• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network

    2017-05-28 10:23:11CarlosEduardodeArajoPadilhargioDantasdeOliveiraniorDomingosFabianodeSantanaSouzaJacksonArajodeOliveiraGoreteRibeirodeMacedoEveraldoSilvinodosSantos

    Carlos Eduardo de Araújo Padilha,Sérgio Dantas de Oliveira Júnior,Domingos Fabiano de Santana Souza,Jackson Araújo de Oliveira,Gorete Ribeiro de Macedo,Everaldo Silvino dos Santos*

    Laboratory of Biochemical Engineering,Chemical Engineering Department,Federal University of Rio Grande do Norte(UFRN),Natal,RN,Brazil

    1.Introduction

    Invertase(β-fructofuronoside fructohydrolase;E.C.3.2.1.26)is a glucoenzyme that catalyzes the hydrolysis of sucrose producing an equimolar mixture of glucose and fructose.It can be found in animal,superior plants, filamentous fungi,yeast and bacteria[1–5].The inverted sugar,obtained from the hydrolysis reaction,has a lower crystallinity than sucrose therefore it can be used in the food industry in order to obtain fresh and soft products.Also,it has been used in the production of fruit-jelly,candy,chocolate and biscuits[6,7].

    The partition using Aqueous Two Phase System(ATPS),a kind of liquid–liquid extraction,has been used as a powerful tool during the separation and purification protocol of proteins,nucleic acids,microorganisms as well as plants and animal cells[4,8,9].When compared to the other techniques used in downstream processing ATPS shows many advantages such as a lower cost,reduced interfacial strength,biocompatibility,non-toxicity as well as the possibility of continuous process operation and facility to scale-up[4,10–12].ATPS is mainly built up by mixture of two hydrophilic polymers(e.g.PEG/Dextran)or from a polymer and an inorganic salt with a higher ionic strength(e.g.PEG/potassium phosphate,PEG/sodium citrate,PEG/ammonium sulfate,etc.).After mixing,larger aggregates are built up and the system components will tend to separate in two phase mainly by steric exclusion[13].Most studies with ATPS exploited the effects under partition caused by the physical–chemical properties of the solute such as hydrophobicity,charge,size,concentration and bioaffinity,or by changing the system parameters such as kind,constituents,tie-line length(TLL),pH and temperature[14].In fact,the mechanisms responsible by the biomolecules partition using ATPS are quite complex as well as are not easily predicted.The interactions between the biomolecules and the surrounding phase happen mainly due to Van der Waals forces,hydrogen bond,hydrophobic interaction and also electrostatic forces[13].Even though there has been an advance on the thermodynamic models applied to ATPS such as Flory-Huggins,Wilson,UNIFAC[11,15–17],all of them show limitations in predicting the partition behavior of proteins from broth.

    On the other hand,models based on intelligent systems are playing an important role in the resolution of problems in the field of science and engineering.They have been used when the time and efforts spent to resolution of sophisticated equations as well as the use of simplified theory are not able to predict the data satisfactorily[18–22].The Group Method Data Handling(GMDH)is an inductive modeling method based on the Backpropagation Artificial Neural Network(BPANN)as well as in the natural selection concept[23].The GMDH organizes their own architecture by using a heuristic method of self-organization as well as they can determine the processing layer number and the useful input variables.As a result,a high-order polynomial expression which establishes relevant links between input and output variables is available to the user[24].Thus,this algorithm has been used for modeling,prediction,data mining and system identification[24–28].The mathematical simplicity of GMDH as well as the wide availability of neural network software has increased the interest of research groups regarding the direct modeling of liquid–liquid separation processes[29],including the prediction of partition coefficients of biomolecules[20,30].

    In this sense,the objective of this paper was to develop a hybrid GMDH neural network for predicting partition coefficients of invertase from Baker's yeast using a PEG/MgSO4-ATPS.Partition experimental data were used in the training of hybrid GMDH neural network in which its performance was compared to both an original GMDH network and a BPANN by using different statistical metrics.

    2.Material and Methods

    2.1.Material

    Polyethylene glycol(PEG)with an average molar mass of1500,4000 and 6000;hydrochloric acid,sodium hydroxide,monobasic potassium phosphate anhydrous,dibasic potassium phosphate anhydrous,magnesium sulfate heptahydrate and manganese sulfate monohydrate were acquired from Synth(Diadema,S?o Paulo/Brazil)and used in PEG/MgSO4-Aqueous Two Phase Systems.Baker's yeasts were acquired from a local supplier.Double distilled water used in the experiments was from a MilliQ system.

    2.2.Baker's yeast extract

    Baker's yeast was suspended with 0.2 mol·L?1acetate pH 4.0–5.0 and 0.2 mol·L?1phosphate pH 6.0–7.0 buffers then stirred using a magnetic stirrer for 30 min.The suspension was sonicated for 5 min(Ultrasonic Cleaner,Unique)followed by centrifugation(Centrifuge 5804 R,Eppendorf)at930×gfor 15 min at4°C.The supernatant was withdrawn and freezer stocked at?4 °C until the use in the ATPS experiments.

    2.3.Aqueous Two Phase Systems—ATPS

    Stock solutions of PEG 1500,4000 and 6000(50wt%)as well as MgSO4(25wt%)were prepared using double distilled water.In order to avoid protein precipitation,the solutions containing PEG,MgSO4,the co-solute MnSO4and double distilled water were previously mixed using a conical tube then the cell homogenate was added,according to Karka? and ?nal[4].The system pH was adjusted with 3 mol·L?1HClor3 mol·L?1NaOH.The total weight of the phase system was 10 g and operational conditions used can be observed in Table 1.Tubes were stirred during 45 s at 25°C and then centrifuge at 930×gfor 15 min at 25°C.The phases were collected using an automatic pipette followed by the enzymatic activity assay.

    Partition coefficient is defined as the ratio of the enzymatic activity in the organic(top)phase and enzymatic activity in the aqueous(bottom)phase,as shown in Eq.(1).

    AtandAbare the enzymatic activity(U·ml?1)in the PEG-rich phase and the salt-rich phase,respectively.

    2.4.Enzymatic activity assay

    Invertase activity was determined by measuring the quantity of reducing sugars formed during the hydrolysis of sucrose using the 3,5-dinitrosalicylic acid(DNS)method[31,32].Reaction was carried out using 0.6 ml of 0.2 mol·L?1acetate buffer(pH 5.0),0.2 ml of 0.5 mol·L?1sucrose and 0.2 ml of the invertase solution incubated at 37°C for 30 min.Then,1.0 ml of DNS reagent was added followed by boiling for 10 min.The samples were cooled at room temperature and the reducing sugars were recorded using a spectrophotometer(Thermo Spectronic model Genesys 10UV)at 540 nm.One invertase activity was de fined as the amount of enzyme which released 1.0 μmol of reducing sugars,in terms of glucose,by minute atpH 5.0 and 37°C.For the experiments the initial activity of cell homogenate was 13.4 U·ml?1.

    3.Model Formulation

    3.1.GMDH

    The GMDH algorithm is based on the most suitable selection of the quadratic polynomial expressions generated from the connection of two independent variables.Every interaction a new neuron layer is built and also increasing the order of the polynomial expressions.Generic connections between the input and output variables can be expressed by complex polynomial series such as Volterra–Kolmogorov–Gabor(VKG)[20,23,28,30,33],as shown in Eq.(2).

    X=(1,x1,x2,...,xN)is the input variables vector,a is the weights vector and^yis the predicted output.The generic VKG equation can be simplified to quadratic expressions of only two variables(Eq.(3)),with coefficients given by the column vector a(Eq.(4)).

    Every node leads to a set of coefficients a in which it can be estimated by the training group using the ordinary least squares(OLS)method.The generalization capacity of the network is evaluated by comparing the predicted data with the testing data using any statistical metrics.In the present work,the selection criteria used for the neurons selection has been the absolute average relative deviation(AARD)in percentage,as described in Eq.(5).

    In order to determine the best results,the value ofEwas minimized by taking as nullits derivative concerned to everyaicoefficient(Eq.(6)).

    Resolution of Eq.(6)is a typical problem of minimization with constraints that can be represented by a set of linear equations.Therefore by using the training data,according to Eqs.(7)and(8),the direct solution can be obtained throughout Eq.(9).

    Table 1Partitioning values obtained by hybrid and original GMDH neural network

    3.2.Hybrid GMDH neural network

    In the originalGMDHnetwork the nodes in every layer are the product of two candidates.In this approach the effect of others singular variables are neglected as well as the combinatory effect between them.This leads to the generation of less accuracy to the further nodes as well as reducing the capacity of describing systems with higher level of nonlinearity.In order to overcome the performance of the GMDH models itwas proposed the hybridization of GMDH and traditional neural network.In this case,each node is generated by any combination of the inputs up to polynomial order two,as shown in Eq.(10).Other change used to enhance the model complexity is based on the cross of the nodes of different layers.As the number of possible combinations among the nodes increases the proposed model can follow-up better the trends of nonlinearity of the systems[20,30].Similar to the original GMDH network the estimation of the parameters(a)in the hybrid GMDH network has been carried out by the OLS method.

    4.Results and Discussion

    A hybrid GMDH neural network has been used in order to predict the partition coefficients of invertase from Baker's yeast in the PEG/MgSO4Aqueous Two Phase System.A set of 67 runs has been used for the training step(66.7%of overall data)as well as the testing step(33.3%of overall data).The input variables for the hybrid GMDH neural network were the molar average mass of PEG(x1),pH(x2),PEG(x3),MgSO4(x4),cell homogenate(x5)and MnSO4(x6).In order to observe the real effect of each input variable,all input values were normalized in the range of zero to one.Partition coefficients of invertase were the output variable of the model.In Table 1 the operational conditions of runs,the experimental as well as the predicted partition coefficients obtained using both hybrid and original GMDH neural networks can be found.

    In this study,the structure of hybrid and original GMDH neural networks were developed with four and five layers of neurons,respectively.As can be seen in Fig.1,the hybrid network has six neurons at the input layer,two middle layers(with four and two neurons respectively),followed by output layer.

    Fig.1.Structure of the hybrid(a)and original GMDH(b)neural networks proposed.

    Unlike the conventional GMDH,it can be observed that in the proposed hybrid network there is crossing of the nodes from different layers,as for instance,the interaction of inputx4andx5at 2nd middle layer.The expressions generated concerned to each node at the layers as well as the total correlation function of hybrid and original GMDH neural networks are exhibited in Tables 2 and 3.In the hybrid GMDH model was observed high linear contributions ofx1andx4on theKvalues.This may be because the molecular weight of PEG and MgSO4strongly affected the phase behavior and,consequently,the enzyme partitioning[13,34].On the other hand,the input variables of original GMDH model have the same intensity impact on the response.Moreover,the effects of the cell homogenate were not incorporated in this model.

    Table 2Node expressions for the hybrid GMDH neuralnetwork used to predict the partition coefficients of invertase using ATPS

    Table 3Node expressions for the original GMDH neural network used to predict the partition coefficients of invertase using ATPS

    The statistical metrics Absolute Fraction of Variance(R2),Root Mean Square Error(RMSE),Mean Square Error(MSE),Mean Absolute Deviation(MAD)concerned to the training step as well as the testing step obtained to the hybrid GMDH neural network are reported in Table 4.

    As can be seen in Table 4 the hybrid GMDH neural network model has shown a good adequacy as well as prediction accuracy to predict the partition coefficients of invertase from Baker's yeast in the PEG/MgSO4ATPS.Also,the model showed a good generalization capacity since the statistical criteria values RMSE,MSE and MAD for the testing group were lower than the values for the training group.

    Comparison of the experimental and predicted values for the partition coefficients is shown in Fig.2.

    Table 4Statistical criteria for training and testing of the hybrid GMDH neural network

    Fig.2.Partition coefficients predicted versus experimental for both hybrid GMDH neural network and original GMDH neural network.

    As can be observed in this figure,the results for the proposed hybrid model were quite good even though some deviation can be observed to higher partition coefficients.Overall,partition coefficients lower than one were observed,showing that invertase moved to the salting phase.In fact,according to Karka? and ?nal[4]invertase shows preference to the bottom phase after the addition of the co-solute.

    The performance of the hybrid GMDH model has been also accomplished by the absolute average deviation in percentage(AARD),according to Eq.(5).A model originated from a BPANN with two processing layers each with 10 neurons has been used in order to compare with both the hybrid GMDH and original GMDH neural networks.According to Table 5,it can be observed that the AARD concerned to hybrid GMDH model is lower than the other two models,despite the smaller number of parameters involved.Therefore it shows the best fitting of this model to predict the partition coefficients of invertase of Baker's yeast in the PEG/MgSO4system.Similarly,Pazuki and Kakhki[20]showed that the hybrid GMDH model was superior to GMDH and UNIFAC-FV approaches in predicting the coefficient partition of Penicillin G Acylase in the PEG/potassium phosphate and PEG/sodium citrate.Compared to the other AARD reported in literature the data of the network are larger than those.These results can be justified by the larger range of the partition coefficients value as lower as 0.004 and as higher as 0.171,i.e.,about forty-three fold higher as can be observed in Fig.2.

    Table 5Performance comparison of the hybrid GMDH,original GMDH and BPANN models

    5.Conclusions

    A hybrid GMDH neural network built-up with three layers and nine neurons was used to predict the partition of invertase Baker's yeast in PEG/MgSO4Aqueous Two Phase Systems.The network structure allowed verifying interactions with more than two input variables byturns as well as the crossing of the neurons from different layers then showing a higher model complexity.Despite the nonlinearity degree,the hybrid model has a quite good generalization capacity,when comparing theR2,RMSE,MSE and MAD values of training and testing steps.It was also shown that proposed model has better prediction performance than both the original GMDH model and the BPANN,in terms of AARD.In general,the Hybrid GMDH neural network is a powerful tool to predict the partition coefficients of invertase in ATPS and appears as an interesting option for data treatment of other Aqueous Two Phase Systems.

    Acknowledgments

    The authors thank CAPES and Brazilian National Council of Research(CNPq)(Grant 407684/2013-1)for the financial support.

    [1]S.Talekar,V.Ghodake,A.Kate,N.Samant,C.Kumar,S.Gadagkari,Preparation and characterization of cross-linked enzyme aggregates ofSaccharomyces cerevisiaeinvertase,Aust.J.Basic Appl.Sci.4(2010)4760–4765.

    [2]Z.Lazar,E.Walczak,M.Robak,Simultaneous production of citric acid and invertase byYarrowialipolyticaSUC+transformants,Bioresour.Technol.102(2011)6982–6989.

    [3]M.C.Madhusudhan,K.S.M.S.Raghavarao,Aqueous two phase extraction of invertase from Baker's yeast:Effect of process parameters on partitioning,Process Biochem.46(2011)2014–2020.

    [4]T.Karka?,S.?nal,Characteristics of invertase partitioned in poly(ethylene glycol)/magnesium sulfate aqueous two-phase system,Biochem.Eng.J.60(2012)142–150.

    [5]G.E.A.Awad,H.Amer,E.W.El-Gammal,W.A.Helmy,M.A.Esawy,M.M.M.Elnashar,Production optimization of invertase byLactobacillus brevismm-6 and its immobilization on alginate beads,Carbohydr.Polym.93(2013)740–746.

    [6]E.J.Tomotani,M.Vitolo,Production of high-fructose syrup using immobilized invertase in membrane reactor,J.Food Eng.80(2007)662–667.

    [7]M.Plascencia-Espinosa,A.Santiago-Hernández,P.Pavón-Orozco,V.Vallejo-Becerra,S.Trejo-Estrada,A.Sosa-Peinado,C.G.Benitez-Cardoza,M.E.Hidalgo-Lara,Effect of deglycosylation on the properties of thermophilic invertase purified from the yeastCandida guilliermondiiMplla,Process Biochem.49(2014)1480–1487.

    [8]A.S.Schmidt,A.M.Ventom,J.A.Asenjo,Partitioning and purification of α-amylase in aqueous two-phase systems,Enzym.Microb.Technol.16(1994)131–142.

    [9]D.Z.Wei,J.H.Zhu,X.J.Cao,Enzymatic synthesis of cephalexin in aqueous two-phase systems,Biochem.Eng.J.11(2002)95–99.

    [10]B.R.Babu,N.K.Rastogi,K.S.M.S.Raghavarao,Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system,Chem.Eng.Process.47(2008)83–89.

    [11]S.Shahriari,V.Taghikhani,M.Vossoughi,A.A.Safekordi,I.Alemzadeh,G.R.Pazuki,Measurement of partition coefficients of β-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol)and Na2SO4/KH2PO4at different temperatures,Fluid Phase Equilib.292(2010)80–86.

    [12]L.Ferreira,X.Fan,L.M.Mikheeva,P.P.Madeira,L.Kurgan,V.N.Uversky,B.Y.Zaslavsky,Structural features for differences in protein partitioning in aqueous dextran-polyethylene glycol two-phase systems of different ionic compositions,Biochim.Biophys.Acta1844(2014)694–704.

    [13]J.A.Asenjo,B.A.Andrews,Aqueous two-phase systems for protein separation:A perspective,J.Chromatogr.A1218(2011)8826–8835.

    [14]I.Yücekan,S.?nal,Partitioning of invertase from tomato in poly(ethylene glycol)/sodium sulfate aqueous two-phase systems,Process Biochem.46(2011)226–232.

    [15]H.Hartounian,E.W.Kaler,S.I.Sandler,Aqueous two-phase systems.2.Protein partitioning,Ind.Eng.Chem.Res.33(1994)2294–2300.

    [16]P.A.Pess?a Filho,R.S.Mohamed,Thermodynamic modeling of the partitioning of biomolecules in aqueous two-phase systems using a modified Flory–Huggins equation,Process Biochem.39(2004)2075–2083.

    [17]S.Gautam,L.Simon,Prediction of equilibrium phase compositions and βglucosidase partition coefficient in aqueous two-phase systems,Chem.Eng.Commun.194(2006)117–128.

    [18]A.M.F.Fileti,G.A.Fischer,E.B.Tambourgi,Neural modeling of bromelain extraction by reversed micelles,Braz.Arch.Biol.Technol.53(2010)455–463.

    [19]J.Luo,W.Lin,X.Cai,J.Li,Optimization of fermentation media for enhancing nitriteoxidizing activity by artificial neural network coupling genetic algorithm,Chin.J.Chem.Eng.20(2012)950–957.

    [20]G.Pazuki,S.S.Kakhki,A hybrid GMDH neural network to investigate partition coefficients of Penicillin G Acylase in polymer-salt aqueous two-phase systems,J.Mol.Liq.188(2013)131–135.

    [21]S.Atashrouz,G.Pazuki,Y.Alimoradi,Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system,Fluid Phase Equilib.372(2014)43–48.

    [22]F.Parvizian,M.Rahimi,S.M.Hosseini,Prediction of the characteristics of a new sonochemical reactor using an expert model,Chem.Eng.Commun.203(2016)683–691.

    [23]A.G.Ivakhnenko,Polynomial theory of complex systems,IEEE Trans.Syst.Man Cybern.1(1971)364–378.

    [24]S.Z.Reyhani,H.Ghanadzadeh,L.Puigjaner,F.Recances,Estimation of liquid–liquid equilibrium for a quarternary system using the GMDH algorithm,Ind.Eng.Chem.Res.48(2009)2129–2134.

    [25]S.Ketabchi,H.Ghanadzadeh,A.Ghanadzadeh,S.Fallahi,M.Ganji,Estimation of VLE of binary systems(tert-butanol+2-ethyl-1-hexanol)and(n-butanol+2-ethyl-1-hexanol)using GMDH-type neural network,J.Chem.Thermodyn.42(2010)1352–1355.

    [26]H.Ghanadzadeh,M.Ganji,S.Fallahi,Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm,Appl.Math.Model.36(2012)4096–4105.

    [27]T.Kondo,J.Ueno,S.Takao,Hybrid multi-layered GMDH-type neural network using principal component regression analysis and its application to medical image diagnosis of liver cancer,Procedia Comput.Sci.22(2013)172–181.

    [28]C.E.A.Padilha,C.A.A.Padilha,D.F.S.Souza,J.A.Oliveira,G.R.Macedo,E.S.Santos,Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models,J.Mol.Liq.206(2015)293–299.

    [29]M.Moghadam,S.Asgharzadeh,On the application of artificial neural network for modeling liquid–liquid equilibrium,J.Mol.Liq.220(2016)339–345.

    [30]S.Abdolrahimi,B.Nasernejad,G.Pazuki,Prediction of partition coefficients of alkaloids in ionic liquids based aqueous biphasic systems using hybrid group method of data handling(GMDH)neural network,J.Mol.Liq.191(2014)79–84.

    [31]G.L.Miller,Use of dinitrosalicylic acid reagent for determination of reducing sugar,Anal.Chem.31(1959)426–428.

    [32]C.F.Assis,L.S.Costa,R.F.Melo-Silveira,R.M.Oliveira,H.A.O.Rocha,G.R.Macedo,E.S.Santos,Chitooligosaccharides antagonize the cytotoxic effect of glucosamine,World J.Microbiol.Biotechnol.28(2012)1097–1105.

    [33]A.Shabri,R.Samsundin,A hybrid GMDH and Box-Jenkins models in time series forecasting,Appl.Math.Sci.8(2014)3051–3062.

    [34]L.Ferreira,P.P.Madeira,L.Mikheeva,V.N.Uversky,B.Zaslavsky,Effect of salt additives on protein partitioning in polyethylene glycol-sodium sulfate aqueous twophase systems,Biochim.Biophys.Acta1834(2013)2859–2866.

    亚洲综合色惰| 夜夜骑夜夜射夜夜干| 亚洲av福利一区| 一本—道久久a久久精品蜜桃钙片| 亚洲综合色惰| 成人18禁高潮啪啪吃奶动态图| 看免费av毛片| 老司机影院成人| 久久精品久久久久久久性| 久热久热在线精品观看| 一区二区日韩欧美中文字幕| 亚洲经典国产精华液单| 亚洲精品视频女| 国产极品粉嫩免费观看在线| 中文字幕最新亚洲高清| 一级毛片我不卡| 水蜜桃什么品种好| 丁香六月天网| 久久久久精品人妻al黑| 欧美日韩一区二区视频在线观看视频在线| 欧美精品一区二区大全| av免费观看日本| 国产男人的电影天堂91| 亚洲色图综合在线观看| 久久久久精品性色| 免费黄网站久久成人精品| 午夜影院在线不卡| 美女高潮到喷水免费观看| 欧美xxⅹ黑人| 亚洲天堂av无毛| 国产一区亚洲一区在线观看| 久久99热这里只频精品6学生| 久久国内精品自在自线图片| 黄色 视频免费看| 国产免费又黄又爽又色| 国产成人精品福利久久| 在线看a的网站| 日本午夜av视频| 国产精品人妻久久久影院| 国产男女内射视频| 午夜福利影视在线免费观看| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| 国产精品av久久久久免费| 亚洲精品aⅴ在线观看| 中文字幕人妻熟女乱码| 久久久久人妻精品一区果冻| 亚洲av免费高清在线观看| 在线观看www视频免费| 极品少妇高潮喷水抽搐| 久久久久精品人妻al黑| 亚洲av中文av极速乱| 一级毛片 在线播放| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品一区蜜桃| 国产精品二区激情视频| 老鸭窝网址在线观看| 五月伊人婷婷丁香| 9色porny在线观看| 久久久久精品性色| 在线观看人妻少妇| 少妇精品久久久久久久| 女人久久www免费人成看片| 交换朋友夫妻互换小说| 成人毛片a级毛片在线播放| 午夜av观看不卡| av又黄又爽大尺度在线免费看| 色吧在线观看| 久久97久久精品| 免费在线观看视频国产中文字幕亚洲 | 成人18禁高潮啪啪吃奶动态图| 成人黄色视频免费在线看| 亚洲欧洲国产日韩| 国产日韩一区二区三区精品不卡| 亚洲欧美清纯卡通| 久久精品国产a三级三级三级| 在线观看免费视频网站a站| 久久久国产精品麻豆| 亚洲av中文av极速乱| 又大又黄又爽视频免费| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 久久久久久人人人人人| 国产精品二区激情视频| 18在线观看网站| 大码成人一级视频| 丝袜美足系列| 久久久久久久大尺度免费视频| 亚洲三级黄色毛片| 色94色欧美一区二区| 1024视频免费在线观看| 日韩av免费高清视频| 又大又黄又爽视频免费| 啦啦啦中文免费视频观看日本| 欧美日韩av久久| 黑人巨大精品欧美一区二区蜜桃| 看免费成人av毛片| 永久免费av网站大全| 搡女人真爽免费视频火全软件| 欧美国产精品一级二级三级| 亚洲精品国产一区二区精华液| 欧美+日韩+精品| 国产精品女同一区二区软件| 成人漫画全彩无遮挡| 亚洲成人一二三区av| 三上悠亚av全集在线观看| 亚洲三区欧美一区| 女性被躁到高潮视频| 午夜91福利影院| 日韩成人av中文字幕在线观看| 人人澡人人妻人| 一二三四中文在线观看免费高清| 国产一区亚洲一区在线观看| 亚洲综合色惰| 五月伊人婷婷丁香| 成人黄色视频免费在线看| 交换朋友夫妻互换小说| 午夜福利网站1000一区二区三区| 亚洲av成人精品一二三区| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 久久精品熟女亚洲av麻豆精品| 精品酒店卫生间| 国产 一区精品| 2018国产大陆天天弄谢| a级毛片黄视频| 国产精品一二三区在线看| 欧美在线黄色| 99国产精品免费福利视频| 成人毛片60女人毛片免费| 久久这里只有精品19| 黑人欧美特级aaaaaa片| 亚洲精品第二区| 美女午夜性视频免费| 免费观看在线日韩| 欧美精品国产亚洲| 在线 av 中文字幕| 亚洲国产看品久久| 国产黄色免费在线视频| 国产免费一区二区三区四区乱码| 国产av一区二区精品久久| 国产黄频视频在线观看| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 亚洲av电影在线进入| 男人操女人黄网站| 多毛熟女@视频| 不卡av一区二区三区| 少妇熟女欧美另类| 男人添女人高潮全过程视频| 午夜福利乱码中文字幕| 久久 成人 亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品熟女久久久久浪| 国产人伦9x9x在线观看 | 成人漫画全彩无遮挡| 中文字幕av电影在线播放| 午夜福利视频精品| av在线播放精品| 精品少妇内射三级| 亚洲婷婷狠狠爱综合网| 久久精品久久精品一区二区三区| 国产免费视频播放在线视频| 中文字幕亚洲精品专区| 女的被弄到高潮叫床怎么办| 热99久久久久精品小说推荐| 麻豆av在线久日| 大码成人一级视频| av女优亚洲男人天堂| 国产在线一区二区三区精| 黄色配什么色好看| 看非洲黑人一级黄片| 久久人人爽av亚洲精品天堂| 精品国产超薄肉色丝袜足j| 成年动漫av网址| 永久网站在线| 欧美中文综合在线视频| 激情视频va一区二区三区| 亚洲第一青青草原| 免费观看a级毛片全部| 伦理电影免费视频| 丝袜脚勾引网站| 久久久久久久久久久久大奶| 日本av免费视频播放| 成人漫画全彩无遮挡| 亚洲五月色婷婷综合| 男女无遮挡免费网站观看| 精品人妻熟女毛片av久久网站| 日产精品乱码卡一卡2卡三| 国产亚洲最大av| 日韩 亚洲 欧美在线| 成年动漫av网址| 边亲边吃奶的免费视频| 黑人猛操日本美女一级片| 啦啦啦在线免费观看视频4| 妹子高潮喷水视频| 大香蕉久久网| 免费在线观看黄色视频的| 国产综合精华液| 丰满饥渴人妻一区二区三| 香蕉精品网在线| 热re99久久精品国产66热6| 18禁观看日本| 卡戴珊不雅视频在线播放| 制服人妻中文乱码| 有码 亚洲区| 欧美少妇被猛烈插入视频| 精品一区在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲午夜精品一区二区久久| 黄片无遮挡物在线观看| 国产精品国产三级专区第一集| 成人黄色视频免费在线看| 性少妇av在线| 亚洲av电影在线观看一区二区三区| 色视频在线一区二区三区| 免费观看无遮挡的男女| 国产成人一区二区在线| 欧美日本中文国产一区发布| 一区二区日韩欧美中文字幕| 亚洲三区欧美一区| 亚洲精品国产一区二区精华液| 国产精品免费大片| 亚洲av电影在线观看一区二区三区| 性色avwww在线观看| 亚洲成人一二三区av| 少妇精品久久久久久久| 人妻 亚洲 视频| 久久久精品免费免费高清| 日本免费在线观看一区| 欧美日韩视频精品一区| 色婷婷av一区二区三区视频| 精品人妻熟女毛片av久久网站| 国产有黄有色有爽视频| 亚洲美女视频黄频| 校园人妻丝袜中文字幕| 亚洲精品在线美女| 成年女人在线观看亚洲视频| 大香蕉久久网| 国产成人精品无人区| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 亚洲第一av免费看| 美女高潮到喷水免费观看| 中文欧美无线码| 日韩中文字幕视频在线看片| 久久午夜福利片| 少妇熟女欧美另类| 亚洲,欧美精品.| 超色免费av| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 午夜福利一区二区在线看| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 国产成人精品在线电影| 亚洲欧洲日产国产| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美一区二区三区黑人 | av电影中文网址| 欧美变态另类bdsm刘玥| 亚洲人成电影观看| 久久热在线av| 香蕉精品网在线| 五月开心婷婷网| 最黄视频免费看| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 天天操日日干夜夜撸| 搡老乐熟女国产| 97精品久久久久久久久久精品| 人妻一区二区av| 亚洲av.av天堂| 亚洲五月色婷婷综合| 国产白丝娇喘喷水9色精品| 亚洲av男天堂| 国产免费视频播放在线视频| 高清在线视频一区二区三区| 午夜福利在线观看免费完整高清在| 一级毛片 在线播放| 日韩欧美精品免费久久| 国产深夜福利视频在线观看| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 欧美日韩精品网址| 亚洲精品一二三| 男女啪啪激烈高潮av片| 女性被躁到高潮视频| 久久国产精品大桥未久av| 久久精品久久精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 在线天堂最新版资源| 亚洲色图综合在线观看| 亚洲精品一二三| 亚洲av福利一区| av在线app专区| 欧美人与性动交α欧美精品济南到 | 日韩制服丝袜自拍偷拍| 国产黄频视频在线观看| 激情视频va一区二区三区| 欧美精品人与动牲交sv欧美| 欧美日韩精品网址| 亚洲av日韩在线播放| 亚洲婷婷狠狠爱综合网| videosex国产| 亚洲国产欧美网| 黄色配什么色好看| 高清不卡的av网站| 伦理电影大哥的女人| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 亚洲内射少妇av| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 亚洲国产毛片av蜜桃av| 各种免费的搞黄视频| 国产深夜福利视频在线观看| 亚洲国产av影院在线观看| 国产欧美日韩一区二区三区在线| 欧美日韩精品成人综合77777| 亚洲精品在线美女| 国产 一区精品| 天堂俺去俺来也www色官网| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 午夜福利在线免费观看网站| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 亚洲国产精品一区二区三区在线| 久久久久网色| 日韩人妻精品一区2区三区| 超碰成人久久| 亚洲精品aⅴ在线观看| 色婷婷久久久亚洲欧美| 天天操日日干夜夜撸| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久国内精品自在自线图片| 久久99一区二区三区| 超碰成人久久| 精品福利永久在线观看| 欧美日韩精品网址| 这个男人来自地球电影免费观看 | 成年动漫av网址| 又粗又硬又长又爽又黄的视频| 欧美av亚洲av综合av国产av | av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆| 99九九在线精品视频| 久久精品人人爽人人爽视色| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 国产男女超爽视频在线观看| 性色avwww在线观看| 国产精品av久久久久免费| 午夜日韩欧美国产| 久久久久国产网址| 国产激情久久老熟女| 在线亚洲精品国产二区图片欧美| 90打野战视频偷拍视频| 最近最新中文字幕免费大全7| av电影中文网址| 日韩欧美一区视频在线观看| 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 美女视频免费永久观看网站| 伦精品一区二区三区| 精品久久蜜臀av无| 激情视频va一区二区三区| 久久久久久久久久久免费av| av免费在线看不卡| 在线免费观看不下载黄p国产| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色综合www| 国产精品国产av在线观看| 99香蕉大伊视频| 青春草国产在线视频| 欧美亚洲 丝袜 人妻 在线| 一区二区三区激情视频| 看非洲黑人一级黄片| www.自偷自拍.com| 一本色道久久久久久精品综合| 国产精品久久久av美女十八| 国产精品三级大全| 人妻一区二区av| 久久99热这里只频精品6学生| 岛国毛片在线播放| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 男女下面插进去视频免费观看| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 少妇人妻久久综合中文| 日本欧美视频一区| 国产片内射在线| 欧美黄色片欧美黄色片| 久久97久久精品| 成人亚洲精品一区在线观看| 国产在视频线精品| 天天操日日干夜夜撸| 免费黄色在线免费观看| 午夜av观看不卡| 成年av动漫网址| 亚洲av男天堂| 久久这里有精品视频免费| 成人影院久久| 久久鲁丝午夜福利片| 亚洲成人手机| 久久99一区二区三区| 97精品久久久久久久久久精品| 久久99蜜桃精品久久| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 亚洲三级黄色毛片| 9色porny在线观看| 亚洲经典国产精华液单| 女性被躁到高潮视频| 日韩av在线免费看完整版不卡| 久久久精品区二区三区| 久久这里只有精品19| 少妇精品久久久久久久| 丰满乱子伦码专区| 亚洲在久久综合| 美女福利国产在线| 久久精品国产亚洲av高清一级| 亚洲国产精品成人久久小说| 国产精品国产三级专区第一集| 丝袜在线中文字幕| 国产97色在线日韩免费| 成年动漫av网址| 国产日韩一区二区三区精品不卡| 日韩熟女老妇一区二区性免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲一码二码三码区别大吗| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 国产爽快片一区二区三区| 最近最新中文字幕免费大全7| 成年动漫av网址| 两个人看的免费小视频| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| 香蕉国产在线看| 久久久久久人妻| 最近最新中文字幕免费大全7| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 美女高潮到喷水免费观看| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 国产一级毛片在线| 一级毛片 在线播放| 午夜福利乱码中文字幕| 91在线精品国自产拍蜜月| 夫妻性生交免费视频一级片| 午夜激情av网站| 国产一区二区三区av在线| www.自偷自拍.com| 国产精品免费大片| 国产在线视频一区二区| 欧美 亚洲 国产 日韩一| 国产黄色免费在线视频| 999久久久国产精品视频| 人妻少妇偷人精品九色| 亚洲人成电影观看| 乱人伦中国视频| 大片电影免费在线观看免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级片免费观看大全| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 秋霞伦理黄片| 日日摸夜夜添夜夜爱| 欧美xxⅹ黑人| 免费看av在线观看网站| 中国三级夫妇交换| 熟女av电影| 王馨瑶露胸无遮挡在线观看| a级毛片在线看网站| 欧美日韩亚洲高清精品| 国产男人的电影天堂91| 国产探花极品一区二区| 春色校园在线视频观看| 国产精品偷伦视频观看了| 久久精品国产亚洲av天美| 一边亲一边摸免费视频| 欧美日本中文国产一区发布| 欧美国产精品va在线观看不卡| 久久99精品国语久久久| 精品亚洲成a人片在线观看| 激情五月婷婷亚洲| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 日韩av在线免费看完整版不卡| 久久久久久人人人人人| 又粗又硬又长又爽又黄的视频| 欧美人与善性xxx| 天天躁日日躁夜夜躁夜夜| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 日韩 亚洲 欧美在线| 国产欧美日韩综合在线一区二区| 成年动漫av网址| 日日爽夜夜爽网站| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| 一级爰片在线观看| xxxhd国产人妻xxx| 高清黄色对白视频在线免费看| 黄色 视频免费看| 国产男人的电影天堂91| 久久鲁丝午夜福利片| a级毛片黄视频| av福利片在线| 一区二区日韩欧美中文字幕| 91精品伊人久久大香线蕉| 久久免费观看电影| 成年av动漫网址| 欧美少妇被猛烈插入视频| 人人妻人人澡人人爽人人夜夜| 久久精品夜色国产| 亚洲av成人精品一二三区| 久久久精品免费免费高清| 国产成人a∨麻豆精品| 老鸭窝网址在线观看| 韩国精品一区二区三区| 成人影院久久| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看 | 亚洲经典国产精华液单| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 少妇被粗大的猛进出69影院| 好男人视频免费观看在线| 亚洲激情五月婷婷啪啪| av在线app专区| 久久人人爽av亚洲精品天堂| 日本-黄色视频高清免费观看| 婷婷色av中文字幕| 一级片'在线观看视频| 美女高潮到喷水免费观看| 九色亚洲精品在线播放| 色婷婷av一区二区三区视频| 久久亚洲国产成人精品v| 婷婷色综合www| av免费观看日本| 在线观看免费视频网站a站| 亚洲成人手机| 大香蕉久久成人网| 国产日韩欧美在线精品| 久久97久久精品| 男女边摸边吃奶| 国产野战对白在线观看| 天美传媒精品一区二区| 满18在线观看网站| 欧美成人午夜免费资源| 在线观看国产h片| 日本-黄色视频高清免费观看| 欧美日韩亚洲高清精品| 丰满乱子伦码专区| 你懂的网址亚洲精品在线观看| 黄色 视频免费看| 男女边吃奶边做爰视频| 99国产综合亚洲精品| 亚洲精品中文字幕在线视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产日韩一区二区| 少妇 在线观看| 一本色道久久久久久精品综合| 亚洲精品美女久久av网站| 最近2019中文字幕mv第一页| 女人精品久久久久毛片| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 国产97色在线日韩免费| 国产欧美亚洲国产| 亚洲精品成人av观看孕妇| 少妇的丰满在线观看| 大香蕉久久网| 日韩中文字幕欧美一区二区 | 亚洲av.av天堂| 精品人妻熟女毛片av久久网站| 九色亚洲精品在线播放| 亚洲一级一片aⅴ在线观看| www.av在线官网国产| 人妻系列 视频| 又粗又硬又长又爽又黄的视频| 波野结衣二区三区在线| 热re99久久精品国产66热6| 一边亲一边摸免费视频| 大陆偷拍与自拍| 欧美日韩亚洲高清精品| av天堂久久9| 久久精品国产亚洲av高清一级| 国产深夜福利视频在线观看| 青青草视频在线视频观看| 精品人妻偷拍中文字幕|