• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Suppression of gold nanoparticle agglomeration and its separation via nylon membranes☆

    2017-05-29 01:39:48AyyavooJayalakshmiInChulKimYoungNamKwon

    Ayyavoo Jayalakshmi,In-Chul Kim ,Young-Nam Kwon ,2,*

    1 School of Urban and Environmental Engineering,Ulsan National Institute of Science and Technology,Ulsan 689-798,Korea

    2 KIST-UNIST Ulsan Center for Convergent Materials,UNIST(Ulsan National Institute of Science and Technology),Korea

    3 Environment and Resources Research Center,Korea Research Institute Chemical Technology,Daejeon 305-606,Korea

    1.Introduction

    Particle contamination in the semiconductor manufacturing can cause low-throughput,high defects and minified executions through micro-lithographic processes[1-4],and thus the control of the contamination has become a critical issue,especially,in integrated circuits and lab on chips[5,6].Various micro-lithographic stages have higher complications to accomplish several layer circuits in the fabrication of compact semiconductor chips[7,8].Generally,the contamination in micro-lithographic process by soft nanoparticles on the wafer surface leads to the microbridge defects of integrated circuits[9,10],and this has been addressed by preventing the deleterious particulate contamination with application of polymeric membranes[11-13].

    For evaluation of polymer membranes use of gold nanoparticles has several bene fits due to their highly detectable characteristics using optical method, fine particle size distribution,high stability,and innocuous property[14,15].Virtually,all nanoparticles can agglomerate or precipitate and the degree of agglomeration or precipitation is determined by several factors such as pH,concentration and temperature[16,17].According to the DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,the agglomeration of nanosized colloidal particles occurs due to the decrease of surface potentials[18].In this scenario,the electric double layer plays a fundamental role in the stabilization of colloidal particles,where the higher ionic strength of the solution compresses the double layer and shrinks the electrostatic repulsion,extending an irreversible cluster of nanoparticles[19,20].Nylon membranes have the remarkable property being more solvent permeable and selective to the nanoparticles.However,the gold nanoparticles,which have been used for the evaluation of the membranes,can easily aggregate atthe nylon membrane surface and making itdifficultto make a precise evaluation.Using a preventive ligand,the gold colloid aggregation can be reduced[19,21].These ligands such as thiomalic acid,thioglycolic acid,thiosalicylic acid,1-thioglycerol,2-sulfanylethanol,1-sulfanyl-2-propanol,isobutanol-2-amine,and serinol can be used[22,23].Burgesset al.also showed that citric acid acted as a reductant and stabilizer for gold colloids[19].They demonstrated thatthe thermodynamic description required for single gold crystals(two-dimensional gold surface)could be extended to nanosized three-dimensional gold sols.Kimmuraet al.proposed mercaptosuccinic acid(MSA)to disperse gold nanoparticles[24].The function of ligand was shown to modify the surface of gold colloid(change of zeta potential and ionic strength)and to reduce the interaction between the particle and surface medium.

    The aim of this research is to understand the fundamental behavior of 2-amino-2-hydroxymethyl-1,3-propanediol(ADP)ligand in gold nanoparticle solution for a better evaluation of the nylon membranes and to utilize the ligand to prevent gold colloid clusters(i.e.between two particles and among the gold colloid and membrane surface).For the study,the nylon ultra filtration membranes were fabricated by the non-solvent induced phase separation(NIPS)method.The surface characteristics were investigated using various analytical tools,and the prepared nylon membrane was used to separate gold nanoparticles(20 and 50 nm).The effectofADP and pHvalues on the rejection ofgold colloid was investigated,and the interparticle interaction energy was also calculated.The manipulation of gold colloids accumulating on the membrane surface was correlated with a microscopic study using scanning electron microscopy(SEM),transmission electron microscopy(TEM),and confocal laser scanning microscopy(CLSM).The impedance study of the prepared membrane,particle size and zeta potential of the gold colloids was also demonstrated.

    2.Experimental

    2.1.Materials

    Nylon 6,6 polymer was purchased from BASF and used without any pretreatment.Formic acid,lithium chloride(LiCl),and ethanol were purchased from Sigma-Aldrich(MO,USA)and were allused as received.Gold nanoparticle(~20 nm and~50 nm)solutions were procured from PBI solution.2-Amino-2-hydroxymethyl-1,3-propanediol(ADP)was purchased from Sigma-Aldrich,Korea and used as ligand for the gold nanoparticle.Deionized water(DI water)(Milli-Q Advantage A10,Millipore Corporation)was used to prepare all the aqueous solutions.

    2.2.Membrane preparation

    The dope solution formembrane preparation was formulated by dissolving(28 wt%)nylon 6,6 polymer in the solvent mixture containing formic acid(61 wt%),LiCl(3 wt%)and ethanol(8 wt%).The nylon membrane was prepared by non-solvent induced phase separation(NIPS)method(80%of relative humidity)and named Nylon A(NA).After solvent evaporation,the membrane was immersed in distilled water.

    2.3.Characterization

    Hydrophilicity of the membrane was evaluated by contact angle measurements(Phoenix300 Plus,Surface and Electro Optics Co.Ltd.,Korea)using the sessile drop method.The wetting energy(We),work of adhesion(Wa)and spreading co-efficient(Sc)were calculated using measured contact angle θ values and γ is surface tension of water(Eqs.(1)-(3))

    The cross-sectionalimages ofthe membranes were observed by field emission scanning electron microscopy(FESEM Nano230,FEI,USA).To reduce image artifacts caused by the electrostatic charge,allthe samples were Pt-coated at20 mAand 0.2 Pa for 60 s using a Turbo Pumped High-Resolution Chromium Sputter Coater(K575X,EMITECH,Germany).The surface morphologies of the nylon membranes were examined using a Multimode V(Veeco,USA)atomic force microscope(AFM)capable of imaging at vertical lateral resolutions of 0.01 nm.High resolutiontransmission electron microscopy(TEM)of gold nanoparticles and goldfiltered membranes was performed in bright field mode at 80 kV using a Hitachi H-7650 TEM,and the images were acquired with an Olympus Cantega 11 megapixel digital camera.CLSM was used to analyze the surface morphology and roughness of the membrane(CLSM,OLS-2000,Olympus,Japan),and the membrane surfaces were imaged at a scan size of 10 μm × 10 μm and the surface roughness was measured.

    Particle size and zeta potentialofgold nanoparticle were measured by a sub-micron size and zeta potential measuring system(Malvern,UK).

    2.4.Gold nanoparticle separation

    The permeation experiments were performed using membrane cells with an exposed membrane area of 5.30 cm2under dead end filtration mode.An applied pressure of 0.1 MPa for the particle separation was generated by nitrogen gas,and the flow rate of feed solution was 1.0 L·min-1.The valve located at the end of the cellwas used to pressurize the feed solutions and control the feed pressure.Gold nanoparticle(20 and 50 nm)solutions were used for the separation studies.Filtration through each membrane was carried out independently,and the concentration of the feed solution was kept constant during the membrane filtration.The rejection was estimated using an inductively coupled plasma-optical emission spectrometer(ICP-OES).The percentage of the solute rejection was calculated using Eq.(4).

    For Eq.(4),MfandMpare the concentration of solute in the feed and permeate solution,respectively.

    Interparticle interaction energy of gold nanoparticles(assuming spherical shape)was calculated by using van der Waals attraction(DLVO theory)between two particles[18].

    For Eq.(5),AHis the Hamaker constant(2.5×10-19J where an average was used),a1anda2are the radii of the particles,andRis the distance between the centers of two particles.

    3.Results and Discussion

    3.1.Nylon membrane preparation

    The nylon membrane(NA)was fabricated by immersion precipitation method with~0.05 mm thickness.SEM micrographs of nylon membranes are shown in Fig.1.The dense layer was observed in the cross sectional SEM images,and the microporous support layer present in middle part of the membrane showed a partially anisotropic structure.Spongy-like structure was visible in the nylon membrane on the exterior side in lower magnification,whereas Darcy structure was observed athighermagnification.The thread-like structure and multiform of ovoid structure were noticed in the back side of the membrane.Fig.2a shows 3-D CLSM fluorescent images of NA.The homogeneity structure was exhibited on the skin layer of membrane surface in NA membrane.In AFM,two-dimensional(2-D)and three-dimensional(3-D)micrographs were included to show the membrane valley and nodules(Fig.2b and c).Surface morphology of NA membrane showed surface roughness and membrane nodules.Surface roughness calculated from AMF showed slightly higher values compared to CLSM surface roughness(Table 1).Various surface factors(wetting energy,work ofadhesion,and spreading co-efficient),determining the performance/fouling of the prepared NA membrane,were calculated by contact angle values as shown in Table 2.

    Fig.1.Scanning electron micrographs of nylon membrane(NA):(a)the cross-section images of NA with thickness(~50 μm)in the magnification of 1.0 k,(b)top surface of NA with magnification of 3.0 k,(c)the bottom structure of membrane support with magnification of 10.0 k.

    Fig.2.Confocal laser scanning micrographs and atomic force micrographs of NA membrane:(a)3-D display of CLSM images of NA membrane,(b)and(c)2-D and 3-D display of AFM images of NA membrane.All membranes were scanned at 1 μm(scan size).

    Table 1Comparison of surface roughness parameters from AFM and CLSM

    Table 2Various surface factors calculated from contact angle values

    3.2.Rejection study of gold nanoparticle

    The feed of gold nanoparticle solution was prepared by adding ADP as ligand.Incorporation of ADP in feed solution was substantial because nylon membrane had a highly positive polarity group(amide linkage)and easily absorbed several colloids dispersed in liquid with a high negative charge.The amine group present in the ligand can bind the gold surface particle and the hydroxyl groups in the ligand can form hydrogen bonds with water molecules,hindering the agglomeration and dispersing the gold nanoparticles in the solution.The behavior of ADP ligand in gold nanoparticle solution was schematically represented in Fig.3.The particle size of the gold nanoparticle solution with ADP was observed using a zeta-sizer analyzer.The particle size of the gold nanoparticles is shown in Fig.4.The addition of ADP solution slightly increased the size ofgold nanoparticles by 2.5-2.6 nmdue to the hydration of ADP bound to the nanoparticles.

    The separation of gold nanoparticle using nylon membrane was analyzed using inductively coupled plasma with optical emission spectroscopy(ICP-OES).The percentage rejection values of the gold colloid(20 and 50 nm without ADP)were 88.6%and 94.7%,respectively,for NA membrane at neutral pH(Fig.5).For the gold nanoparticles of 20 and 50 nm with 1.0 mmol·L-1ADP solution,the rejection percentages were 93.5%and 99.8%,respectively.Nylon membrane exhibited higher separation of gold nanoparticles in the presence of ADP due to higher complexation of gold nanoparticle with ADP.The ADP in gold solution had sufficient energy barrier to prevent the aggregation of gold particles.The gold colloid separation efficiency of nylon membrane showed higher capability at neutral pH.

    3.3.Effect of pH on gold rejection

    The rejection of gold nanoparticles was observed in various pH values from 4 to 14 using the NA membranes,and the data are shown in Fig.6.At pH 4,the percentage rejection of gold nanoparticle(20 and 50 nm)with ADP was showed 98.16%,and 99.45%,respectively.For increasing pH,the rejection percentage slightly decreased at pH 6,then increased at pH 8,and slightly decreased at yet a higher pH.The prepared nylon membrane shows relatively stable rejection in all pH range.The change in rejection percentage was likely due to change in the zeta potential and ionic strength of the gold solution(Table 3).With increasing pH,the surface of gold nanoparticles became more negative and also the ionic strength of the solution changed due to the acid or base added as they reached the specific pH values.The ionic strength of gold nanoparticle solution at pH 6 was lowest and thus the decline of ionic strength might have decreased the rejection at a given pH.This con firmed that the gold nanoparticles were stably dispersed since the ADP energy barrier was highly sufficientto prevent agglomeration of gold colloids.

    Fig.3.Schematic representation ofsuppression ofgold colloids cluster using ADP during membrane filtration.Agglomeration ofgold nanoparticles adsorbed in nylon membrane surface in TEM images.The ADP amino group provides a strong electro-attractive force to the gold colloids and gold-ADP complex is repulsed by the nylon membrane.

    Fig.4.The particle size of gold nanoparticle with and without addition of ADP solution(pH 7.5).

    Fig.5.Rejection of gold nanoparticles with and without ADP for NA membrane atpH 7.5.All the membranes were compacted for 30 min before gold nanoparticle separation at 0.1 MPa with DIwater.The feed solution ofgold particle(20 and 50 nm)(concentration~50×10-6)with and without ADP at 1.0 mmol·L-1 concentration was used.

    The stabilization of gold nanoparticles and its agglomeration mainly depend on solution pH,cross linkage of ligands and the ionic strength[18].The ADP in the gold solution made the nanoparticles more stable without any clusters forming and also increased the rejection capability of the nylon membrane.The larger-sized of gold nanoparticles at50 nm showed higherrejection than smaller-sized gold nanoparticles at20 nm due to the size effect.The incorporation of ADP into the gold nanoparticle solution suppressed the agglomeration among particles and reduced the adsorption of gold particles on the membrane surface.Therefore,ADPfunctionality contributed to the properties ofboth the gold solution and the nylon membrane.The order of gold colloid rejection capability at various pH was pH 8~pH 4>pH 10>pH 12~pH 14>pH 6.

    The interaction energy values of gold nanoparticles are given in Table 4.The interaction energy of particles was reduced after adding the ADP to the gold solution.Thus the reduction of interaction energy between the gold nanoparticles con firms the depression of agglomeration of gold clusters.This interaction energy is also known as van der Waals interaction energy[25].The Hamaker constant(AH)of gold nanoparticles was used in estimating the interaction and the range ofvalues is(1-4)×10-19J was utilized[26]for the above calculation.

    Table 3Ionic strength and zeta potential of gold solution with and without ADP at different pH values

    Table 4Interparticle interaction energy of gold solution with and without ADP

    3.4.Correlated with microscopic analysis

    The gold nanoparticle agglomeration during me mbrane filtration and the suppression of gold colloid clusters with the addition of ADP were also con firmed by TEM images.The binding of gold nanoparticles was also evidenced by SEM,AFM and CLSM(explained below).TEM images of gold nanoparticle- filtered membrane in the presence of ADP during membrane filtration of nylon membrane are shown in Fig.7.Sphere-shaped nanoparticles were observed in TEM and the splitting of gold colloids deposition using ADP was verified.The particle size of gold nanoparticle was précised at20.3 nmand 50.1 nmand itresembled the monodispersity of the gold particle.The EDX mapping image also evidenced the particle size.The above data con firmed that the particle size remained the same as after the rejection study and demonstrated the reduction of interacting force between the gold nanoparticles and the nylon membrane.

    The rejected gold nanoparticles in the presence of ADP on the nylon membrane surface were analyzed with SEM as shown in Fig.8.The gold nanoparticles were randomly deposited with uniform shapes on the membrane surface,and the de-structuring of the gold colloid flocks in the prepared NA membrane was observed with both particle sizes(20 and 50 nm).Fig.9 shows the EDAX imagesof the gold nanoparticles deposited on nylon membrane surface.The deposited nylon membranes were cleaned by water without any chemicals and sonicated for 2 min.Gold nanoparticles were loosely adsorbed on membrane surface in the presence ofADP ligand and those could be easily removed by the cleaning process.The majority of the gold particles were washed off and 12%of gold particles remained and were left scattered on the membrane surface.In comparison,the clustered particles formed during the operation without ADP could not be easily removed,and the 22%of gold remaining post-wash was tightly bound to the membrane surface in the form ofgroupsofgold clusters.Thus,the ADP ligand suppressed formation of gold clusters on the nylon membrane surface.The gold colloids deposited on nylon membrane in 3-D CLSM are shown in Fig.10.In this instance,the gold nanoparticles were deposited homogeneously without colloidal clusters on the nylon membrane.The deposited particles on membrane surface of NA in CLSM images and the formation looked like quantum dots.

    4.Conclusions and Future Prospects

    The present investigation depicts the successful fabrication of nylon membrane using a simple phase inversion technique and utilization of ADP ligand to de-structure gold colloid flocks(both within the particles themselves and between the gold and membrane surface).The prepared membranes achieved relatively high gold nanoparticle separation efficiencies from gold colloids(20 and 50 nm)with the ADP solution at 1.0 mmol·L-1.Ultrathin dense layer,microporous Darcy-like structure and thread-like ovoid structures were seen in NA membrane with SEM.The deep depressions(membrane pores)and nodules were ascertained in AFM micrographs.In laser micrographs,smoother surface with less prominent grains was seen.The surface roughness features of NA membranes were compared with AFM and CLSM.

    Fig.7.Transmission electron micrographs of separated gold nanoparticle with 1.0 mmol·L-1 ADP during membrane filtration:(a)and(b)the separated gold nanoparticles(20 nm)with TEM images of the NA membrane,(d)and(e)the separated gold nanoparticles(50 nm)with TEM images of the NA membrane,(c)and(f)EDX mapping TEM images of separated gold nanoparticle(20 and 50 nm,respectively)for the membranes.

    Fig.8.Scanning electron micrographs of separated gold nanoparticle in the presence of ADP during membrane filtration:(a)and(b)the separated gold nanoparticle(20 and 50 nm,respectively)with SEM images of NA membrane with magnification of 70 k&100 k.

    Fig.9.EDAX(SEM)images:(a)and(c)membranes filtered with gold nanoparticles(in presence and absence ofADP),(b)and(d)after cleaning,the separated gold nanoparticle remaining on the nylon membrane.The membranes were cleaned and sonicated for 2 min.

    The separation efficiency ofthe gold nanoparticles(20 and 50 nm)in the presence of ADP with the nylon membrane was highest at pH 4 and 8.The gold colloid agglomeration was suppressed using ADP and the monodispersity of gold nanoparticles was evidenced by TEM,AFM,CLSM and SEM.The interparticle interaction energy was reduced in the gold solution with the ADP ligand.The accurate particle size of gold nanoparticles was con firmed by TEM and zeta-sizer.This study showed that the addition of ADP prevented the agglomeration of gold nanoparticles,which deviates the evaluation of precise pore size of the nylon membranes.The fabrication of nylon membrane with various pore sizes(less than 5 nm,10 nm,20 nm)for a separation study is required and the findings may translate to additional applications.

    Nomenclature

    AHHamaker constant(=2.5×10-19J)

    a1anda2Radii of the particles,nm

    MpConcentration of solute in the permeate,mg·L-1

    MfConcentration of solute in the feed,mg·L-1

    RDistance between the centers of two particles,nm

    ScSpreading co-efficient,mN·m-1

    WeWetting energy,mN·m-1

    WaWork of adhesion,mN·m-1

    θ Contact angle values,°

    γ Surface tension of water,mN·m-1

    [1]D.Gentili,M.Cavallini,Wet-lithographic processing of coordination compounds,Coord.Chem.Rev.257(2013)2456-2467.

    [2]P.M.Harrey,B.J.Ramsey,P.S.A.Evans,D.J.Harrison,Capacitive-type humidity sensors fabricated using the offset lithographic printing process,Sensors Actuators B Chem.87(2002)226-232.

    [3]J.Lauria,R.Albright,O.Vladimirsky,M.Hoeks,R.Vanneer,B.v.Drieenhuizen,L.Chen,L.Haspeslagh,A.Witvrouw,SLM device for 193 nm lithographic applications,Microelectron.Eng.86(2009)569-572.

    [4]N.S.Leyland,J.R.G.Evans,D.J.Harrison,Lithographic printing of ceramics,J.Eur.Ceram.Soc.22(2002)1-13.

    [5]K.Jiang,C.H.Lee,P.Jin,An ultrathick SU-8 UV lithographic process and sidewall characterization A2,in:Wolfgang Menz,Stefan Dimov,Bertrand Fillon(Eds.),4M 2006-Second International Conference on Multi-Material Micro Manufacture,Elsevier,Oxford 2006,pp.211-216.

    [6]W.Y.Kim,H.C.Lee,Developmentof manipulation technology of ferroelectric polymer film:Photo-lithographic patterning and multilayer formation,Microelectron.Eng.88(2011)1576-1581.

    [7]A.Singh,S.K.Kulkarni,C.Khan-Malek,Patterning of SiO2nanoparticle-PMMA polymer composite microstructures based on softlithographic techniques,Microelectron.Eng.88(2011)939-944.

    [8]T.Vandeweyer,C.Baerts,N.Horiguchi,M.Ercken,New lithographic requirements for the implant levels in scaled devices,Microelectron.Eng.88(2011)2171-2173.

    [9]J.Marques-Hueso,R.Abargues,J.Canet-Ferrer,J.L.Valdes,J.Martinez-Pastor,Resistbased silver nanocomposites synthesized by lithographic methods,Microelectron.Eng.87(2010)1147-1149.

    [10]A.P.Oost,P.L.De Boer,Tectonic and climatic setting of lithographic limestone basins,Geobios27(Suppl.1)(1994)321-330.

    [11]M.E.Anderson,C.Srinivasan,R.Jayaraman,P.S.Weiss,M.W.Horn,Utilizing self-assembled multilayers in lithographic processing for nanostructure fabrication:Initial evaluation of the electrical integrity of nanogaps,Microelectron.Eng.78-79(2005)248-252.

    [12]I.S.Chronakis,Chapter 22—Micro-and Nano- fibers by Electrospinning Technology:Processing,Properties,and Applications A2—Qin,Yi,Micromanufacturing Engineering and Technology,second ed.William Andrew Publishing,Boston,2015 513-548.

    [13]J.E.Krzanowski,Fabrication and tribological properties of composite coatings produced by lithographic and microbeading methods,Surf.Coat.Technol.204(2009)955-961.

    [14]M.-C.Daniel,D.Astruc,Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology,Chem.Rev.104(2004)293-346.

    [15]A.N.Shipway,E.Katz,I.Willner,Nanoparticle arrays on surfaces for electronic,optical,and sensor applications,ChemPhysChem1(2000)18-52.

    [16]C.S.Weisbecker,M.V.Merritt,G.M.Whitesides,Molecular self-assembly of aliphatic thiols on gold colloids,Langmuir12(1996)3763-3772.

    [17]T.Yonezawa,K.Yasui,N.Kimizuka,Controlled formation ofsmaller gold nanoparticles by the use of four-chained disul fide stabilizer,Langmuir17(2001)271-273.

    [18]T.Kim,K.Lee,M.-S.Gong,S.-W.Joo,Control of gold nanoparticle aggregates by manipulation of interparticle interaction,Langmuir21(2005)9524-9528.

    [19]J.Kunze,I.Burgess,R.Nichols,C.Buess-Herman,J.Lipkowski,Electrochemical evaluation of citrate adsorption on Au(1 1 1)and the stability of citrate-reduced gold colloids,J.Electroanal.Chem.599(2007)147-159.

    [20]J.B.Schlenoff,M.Li,H.Ly,Stability and self-exchange in alkanethiol monolayers,J.Am.Chem.Soc.117(1995)12528-12536.

    [21]A.N.Takehito Mizuna,Shuichi Tsuzuki,A novel filter rating method using less than 30-nm gold nanoparticle and protective ligand,IEEE Trans.Semicond.Manuf.22(2009).

    [22]S.I.Stoeva,A.B.Smetana,C.M.Sorensen,K.J.Klabunde,Gram-scale synthesis of aqueous gold colloids stabilized by various ligands,J.Colloid Interface Sci.309(2007)94-98.

    [23]V.J.Gandubert,R.B.Lennox,Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles,Langmuir21(2005)6532-6539.

    [24]S.Chen,K.Kimura,Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water,Langmuir15(1999)1075-1082.

    [25]E.J.W.Verwey,J.Th.G.Overbeek,Theory of the Stability of Lyophobic Colloids,Dover,Mineola,NY,1999.

    [26]S.Biggs,M.K.Chow,C.F.Zukoski,F.Grieser,The role of colloidal stability in the formation of gold sols,J.Colloid Interface Sci.160(1993)511-513.

    国产不卡一卡二| 黄色视频,在线免费观看| 深爱激情五月婷婷| 在现免费观看毛片| 精品人妻一区二区三区麻豆 | 老司机午夜福利在线观看视频| 老师上课跳d突然被开到最大视频| 亚洲精华国产精华液的使用体验 | 69人妻影院| 亚洲最大成人手机在线| 99久国产av精品| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 人妻夜夜爽99麻豆av| 精品国产三级普通话版| 琪琪午夜伦伦电影理论片6080| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9| 又黄又爽又刺激的免费视频.| 国产探花极品一区二区| 免费看a级黄色片| 欧美精品国产亚洲| 禁无遮挡网站| 内地一区二区视频在线| 国产精品亚洲美女久久久| av在线蜜桃| 一a级毛片在线观看| 国产精品一区二区三区四区久久| 精品国产三级普通话版| 日本免费一区二区三区高清不卡| 免费人成在线观看视频色| 免费黄网站久久成人精品| 欧美极品一区二区三区四区| 如何舔出高潮| 欧洲精品卡2卡3卡4卡5卡区| 午夜久久久久精精品| 十八禁国产超污无遮挡网站| 最近最新中文字幕大全电影3| 国产综合懂色| 亚洲在线自拍视频| 精品久久久久久久人妻蜜臀av| 欧美日韩综合久久久久久 | 91久久精品国产一区二区三区| 天天躁日日操中文字幕| 成熟少妇高潮喷水视频| 日韩,欧美,国产一区二区三区 | 中国美女看黄片| 久久精品国产亚洲网站| 国产亚洲精品综合一区在线观看| 亚洲国产高清在线一区二区三| eeuss影院久久| 久久久精品欧美日韩精品| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 免费av不卡在线播放| 国产一区二区三区av在线 | 国产 一区精品| 国产av不卡久久| a在线观看视频网站| 精品99又大又爽又粗少妇毛片 | 欧美黑人欧美精品刺激| 日韩亚洲欧美综合| 99精品在免费线老司机午夜| 免费在线观看影片大全网站| 精品午夜福利在线看| 一区二区三区免费毛片| 男人狂女人下面高潮的视频| 伊人久久精品亚洲午夜| 国产 一区精品| 1024手机看黄色片| 一区二区三区高清视频在线| 他把我摸到了高潮在线观看| 嫩草影院入口| 国产av一区在线观看免费| 成人国产综合亚洲| 日韩精品有码人妻一区| 欧美黑人巨大hd| 精品午夜福利视频在线观看一区| 成人国产综合亚洲| 亚洲美女视频黄频| 免费搜索国产男女视频| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片 | 午夜老司机福利剧场| 午夜激情福利司机影院| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 亚洲国产欧洲综合997久久,| 精品一区二区三区视频在线| 老女人水多毛片| .国产精品久久| 色噜噜av男人的天堂激情| 国产精品女同一区二区软件 | 午夜福利高清视频| 亚洲18禁久久av| 久久久久九九精品影院| 亚洲图色成人| 日本成人三级电影网站| 亚洲av美国av| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 国产精品福利在线免费观看| 亚洲av熟女| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| eeuss影院久久| 一区二区三区四区激情视频 | 亚洲内射少妇av| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 亚洲精品一区av在线观看| 亚洲最大成人av| 日韩 亚洲 欧美在线| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 男人狂女人下面高潮的视频| 免费看光身美女| 亚洲美女黄片视频| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 嫁个100分男人电影在线观看| 久久精品国产鲁丝片午夜精品 | 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美| av天堂中文字幕网| 国产精品一及| 精品欧美国产一区二区三| 国产高清三级在线| 又粗又爽又猛毛片免费看| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 色综合婷婷激情| 波多野结衣高清无吗| 91久久精品国产一区二区三区| 韩国av在线不卡| 亚洲国产日韩欧美精品在线观看| 国产精品无大码| 亚洲av一区综合| 男人狂女人下面高潮的视频| 婷婷亚洲欧美| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 九九爱精品视频在线观看| 波野结衣二区三区在线| 深夜精品福利| 三级毛片av免费| 精品久久久噜噜| 两个人的视频大全免费| 91久久精品国产一区二区三区| aaaaa片日本免费| 天堂av国产一区二区熟女人妻| 午夜福利在线观看免费完整高清在 | 日韩强制内射视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 欧美丝袜亚洲另类 | 欧美成人一区二区免费高清观看| 看黄色毛片网站| 成人三级黄色视频| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 亚洲综合色惰| 一级黄片播放器| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9| 毛片一级片免费看久久久久 | 国产精品1区2区在线观看.| 亚洲精品成人久久久久久| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 中文资源天堂在线| 婷婷六月久久综合丁香| 亚洲五月天丁香| 老师上课跳d突然被开到最大视频| 永久网站在线| 九九热线精品视视频播放| 在线看三级毛片| 欧美高清成人免费视频www| 最好的美女福利视频网| 亚洲av熟女| 尤物成人国产欧美一区二区三区| 国产老妇女一区| 国产国拍精品亚洲av在线观看| 18禁黄网站禁片午夜丰满| 中文字幕av在线有码专区| 亚洲自拍偷在线| 最近中文字幕高清免费大全6 | netflix在线观看网站| 日日啪夜夜撸| 性插视频无遮挡在线免费观看| 天堂影院成人在线观看| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 美女cb高潮喷水在线观看| 最近最新中文字幕大全电影3| 亚洲成av人片在线播放无| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 91精品国产九色| 小说图片视频综合网站| 亚洲av免费在线观看| av女优亚洲男人天堂| 久久久久久久久中文| 亚洲自拍偷在线| 夜夜爽天天搞| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 免费一级毛片在线播放高清视频| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 乱人视频在线观看| 久久久久久久久久久丰满 | 极品教师在线免费播放| 亚洲精品456在线播放app | 久久久久九九精品影院| 免费一级毛片在线播放高清视频| 深夜a级毛片| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 久久精品久久久久久噜噜老黄 | 亚洲精品乱码久久久v下载方式| 国语自产精品视频在线第100页| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 日韩国内少妇激情av| 一进一出好大好爽视频| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 啦啦啦啦在线视频资源| 亚洲第一区二区三区不卡| 国产精品日韩av在线免费观看| 99久国产av精品| av.在线天堂| 综合色av麻豆| 精品午夜福利视频在线观看一区| 国内少妇人妻偷人精品xxx网站| 日本免费a在线| 日韩欧美国产在线观看| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 免费av观看视频| 国产一区二区在线观看日韩| а√天堂www在线а√下载| 亚洲美女搞黄在线观看 | 啦啦啦观看免费观看视频高清| 国产av在哪里看| 午夜福利在线观看吧| 联通29元200g的流量卡| 搡老岳熟女国产| 美女cb高潮喷水在线观看| 日韩欧美在线乱码| 一进一出好大好爽视频| 性欧美人与动物交配| 在线天堂最新版资源| 亚洲无线在线观看| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 久久亚洲真实| 国产精品一区二区免费欧美| 亚洲成人免费电影在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩国产亚洲二区| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 熟女电影av网| 中国美女看黄片| 久久精品国产亚洲av涩爱 | avwww免费| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 夜夜爽天天搞| 免费无遮挡裸体视频| 嫩草影院精品99| 亚洲三级黄色毛片| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 九九爱精品视频在线观看| 国产三级在线视频| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜| 亚洲精品影视一区二区三区av| 国产免费男女视频| 制服丝袜大香蕉在线| 看片在线看免费视频| 久久久久久久久久黄片| 国产在视频线在精品| 少妇被粗大猛烈的视频| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 国产精品嫩草影院av在线观看 | 18禁在线播放成人免费| 韩国av一区二区三区四区| 亚洲内射少妇av| 最近最新中文字幕大全电影3| 国内揄拍国产精品人妻在线| 成人亚洲精品av一区二区| 国产av在哪里看| 国产美女午夜福利| 男女啪啪激烈高潮av片| 午夜精品在线福利| 亚洲电影在线观看av| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 国产精品野战在线观看| 国产精品三级大全| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 欧美丝袜亚洲另类 | 一级av片app| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 亚洲第一电影网av| 国产乱人视频| 欧美成人a在线观看| 99久久精品一区二区三区| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| 丰满的人妻完整版| 亚洲天堂国产精品一区在线| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品 | 免费观看精品视频网站| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 国产大屁股一区二区在线视频| 久久精品国产亚洲av香蕉五月| 一卡2卡三卡四卡精品乱码亚洲| 国产精品人妻久久久久久| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 男女边吃奶边做爰视频| 麻豆一二三区av精品| 国产亚洲91精品色在线| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 十八禁国产超污无遮挡网站| 亚洲国产欧洲综合997久久,| 成人欧美大片| 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 国产av不卡久久| 男女那种视频在线观看| 久久人人爽人人爽人人片va| 日日夜夜操网爽| 国产av不卡久久| 日日夜夜操网爽| 精品久久久久久久久av| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 成人一区二区视频在线观看| 色综合站精品国产| 91狼人影院| 深夜精品福利| 性欧美人与动物交配| 日韩欧美 国产精品| 久久6这里有精品| 成人欧美大片| 色综合亚洲欧美另类图片| 韩国av在线不卡| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 俄罗斯特黄特色一大片| 久久精品国产亚洲av涩爱 | 久久精品影院6| 日韩大尺度精品在线看网址| 欧美一区二区国产精品久久精品| 亚洲国产日韩欧美精品在线观看| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| videossex国产| 久久香蕉精品热| 一本久久中文字幕| 免费在线观看影片大全网站| 99热6这里只有精品| av在线观看视频网站免费| 成人鲁丝片一二三区免费| 国产真实伦视频高清在线观看 | 在线免费观看的www视频| 男女那种视频在线观看| 国产精品三级大全| 搡老熟女国产l中国老女人| 制服丝袜大香蕉在线| 人妻制服诱惑在线中文字幕| 一区二区三区免费毛片| 亚洲成人免费电影在线观看| 成人性生交大片免费视频hd| 日韩欧美国产一区二区入口| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| 黄色女人牲交| 久久人妻av系列| 亚洲av美国av| 精品久久久噜噜| 国产一区二区激情短视频| 精品久久久久久久人妻蜜臀av| 日韩强制内射视频| 欧美+日韩+精品| 欧美成人性av电影在线观看| 亚洲专区国产一区二区| 男人和女人高潮做爰伦理| 午夜福利高清视频| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 国产蜜桃级精品一区二区三区| 午夜久久久久精精品| 亚洲av免费在线观看| 窝窝影院91人妻| 亚洲无线在线观看| 看免费成人av毛片| 性色avwww在线观看| 亚洲电影在线观看av| 简卡轻食公司| 村上凉子中文字幕在线| 亚洲不卡免费看| 色吧在线观看| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图| 黄色配什么色好看| 久久久久九九精品影院| 22中文网久久字幕| 亚洲精品456在线播放app | 中文字幕久久专区| 亚洲性夜色夜夜综合| 亚洲欧美日韩东京热| av视频在线观看入口| 又紧又爽又黄一区二区| 国产精品嫩草影院av在线观看 | 99久久精品国产国产毛片| 两个人的视频大全免费| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 别揉我奶头 嗯啊视频| 国产精品,欧美在线| 黄色欧美视频在线观看| 日韩大尺度精品在线看网址| 国产高清视频在线观看网站| 日韩一区二区视频免费看| 免费大片18禁| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 又粗又爽又猛毛片免费看| 久久久国产成人精品二区| avwww免费| 在线播放国产精品三级| 免费高清视频大片| 中文字幕高清在线视频| 一夜夜www| 在线观看免费视频日本深夜| 男人和女人高潮做爰伦理| 男人舔奶头视频| 久久草成人影院| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 国内精品宾馆在线| 国产精品久久久久久亚洲av鲁大| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 国产精品野战在线观看| 一级毛片久久久久久久久女| 变态另类成人亚洲欧美熟女| 最近在线观看免费完整版| 人人妻,人人澡人人爽秒播| 中文字幕免费在线视频6| 亚州av有码| 亚洲国产日韩欧美精品在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美日韩综合久久久久久 | 亚洲国产高清在线一区二区三| 国产精品美女特级片免费视频播放器| 无遮挡黄片免费观看| 国产精品永久免费网站| 十八禁网站免费在线| 中国美白少妇内射xxxbb| 最近最新免费中文字幕在线| 亚洲成人久久性| 色视频www国产| 一区福利在线观看| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 一本一本综合久久| 国产三级在线视频| 天堂影院成人在线观看| 有码 亚洲区| 欧美日韩瑟瑟在线播放| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 欧美日韩中文字幕国产精品一区二区三区| 欧美人与善性xxx| 一边摸一边抽搐一进一小说| 日韩一本色道免费dvd| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 国产精品不卡视频一区二区| 欧美成人一区二区免费高清观看| 成人毛片a级毛片在线播放| 如何舔出高潮| 日本精品一区二区三区蜜桃| 色5月婷婷丁香| 日韩欧美精品免费久久| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| a级毛片免费高清观看在线播放| 国产毛片a区久久久久| 久久久国产成人免费| 国产一区二区三区av在线 | 麻豆av噜噜一区二区三区| 3wmmmm亚洲av在线观看| 人妻丰满熟妇av一区二区三区| 免费观看人在逋| 一区二区三区激情视频| 亚洲欧美激情综合另类| 他把我摸到了高潮在线观看| 少妇的逼水好多| 国产精品久久视频播放| 亚洲 国产 在线| 精品99又大又爽又粗少妇毛片 | 欧美绝顶高潮抽搐喷水| 日本一二三区视频观看| 免费av不卡在线播放| 可以在线观看的亚洲视频| 久久精品国产自在天天线| 成人一区二区视频在线观看| 久久6这里有精品| 老熟妇仑乱视频hdxx| 女的被弄到高潮叫床怎么办 | 熟妇人妻久久中文字幕3abv| 午夜免费激情av| 亚洲自拍偷在线| 亚洲人成网站高清观看| 69人妻影院| 日韩欧美 国产精品| 亚洲av电影不卡..在线观看| 国产精品三级大全| 一个人看的www免费观看视频| 国产麻豆成人av免费视频| 日韩欧美一区二区三区在线观看| 日韩在线高清观看一区二区三区 | 伦理电影大哥的女人| 国产淫片久久久久久久久| avwww免费| 中文字幕av在线有码专区| 中国美女看黄片| 免费看a级黄色片| 又黄又爽又刺激的免费视频.| 搡老妇女老女人老熟妇| 精品一区二区三区人妻视频| 欧美极品一区二区三区四区| 男女边吃奶边做爰视频| 小说图片视频综合网站| 国产69精品久久久久777片| 国产精品一区二区三区四区久久| 黄色配什么色好看| 少妇人妻精品综合一区二区 | 亚洲国产高清在线一区二区三| 女人被狂操c到高潮| 长腿黑丝高跟| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 久久中文看片网| 亚洲欧美日韩东京热| 国产精品一区www在线观看 | 久久久久久久久中文| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在 | 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 村上凉子中文字幕在线| 免费人成在线观看视频色| 天天躁日日操中文字幕| 国产精品福利在线免费观看| 亚洲三级黄色毛片| 久久天躁狠狠躁夜夜2o2o| 国产午夜精品久久久久久一区二区三区 | 成熟少妇高潮喷水视频| 色综合站精品国产| 熟女电影av网| 女的被弄到高潮叫床怎么办 | 成年版毛片免费区| 99热这里只有是精品在线观看| 在线免费观看的www视频| 国产毛片a区久久久久| 热99re8久久精品国产| 亚洲av美国av| 国产乱人伦免费视频| 国产亚洲欧美98| 有码 亚洲区| 亚洲人成网站在线播放欧美日韩| 欧美成人免费av一区二区三区|