗氧化性能差異
大量研究表明,ALP和ACP是水生動(dòng)物機(jī)體非特異免疫系統(tǒng)中的兩種重要水解酶,其活性和免疫性能有很大關(guān)系[26],它們能夠殺死外來(lái)入侵的病原體,并能通過(guò)修改病原表面分子來(lái)加速吞噬細(xì)胞的吞噬以及異物的降解速度[27],而GSH-Px是生物體抗氧化防御系統(tǒng)的關(guān)鍵酶[28],能夠催化GSH將機(jī)體代謝過(guò)程中產(chǎn)生的脂質(zhì)過(guò)氧化物或過(guò)氧化氫還原成無(wú)害醇類(或H2O),從而達(dá)到減輕和阻斷脂質(zhì)過(guò)氧化目的,起到保護(hù)細(xì)胞免受氧化損傷的作用[29]。本研究結(jié)果表明,2齡早熟扣蟹肝胰腺和血淋巴中ALP、ACP和GSH-Px均高于2齡晚熟組和對(duì)照組扣蟹,這說(shuō)明2齡早熟組扣蟹可能比2齡晚熟扣蟹具有更強(qiáng)的非特異免疫性能和抗氧化能力。這可能是因?yàn)?齡晚熟群體奠基群為長(zhǎng)江水系野生群體,經(jīng)過(guò)人工繁殖和池塘養(yǎng)殖僅有兩代,遠(yuǎn)短于經(jīng)過(guò)多代人工養(yǎng)殖的2齡早熟群體[6],有研究表明經(jīng)過(guò)多代人工養(yǎng)殖和選育的對(duì)蝦群體或家系抗病力強(qiáng)于野生對(duì)蝦群體[17];此外,甲殼動(dòng)物的生長(zhǎng)和免疫性能可能呈負(fù)相關(guān)[30],通常生長(zhǎng)較快的個(gè)體抗病力和免疫性能較差,先前研究表明2齡早熟群體由于性成熟提前,成蟹養(yǎng)殖階段的生長(zhǎng)略差于2齡晚熟群體[14]。因此,2齡早熟群體的免疫性能略好于2齡晚熟群體。
綜上,兩個(gè)選育群體子二代扣蟹具有較強(qiáng)的免疫性能及抗病力,其中2齡早熟群體扣蟹的免疫性能和抗氧化能力略強(qiáng)于2齡晚熟選育群體,說(shuō)明以性腺成熟時(shí)間為選育目標(biāo)也會(huì)影響到其它經(jīng)濟(jì)性狀,這為今后進(jìn)行河蟹多性狀復(fù)合育種提供了思路。今后,需要針對(duì)河蟹生長(zhǎng)、性腺成熟時(shí)間、營(yíng)養(yǎng)品質(zhì)和免疫抗病等多種經(jīng)濟(jì)性狀,研究和建立河蟹多性狀復(fù)合選育技術(shù)體系。
[1] 王 武, 王成輝, 馬旭洲. 河蟹生態(tài)養(yǎng)殖[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2013: 59-84. WANG W, WANG C H, MA X Z. Ecological culture of Chinese mitten carb aquaculture[M]. Beijing:Chinese Agricultural Press, 2013: 59-84.
[2] 農(nóng)業(yè)部漁業(yè)漁政管理局. 2015年中國(guó)漁業(yè)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)農(nóng)業(yè)出版社, 2015: 28-36. Bureau of Fisheries, Ministry of Agriculture, PRC. 2015 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2015: 28-36.
[3] 劉 青, 劉 皓, 吳旭干, 等. 長(zhǎng)江、黃河和遼河水系中華絨螯蟹野生和養(yǎng)殖群體遺傳變異的微衛(wèi)星分析[J]. 海洋與湖沼, 2015, 46(4): 958-968. LIU Q, LIU H, WU X G,etal. Genetic variation of wild and cultured populations of Chinese mitten crabEriocheirsinensisfrom the Yangtze, Huanghe, and Liaohe river basins using microsatellite marker[J]. Oceanologia Et Limnologia Sinica, 2015, 46(4): 958-968.
[4] 馮廣明, 張航利, 莊 平. 長(zhǎng)江口中華絨螯蟹雌性親蟹放流群體與自然群體能量代謝比較[J]. 海洋漁業(yè), 2015, 37(2):128-134. FENG G M, ZHANG H L, ZHUANG P. Comparison of energy metabolism of femaleEriocheirsinensisbetween releasing population and wild population in the Yangtze Estuary[J]. Marine Fisheries, 2015, 37(2):128-134.
[5] 李晨虹, 李思發(fā), 邢益于, 等. 池養(yǎng)長(zhǎng)江蟹、遼河蟹生長(zhǎng)性能及其遺傳環(huán)境交互作用分析[J]. 水生生物學(xué)報(bào), 2002, 26(4): 335-341. LI C H, LI S F, XING Y Y,etal. Growth performance and its genotype-environment interaction analysis of Chinese mitten crab (Eriocheirsinensis) populations from the Yangtze river and the Liaohe river in ponds[J]. Acta Hydrobiologica Sinica, 2002, 26(4): 335-341.
[6] 何 杰, 吳旭干, 姜曉東, 等. 野生和人工繁育大眼幼體在成蟹階段的養(yǎng)殖性能比較[J]. 上海海洋大學(xué)學(xué)報(bào), 2015a, 24(1): 60-67. HE J, WU X G, JIANG X D,etal. Comparision of the culture performance of wild-caught and artifical breeding Chinese mitten crab megalopae reared in the grow-out ponds during the adultEriocheirsinensisculture stage[J]. Journal of Shanghai Ocean University, 2015a, 24(1): 60-67.
[7] 何 杰, 吳旭干, 龍曉文, 等. 長(zhǎng)江水系中華絨螯蟹野生和養(yǎng)殖群體子一代養(yǎng)殖性能和性腺發(fā)育的比較研究[J]. 海洋與湖沼, 2015b, 46(4): 808-818. HE J, WU X G, LONG X W,etal. Culture performance and gonadal development of the first generation of selectively-bred Chinese mitten crabs from wild and cultured populations[J]. Oceanologia Et Limnologia Sinica, 2015b, 46(4): 808-818.
[8] HE J, WU X G, CHENG Y X,etal. Comparison of the culture performance and profitability of wild-caught and captive pond-reared Chinese mitten crab (Eriocheirsinensis) juveniles reared in grow-out ponds: Implications for seed selection and genetic selection programs [J]. Aquaculture, 2014(434): 48-56.
[9] 姜曉東,吳旭干,張金彪,等.三種餌料模式對(duì)中華絨螯蟹蟹種早期養(yǎng)殖性能、非特異免疫性能及抗病力的影響[J]. 動(dòng)物學(xué)雜志,2017(1):85-96. JIANG X D,WU X G,ZHANG J B,etal.Effects of three feeding males on early culture performance, non-specific immunity and disease resistance of juvenile Chinese Mitten Crab (Eriocheirsinensis)[J]. Chinese Journal of Zoology, 2017(1):85-96.
[10] 何 杰. 遺傳選育對(duì)長(zhǎng)江水系中華絨螯蟹養(yǎng)殖性能、遺傳多樣性和營(yíng)養(yǎng)品質(zhì)的影響[D]. 上海: 上海海洋大學(xué), 2015: 76-99. HE J. Effect of genetic breeding on the culture performance, genetic diversity and nutritional quality of the Chinese mitten crab[D]. Shanghai: Shanghai Ocean University, 2015: 76-99.
[11] 鄧燕飛, 夏愛(ài)軍, 潘建林, 等. 中華絨螯蟹“長(zhǎng)江1號(hào)”的選育[J]. 水產(chǎn)養(yǎng)殖, 2013, 34(4): 43-47. DENG Y F, XIA A J, PAN J L,etal. Breeding of the new variety ofEriocheirsinensisnamed “Changjiang 1”[J]. Journal of Aquaculture, 2013, 34(4): 43-47.
[12] 全國(guó)水產(chǎn)技術(shù)推廣總站編. 水產(chǎn)新品種推廣指南[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2014. National Fisheries Technology Promotion Station. Guidelines for the promotion of new varieties of aquatic products[M]. Beijing: China Agriculture Press, 2014.
[13] 滕煒鳴, 吳旭干, 成永旭, 等. 萊茵種群和長(zhǎng)江種群子一代中華絨螯蟹性腺發(fā)育及相關(guān)生物學(xué)指數(shù)變化的比較[J]. 上海海洋大學(xué)學(xué)報(bào), 2008, 17(1): 65-71. TENG W H, WU X G, CHENG Y X,etal. A comparative study on some biological index changes concerned with gonad development between two population of the Chinese mitten crab (Eriocheirsinensis): Rhine and Yangtze[J]. Journal of Shanghai Fisheries University, 2008, 17(1): 65-71.
[14] 吳旭干, 龍曉文, 成永旭, 等. 中華絨螯蟹、日本絨螯蟹及其雜交種性腺發(fā)育和生化組成的比較研究[J]. 淡水漁業(yè), 2015, 45(3): 3-8. WU X G, LONG X W, CHENG Y X,etal. Comparative study on gonadal development and biochemical composition amongEriocheirsinensis,E.japonicaand their hybrids[J]. Freshwater Fisheries, 2015, 45(3): 3-8.
[15] 陳彥良, 李二超, 禹 娜, 等. 豆油替代魚油對(duì)中華絨螯蟹幼蟹生長(zhǎng)、非特異性免疫和抗病力的影響[J]. 中國(guó)水產(chǎn)科學(xué), 2014, 21(3): 511-521. CHEN Y L, LI E C, YU N,etal. Effect of replacing dietary fish oil with soybean oil on growth, nonspecific immune response, and resistance toAeromonashydrophilachallenge in Chinese mitten crab,Eriocheirsinensis[J]. Journal of Fishery Sciences of China, 2014, 21(3): 511-521.
[16] ARGUE B J, ARCE S M, LOTZ J M,etal. Selective breeding of Pacific white shrimp (Litopenaeusvannamei) for growth and resistance to Taura syndrome virus[J]. Aquaculture, 2002(204): 447-460.
[17] COCK J, GITTERLE T, SALAZAR M,etal. Breeding for disease resistance ofPenaeidshrimps[J]. Aquaculture, 2009(286): 1-11.
[18] SUI J, LUAN S, LUO K,etal. Genetic parameters and response to selection of harvest body weight of the Chinese shrimpFenneropenaeuschinensisafter five generations of multi-trait Selection[J]. Aquaculture, 2016(452): 134-141.
[19] WANG L G, CHEN L Q, QIN J G,etal. Effect of dietary lipids and vitamin E on growth performance, body composition, anti-oxidative ability and resistance toAeromonashydrophilachallenge of juvenile Chinese mitten crabEriocheirsinensis[J]. Aquaculture Research, 2015: 1-15.
[20] NICKERSON K W, VAN K E. A comparison of molluscan and arthropod hemocyanin: I. Circular dichroism and absorption spectra[J]. Comparative Biochemistry and Physiology, 1971, 39(4): 855-872.
[22] 黃旭雄, 周洪琪. 甲殼動(dòng)物免疫機(jī)能的衡量指標(biāo)及科學(xué)評(píng)價(jià)[J]. 海洋科學(xué), 2007, 31(7): 90-96. HUANG X X, ZHOU H Q. The parameters reflecting immune state of crustacea and its scientific evaluation[J]. Marine Sciences, 2007, 31(7): 90-96.
[23] ARGUE B A, ARCE S M, LOTZ J M,etal. Selective breeding of Pacific white shrimp(Litopenaeusvannamei) for growth and resistance to Taura syndrome virus[J]. Aquaculture, 2002, 204(3-4): 447-460.
[24] WHITE B L, SCHOFIELD P J, POULOS B T,etal. A laboratory challenge method for estimating Taura syndrome virus resistance in selected lines of Pacific white shrimpLitopenaeusvannamei[J]. Journal of the World Aquaculture Society, 2002(33): 341-348.
[25] WYBAN J A. Breeding shrimp for fast growth and virus resistance[J]. Global Aquaculture Advocate, 2000, 3(6), 32-33.
[26] 丁金強(qiáng), 劉 萍, 李 健, 等. 不同地理群體日本蟳非特異性免疫及抗氧化酶活力的比較[J]. 水產(chǎn)學(xué)報(bào), 2013, 37(2): 275-280. DING J Q, LIU P, LI J,etal. Comparison of nonspecific immunity and the activities of antioxidant enzymes in different populations ofCharybdisjaponica[J]. Journal of Fisheries of China, 2013, 37(2): 275-280.
[27] 陳家長(zhǎng), 臧學(xué)磊, 孟順龍, 等. 亞硝酸鹽氮脅迫對(duì)羅非魚(GIFTOreochromisniloticus)血清非特異性免疫酶活性的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2012, 21(5): 897-901. CHEN J C, ZANG X L, MENG S L,etal. Effect of nitrite nitrogen stress on the activities of nonspecific immune enzymes in serum of tilapia (GIFTOreochromisniloticus) [J]. Ecology and Environmental Sciences, 2012, 21(5): 897-901.
[28] 向 梟, 周興華, 陳 建, 等. 飼料中豆粕蛋白替代魚粉蛋白對(duì)齊口裂腹魚幼魚生長(zhǎng)性能、體成分及血液生化指標(biāo)的影響[J]. 水產(chǎn)學(xué)報(bào), 2012, 36(5): 723-731. XIANG X, ZHOU X H, CHEN J,etal. Effect of dietary replacement of fish meal protein with soybean meal protein on the growth, body composition and hematology indices ofSchizothoraxprenanti[J]. Journal of Fisheries of China, 2012, 36(5): 723-731.
[29] CHIBA Y, MURAOKA R, IHAYA A. The significance of glutathione peroxidase on myocardial protection in the eat hearts[J]. Nippon Geke Gokan, 1994, 63(4): 139-142.
[30] MOSS S M, DOYLE R W, LIGHTNER D V. Breeding shrimp for disease resistance: Challenges and opportunities for improvement[J]. Disease Asian Aquaculture, 2005: 379-393.
Comparison of immune performance of juvenile crabseeds among the second instar early-maturing, late-maturing and non-selective populations of Chinese mitten crabEriocheirsinensis
JIANG Xiao-dong1, WU Xu-gan1, HE Jie1, LIU Qing1,4, WANG You-peng2, GE Yong-chun3, CHENG Yong-xu1,4
(1.KeyLaboratoryofFreshwaterAquaticGeneticResources,MinistryofAgriculture,ShanghaiOceanUniversity,Shanghai201306,China; 2.SuqianXubangFisheriesScienceandTechnologyLtd.Co.,JiangsuSihong223900,China; 3.ShanghaiDengyingAquacultureCooperatives,Shanghai,Chongming202164,China; 4.CollaborativeInnovationCentevofAquaticAnimalBreedingCenterCertificatedbyShanghaiMunicipalEducationCommission,ShanghaiOceanUniversity,Shanghai201306,China)
The mature or nearly mature Chinese mitten crabs(Eriocheirsinensis) generall have higher edible yield and nutritional value than the unmature crabs, and the second instarE.sinensisordinarly become mature or nearly mature from late October to end of December. In this period, the mature individuals ofE.sinensisare concentrated to flood the market. It takes many problems like low price that need to solute. So the extension of maturing time of second instar adultE.sinensisis one of the important factors for the sustainable development of the farming industry of this crab. Previous studies have shown that selective breeding is the effective method to change the mature time for animals. Since 2011, the second instarE.sinensisof early-maturing(ENN) and late-maturing(LM) have been established and reproduced to the third generation, but little is known about the effects of selective breeding on the quality of juvenileE.sinensis. The immune performance is an important criteria for the evaluation of crabseed quality. Therefore, this study aimed to evaluate the survival performance during the pathogen challenge test and determine the immune indices of juvenile crabs of EM, LM and non-selective populations (as the control). The results showed that: (1) The cumulative mortality rate of the control was lower than EM and LM for both males and females during the pathogen challenge test, but there were slight differences between males and females. While the lowest mortality was found in the males of LM and females of EM, respectively. (2) In terms of the non-specific immune indicies of the hepatopancreas, EM had the higher activity of ALP and it had higher activity of ACP than LM for both males and females (P<0.05). In addition, the male EM and LM had the significantly higher T-AOC and POD than the control, and the MDA and GSH-Px of female EM were significantly higher than those of the females from the other two populations(P<0.05); (3) In terms of the non-specific immune indicies in hemolymph, for whether males or females, EM had higher ACP activity than the control while LM had the lowest GR activity among three populations. Furthermore, female EM had significantly higher activity of γ-GT and T-AOC than female LM(P<0.05). In conclusion, the crabseeds from early-maturing (EM) and late-maturing (LM) strains have the better disease resistance and immunity than non-selective populations, and the EM has the slightly better performance on indices of antioxidation and immunity than the LM.
Eriocheirsinensis; mass selective-breeding; crabseed quality; immune performance; pathogen challenge test; comparative study
1004-2490(2017)02-0181-09
2016-03-03
科技部港澳臺(tái)科技合作專項(xiàng)項(xiàng)目(2014DFT30270); 科技部科技型中小企業(yè)技術(shù)創(chuàng)新項(xiàng)目 (14C26213201214);上海市科委科研計(jì)劃項(xiàng)目 (13231203504);上海高校水產(chǎn)學(xué)高峰學(xué)科建設(shè)項(xiàng)目(2015-62-0908)
姜曉東(1991-),男,碩士研究生,主要從事河蟹養(yǎng)殖技術(shù)和良種培育的研究。E-mail:310410555@qq.com
成永旭,教授。 E-mail:yxcheng@shou.edu.cn
Q 953+.1
A