朱潔 李澤庚 王保芹 童祥麗 彭青和
[摘要] 觀察不同低氧時段下,原代大鼠肺動脈平滑肌細胞(pulmonary arterial smooth muscle cells,PASMCs) ATP敏感性鉀通道(ATPsensitive potassium channel,KATP通道)蛋白的表達,探討芪白平肺膠囊含藥血清(簡稱QBPF)調控PASMCs KATP通道蛋白表達與一氧化氮(nitric oxide,NO)的相關性。清潔級SD大鼠給予芪白平肺膠囊顆粒連續(xù)灌胃10 d,制備芪白平肺含藥血清。采用組織塊貼壁法,體外培養(yǎng)原代大鼠肺動脈平滑肌細胞;Western blot檢測不同低氧時間下Kir6.1和SUR2B的表達,以及在一氧化氮合酶抑制劑——Nω硝基L精氨酸甲酯(NωnitroLarginine methyl ester,LNAME)和KATP通道抑制劑——格列本脲(glyburide,GLYB)分別干預下,QBPF對其表達的影響。低氧6 h后Kir6.1和SUR2B蛋白表達開始上調,在低氧24 h達到高峰,低氧48,72 h的蛋白表達出現(xiàn)不同程度下調。在低氧24 h條件下,QBPF能進一步上調KATP通道Kir6.1和SUR2B蛋白表達,且這種上調作用能分別被KATP通道阻斷劑GLYB和NO特異性阻斷劑LNAME所阻斷,提示芪白平肺膠囊具有明確的KATP通道開放作用,其機制可能通過介導NO相關途徑上調KATP通道蛋白表達,參與肺血管舒張作用,緩解COPD的發(fā)生發(fā)展。
[關鍵詞] 肺動脈平滑肌細胞; ATP敏感性鉀通道; 一氧化氮; 含藥血清
Effect of Qibai Pingfei capsule medicated serum on protein expressions of
KATP channel in pulmonary arterial smooth muscle cells via nitric oxide
ZHU Jie1, LI Zegeng2,3*, WANG Baoqin4, TONG Xiangli4, PENG Qinghe1
(1. School of Integrated Traditional Chinese & Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China;
2. Anhui University of Chinese Medicine, Hefei 230038, China;
3. Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230038, China;
4. The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China)
[Abstract] To investigate the ATPsensitive potassium channel (KATP channel) protein expressions during different periods under hypoxia condition and explore the effect of Qibai Pingfei capsule medicated serum (hereinafter referred to as QBPF) on the correlation between the protein expressions of KATP channel and nitric oxide in rat pulmonary arterial smooth muscle cells(PASMCs). Qibai Pingfei capsules were given to SD rats via continuous gavage for 10 days to obtain QBPF. Primary rats PASMCs were cultured by the direct adherent culture method. Western blot was applied to detect the protein expression levels of KATP channel (Kir6.1 and SUR2B) in PASMCs. Then the noncompetitive inhibitor of NO synthase——NωnitroLarginine methyl ester(LNAME) and KATP channel inhibitor——glyburide(GLYB) were applied respectively to evaluate the effect of QBPF on the protein expressions of KATP channel. The protein expressions of Kir6.1 and SUR2B were increased after 6hour hypoxia treament, peaked at the 24hour hypoxia treament, and decreased in both 48hour and 72hour hypoxia groups. Especially, QBPF could further upregulate the Kir6.1 and SUR2B protein expressions under 24hour hypoxia condition; however, such upregulation effect could be blocked by KATP channel inhibitor GLYB and NO specific inhibitor LNAME, indicating that QBPF played the role of opening KATP channel. The regulatory mechanism was probably associated with upregulating KATP channel protein expression via NO relative pathway, involving pulmonary vasodilation, and thus relieving the occurence and development of COPD.
[Key words] pulmonary vascular smooth muscle cells; ATPsensitive potassium channel; nitric oxide; medicated serum
慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)是一種發(fā)病率、致殘率及病死率都很高的嚴重危害人民身體健康的慢性呼吸系統(tǒng)疾病[12]。肺動脈高壓(pulmonary hypertesion,PH)是COPD的嚴重并發(fā)癥之一,以肺血管阻力進行性增加和肺血管重構為主要特征[35]。益氣化痰祛瘀方——芪白平肺膠囊(國家專利號ZL201010573274.1)用于治療COPD,能有效緩解PH等并發(fā)癥的進一步發(fā)展。前期研究表明,芪白平肺膠囊能有效上調一氧化氮(nitric oxide,NO)含量,改善低氧血癥,舒張肺血管,但其具體作用途徑有待進一步明確。近年來,ATP敏感性鉀通道(ATPsensitive potassium channel,KATP通道)在低氧性肺動脈高壓形成過程中的作用日趨受到關注。KATP通道由4個通道形成亞基內向整流鉀通道(inward rectifier potassium channel,Kir)和4個調節(jié)亞基磺脲類受體(sulfonyurea receptor,SUR)亞基組成,存在于血管平滑肌細胞中[6]。KATP通道開放劑作為治療COPD肺動脈高壓等多種疾病的新型靶點藥物,其通道的開放可能與NO關系密切[79]。因此,本次研究以原代大鼠肺動脈平滑肌細胞(pulmonary arterial smooth muscle cells,PASMCs)為研究對象,觀察不同低氧時段下,原代大鼠PASMCs中KATP通道亞基蛋白Kir6.1和SUR2B的表達,探討芪白平肺膠囊含藥血清(簡稱QBPF)調控PASMCs的KATP通道蛋白表達與NO的相關性,進一步闡明芪白平肺膠囊防治COPD的作用機制。
1 材料
1.1 動物 健康清潔級SD雄性大鼠,由安徽醫(yī)科大學動物實驗中心提供,動物許可證號SCXK(皖)2011002,其中體重(250±20) g大鼠用于含藥血清的制備,體重(200±20) g大鼠用于原代大鼠PASMCs的培養(yǎng)。
1.2 藥物與試劑 芪白平肺膠囊(安徽中醫(yī)藥大學第一附屬醫(yī)院制劑中心生產(chǎn));DMEM/F12培養(yǎng)基(Hyclone公司);胎牛血清(Gibco公司);青霉素鏈霉素(江蘇碧云天生物技術研究所);兔抗大鼠α肌動蛋白多克隆抗體(武漢三鷹生物科技有限公司);兔抗大鼠Sur2B多克隆抗體(Santa Cruz公司);山羊抗大鼠Kir6.1多克隆抗體(Abcam公司);兔抗鼠βactin(北京中杉金橋生物技術有限公司);山羊抗兔IgG/FITC標記(北京中杉金橋生物技術有限公司);4′,6二脒基2苯基吲哚(4′,6diamidino2phenylindole,DAPI,Gene Copoeia公司);格列本脲(glyburide,GLYB)、Nω硝基L精氨酸甲酯(LNAME),均購自Sigma公司。
1.3 儀器 Series 8000 WJ型三氣培養(yǎng)箱(Thermo Fisher Scientific公司);Z168型體視解剖顯微鏡(Motic公司);IC 1000型Countstar自動細胞計數(shù)儀(上海睿鈺生物科技有限公司);TCS SP5型激光掃描共聚焦顯微鏡(Leica公司);Western blot電泳、轉膜裝置(美國BIORAD公司);SWCJ2FD型超凈工作臺(蘇州凈化有限公司)。
2 方法
2.1 制備芪白平肺膠囊含藥血清 將芪白平肺膠囊內藥粉研磨成末,以人臨床等效量×動物等效量比值×血清稀釋度為參考濃度,按1.0 g·kg-1給大鼠灌胃,每日2次,連續(xù)10 d,正常對照組給予等量生理鹽水。于第11天,一次性灌胃全日量1 h后,無菌條件下腹主動脈取血,分離血清,每組大鼠的血清混合均勻,56 ℃補體滅活30 min,采用0.22 μm的微孔濾膜過濾除菌2次,分裝密封后,置于冰箱-20 ℃保存?zhèn)溆谩K⊙宸謩e為正??瞻籽濉④伟灼椒文z囊含藥血清。
2.2 原代大鼠PASMCs的培養(yǎng)和鑒定 以水合氯醛 0.3 g·kg-1進行大鼠腹腔麻醉,體視解剖顯微鏡下,迅速分離肺動脈,采用組織塊貼壁法,培養(yǎng)原代大鼠PASMCs。選擇生長狀態(tài)良好的3~8代PASMCs,在細胞對數(shù)生長期,用0.25%胰酶(含0.01%EDTA)消化,將PASMCs按細胞濃度1×105 個/mL接種于覆有蓋玻片的24孔板內,放入37 ℃的恒溫CO2培養(yǎng)箱中培養(yǎng),待細胞貼壁,采用細胞免疫熒光法鑒定PASMCs,經(jīng)常規(guī)固定、一抗兔抗大鼠α肌動蛋白多克隆抗體、二抗山羊抗兔IgG/FITC標記、DAPI染色后,激光共聚焦顯微鏡下攝片。
2.3 Western blot檢測PASMCs中Kir6.1,SUR2B蛋白水平 向培養(yǎng)板中加入含15%FBS的完全培養(yǎng)基,低氧(3%O2,5%CO2,92%N2)條件下,分別培養(yǎng)6,12,24,48,72 h,依次記為低氧6 h組、低氧12 h組、低氧24 h組、低氧48 h組、低氧72 h組,并設常氧組(20%O2,5%CO2,75%N2),培養(yǎng)24 h,記該組為低氧0 h組,分別于各時間段實驗結束后,收集細胞。
將滿足實驗條件的細胞培養(yǎng)瓶,分為常氧組(常氧+20%正常空白血清)、低氧組(低氧+20%正常空白血清)、20%QBPF組(低氧+20%QBPF)、10%QBPF組(低氧+10%QBPF)、5%QBPF組(低氧+5%QBPF),QBPF各組分別加入相應的含藥血清干預,不足20%濃度的部分,用正??瞻籽逖a足,37 ℃培養(yǎng)箱孵育2 h,除常氧組,其余組放入三氣培養(yǎng)箱低氧處理24 h。
將滿足實驗條件的細胞培養(yǎng)板,分為常氧組、低氧組、20%QBPF組(低氧+20%QBPF)、GLYB低劑量組(低氧+20%QBPF+1 μmol·L-1GLYB)、GLYB中劑量組(低氧+20%QBPF+10 μmol·L-1GLYB)、GLYB高劑量組(低氧+20%QBPF+100 μmol·L-1GLYB),在加入相應含藥血清和不同濃度KATP通道阻斷劑——GLYB后,37 ℃培養(yǎng)箱共孵育2 h,然后放入三氣培養(yǎng)箱,低氧處理24 h。
將滿足實驗條件的細胞培養(yǎng)板,分為常氧組、低氧組、20% QBPF組(低氧+20%QBPF)、LNAME低劑量組(低氧+20%QBPF+1 μmol·L-1LNAME)、LNAME中劑量組(低氧+20%QBPF+10 μmol·L-1LNAME)、LNAME高劑量組(低氧+20%QBPF+100 μmol·L-1LNAME),在加入含藥血清和不同濃度NO阻斷劑——LNAME后,37 ℃培養(yǎng)箱共孵育2 h,然后放入三氣培養(yǎng)箱低氧處理24 h。
PASMCs總蛋白提取與Kir6.1,SUR2B蛋白測定:分別與上述步驟結束后,收集細胞,提取蛋白,BCA蛋白定量,經(jīng)上樣、電泳、轉膜、封閉后,一抗4 ℃ 孵育過夜,二抗室溫孵育2 h,洗膜后,ECL發(fā)光試劑顯影檢測,計算各組Kir6.1和SUR2B蛋白的相對表達量。
2.4 統(tǒng)計學分析 所有數(shù)據(jù)采用SPSS 17.0統(tǒng)計軟件進行分析。正態(tài)分布計量資料以±s表示,多組間比較采用單因素方差分析,組間兩兩比較采用SNKq檢驗,P<0.05為差異具有統(tǒng)計學意義。
3 結果
3.1 原代大鼠PASMCs的形態(tài)特征與鑒定 原代大鼠肺動脈平滑肌組織塊貼壁第3~5天可見貼壁附近有少量不規(guī)則長梭形細胞爬出,后呈放射性生長,約7~10 d成束的細胞平行排列,高低起伏,部分區(qū)域細胞呈多層重疊,呈現(xiàn)平滑肌細胞特征性的“峰谷”狀致密分布。激光掃描共聚焦顯微鏡下,藍色熒光為細胞核,呈長桿形或卵圓形;α肌動蛋白抗體呈陽性的細胞質中可見大量綠色熒光呈絲狀分布,說明所培養(yǎng)的原代細胞為PASMCs,見圖1。
3.2 不同時段低氧對PASMCs中Kir6.1和SUR2B蛋白表達的影響 與各低氧組相比,常氧狀態(tài)下(即低氧0 h組),PASMCs中Kir6.1和SUR2B蛋白表達維持在較低水平(P<0.01),隨著低氧時間延長,低氧6 h后Kir6.1和SUR2B蛋白表達上調,代表KATP通道開放,在低氧24 h,蛋白表達達到高峰(P<0.01),隨著低氧時間延長,低氧48,72 h的KATP通道蛋白表達出現(xiàn)不同程度下調(P<0.05或P<0.01),見圖2。
3.3 QBPF對PASMCs中Kir6.1和SUR2B蛋白表達的影響 與常氧組相比,低氧組、20%QBPF組、10%QBPF組5%QBPF組PASMCs中Kir6.1和SUR2B蛋白的表達均顯著增加(P<0.01),且20%QBPF組、10%QBPF組和5%QBPF組PASMCs中的Kir6.1和SUR2B蛋白表達均高于低氧組(P<0.05或P<0.01),見圖3。
3.4 GLYB對QBPF干預PASMCs Kir6.1和SUR2B蛋白表達的影響 與常氧組相比,低氧組、20%QBPF組PASMCs的Kir6.1和SUR2B蛋白的表達均顯著增加(P<0.01),而不同濃度GLYB干預后,高劑量和中劑量GLYB組能顯著下調Kir6.1和SUR2B蛋白的表達水平 (P<0.01),見圖4。
3.5 LNAME對QBPF干預PASMCs中Kir6.1和SUR2B蛋白表達的影響 與常氧組相比,低氧組、20%QBPF組PASMCs的Kir6.1和SUR2B蛋白的表達均顯著增加(P<0.01),而不同濃度LNAME干預后,高劑量和中劑量LNAME組能顯著下調Kir6.1和SUR2B蛋白的表達水平(P<0.01),見圖5。
4 討論
4.1 PASMCs是肺血管收縮的效應細胞 肺血管收縮是PH發(fā)生發(fā)展的重要病理環(huán)節(jié)之一,而慢性肺泡缺氧是PH形成的重要原因[1011]。COPD由于長期的氣道阻塞造成肺泡缺氧及二氧化碳潴留,促使肺血管收縮,多出現(xiàn)缺氧性肺動脈高壓,肺血管阻力進行性增加,最終可以導致右心室功能衰竭,甚至死亡[12]。PASMCs既是肺血管收縮的效應細胞,也是引起肺血管結構重建的細胞基礎[1315]。正常生理狀態(tài)下,PASMCs 處于較低的增殖水平,同時通過低水平的凋亡維持增殖/凋亡的動態(tài)平衡,但在低氧等刺激因素的作用下,PASMCs會發(fā)生大量的增殖、肥大,血管管壁增厚,促使肺血管緊張性增高,最終導致肺循環(huán)阻力進行性增大,誘發(fā)PAH[1618]。
4.2 KATP通道蛋白的表達具有一定的時間節(jié)律性 近年來,KATP通道在低氧性肺動脈高壓形成過程中的作用日趨受到關注。考慮到KATP通道的多亞基型,內向整流鉀通道Kir(Kir6.x)和硫脲類受體SUR(SUR1,2A,2B)按等比例分配在不同的組織細胞中。目前發(fā)現(xiàn),人或大鼠肺動脈平滑肌細胞上存在的KATP通道主要由Kir6.1和SUR2B構成[1921]。在正常生理狀態(tài)下,KATP通道基本不參與肺循環(huán)基礎張力的調控,肺動脈平滑肌上的KATP通道由于生理濃度的ATP存在,基本處于關閉狀態(tài)[22]。而當嚴重肺部缺氧時,由于細胞質內的ATP水平顯著下降,致使KATP通道開放,緩解低氧性肺血管收縮,而這種肺動脈張力下降可被KATP通道阻斷劑——GLYB所阻斷,故提示KATP通道是缺氧嚴重時肺血管張力下降的原因[23]。隨著低氧程度和低氧時間的不同,KATP通道呈現(xiàn)不同的開放或關閉狀態(tài):目前研究認為,輕度或中等程度的缺氧不伴有ATP的減少,故KATP通道不開放,但是持續(xù)性的低氧可使肺血管平滑肌鉀通道功能受抑制,使細胞膜去極化,產(chǎn)生持續(xù)性的低氧性肺血管收縮,長期的肺泡缺氧,可導致漸進性肺血管重構、肺動脈高壓[24]。
本次研究,采用組織塊貼壁法成功分離、培養(yǎng)、鑒定出大鼠的肺小動脈平滑肌細胞,并制備不同濃度的芪白平肺含藥血清,觀察其對KATP通道蛋白表達的影響。為了能夠動態(tài)觀察,不同低氧條件下KATP通道的開放狀況,因此,選擇低氧6,12,24,48,72 h,動態(tài)檢測KATP通道亞基Kir6.1和SUR2B的蛋白表達。結果顯示,常氧狀態(tài)下PASMCs中Kir6.1和SUR2B蛋白表達維持在較低水平,而隨著低氧時間延長,低氧6 h后的Kir6.1和SUR2B蛋白表達逐步開始上升,代表KATP通道開放,在低氧24 h,蛋白表達達到高峰,隨著低氧時間延長,低氧48,72 h的蛋白表達出現(xiàn)不同程度下調,從細胞水平驗證了KATP通道的開放受缺氧時間和程度的影響。而芪白平肺膠囊含藥血清均能顯著上調肺動脈平滑肌細胞Kir6.1和SUR2B蛋白的表達,可以初步明確芪白平肺膠囊是一種KATP通道開放劑,參與肺血管舒張作用,緩解COPD的發(fā)生發(fā)展。
4.3 芪白平肺膠囊含藥血清介導NO調控KATP通道蛋白表達 NO 作為內皮衍化舒張因子(endotheliumderived relaxing factor,EDRF),具有強大的舒張血管作用。同時,正常NO水平的維持,具有抑制肺血管平滑肌細胞的增殖和遷移、抑制血小板聚集,參與維持肺循環(huán)的穩(wěn)態(tài)[25]。研究表明,適量的NO可選擇性促進線粒體膜上的KATP通道開放,其機制可能是直接作用KATP通道內部具有NO 敏感性的氨基酸結合位點,開放KATP通道蛋白,也可通過NO/cGMP/PKG信號通路,介導KATP通道活性增加,參與血管舒張效應 [9,2627]。同時,激活KATP通道,可以上調內皮型一氧化氮合酶表達量,增加NO釋放,發(fā)揮內皮保護作用[2829]。為了進一步探明NO通路與KATP通道在COPD肺動脈高壓發(fā)生發(fā)展中的機制,本次研究觀察了KATP通道阻斷劑GLYB和NO特異性阻斷劑LNAME分別干預下,對KATP通道蛋白表達的影響。研究結果表明,芪白平肺膠囊血清介導的KATP通道蛋白表達的上調作用能夠分別被KATP通道阻斷劑GLYB和NO特異性阻斷劑LNAME所阻斷,且隨著阻斷劑的濃度逐漸增加,KATP蛋白表達逐漸下調,進一步推斷芪白平肺膠囊調控KATP通道的開放可能受到NO相關途徑的調控,參與COPD肺動脈高壓的防治。
[參考文獻]
[1] Chen X,Liu K,Wang Z,et al.Computed tomography measurement of pulmonary artery for diagnosis of COPD and its comorbidity pulmonary hypertension [J].Int J Chron Obstruct Pulmon Dis,2015,10:2525.
[2] 崔紅新,田燕歌,李建生,等.調補肺腎3法調控COPD大鼠肺臟炎癥信號通路的R值綜合評價研究[J].中國中藥雜志,2015,40(8):1570.
[3] Trammell A W,Pugh M E,Newman J H,et al.Use of pulmonary arterial hypertensionapproved therapy in the treatment of nongroup 1 pulmonary hypertension at US referral centers [J].Pulm Circ,2015,5(2):356.
[4] Apostolo A,Laveneziana P,Palange P,et al.Impact of chronic obstructive pulmonary disease on exercise ventilatory efficiency in heart failure [J].Int J Cardiol,2015,189:134.
[5] Ma T T,Wang Y,Zhou X L,et al.Research on rat models of hypobaric hypoxiainduced pulmonary hypertension [J]. Eur Rev Med Pharmacol Sci,2015,19(19):3723.
[6] Chen X,Han W,Zhang Y,et al.The molecular pathway of ATPsensitive potassium channel in endothelial cells for mediating arteriole relaxation [J].Life Sci,2015,137:164.
[7] Malerba M,Radaeli A,Mancuso S.The potential therapeutic role of potassium channel modulators in asthma and chronic obstructive pulmonary disease [J].J Biol Regul Homeost Agents,2010,24(2):123.
[8] Sattiraju S,Reyes S, Kane G C,et al.K(ATP) channel pharmacogenomics:from bench to bedside [J].Clin Pharmacol Ther,2008,83(2):354.
[9] Sasaki N,Sato T,Ohler A,et al.Activation of mitochondrial ATPdependent potassium channels by nitric oxide [J]. Circulation,2000,101(4):439.
[10] Faulhaber M,Gatterer H,Haider T,et al.Heart rate and blood pressure responses during hypoxic cycles of a 3week intermittent during hypoxic breathing program in patients at risk for or with mild COPD [J].Int J Chron Obstruct Pulmon Dis,2015,10:339.
[11] Weitzenblum E,Chaouat A,Kessler R.Pulmonary hypertension in chronic obstructive pulmonary disease [J].Pneumonol Alergol Pol,2013,81(4):390.
[12] Tuder R M,Stacher E,Robinson J,et al.Pathology of pulmonary hypertension [J].Clin Chest Med,2013,34(4):639.
[13] Ten Freyhaus H,Berghausen E M,Janssen W,et al.Genetic ablation of PDGFdependent signaling pathways abolishes vascular remodeling and experimental pulmonary hypertension[J].Arterioscler Thromb Vasc Biol,2015,35(5):1236.
[14] Peng X,Li H X,Shao H J.Involvement of calciumsensing receptors in hypoxiainduced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries [J].Mol Cell Biochem,2014,396(1/2):87.
[15] 李先偉,高云星,李曙,等.芝麻素對野百合堿誘導的肺動脈高壓大鼠肺血管重構的影響[J].中國中藥雜志,2015,40(7):1355.
[16] Shimoda L A,Laurie S S.Vascular remodeling in pulmonary hypertension [J].J Mol Med (Berl),2013,91(3):297.
[17] GarcíaLucio J,Argemi G,TuraCeide O,et al.Gene expression profile of angiogenic factors in pulmonary arteries in COPD:relationship with vascular remodeling [J].Am J Physiol Lung Cell Mol Physiol,2016,310(7):L583.
[18] Thorsen L B,EskildsenHelmond Y,Zibrandtsen H,et al.BAY 412272 inhibits the development of chronic hypoxic pulmonary hypertension in rats [J].Eur J Pharmacol,2010,647(1):147.
[19] Dong L,Li Y,Hu H,et al.Potential therapeutic targets for hypoxiainduced pulmonary artery hypertension [J].J Transl Med,2014,12:39.
[20] Li J,Long C,Cui W,et al.Iptakalim ameliorates monocrotalineinduced pulmonary arterial hypertension in rats [J]. J Cardiovasc Pharmacol Ther,2013,18(1):60.
[21] Zhu R,Bi L Q,Wu S L,et al.Iptakalim attenuates hypoxiainduced pulmonary arterial hypertension in rats by endothelial function protection [J].Mol Med Rep,2015,12(2):2945.
[22] Duncker D J,Oei H H,Hu F,et al.Role of K(ATP)(+)channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine [J].Am J Physiol Heart Circ Physiol,2001,280(1):H22.
[23] Brayden J E.Functional roles of KATP channels in vascular smooth muscle[J].Clin Exp Pharmacol Physiol,2002,29:312.
[24] 朱煜明,王虹.低氧性肺動脈高壓中ATP敏感性鉀通道的作用[J].江蘇醫(yī)藥,2006,32(2):163.
[25] 周錦,張鐵錚,王俊科,等.內皮型一氧化氮合酶與一氧化氮在大鼠慢性低氧性肺動脈高壓時的變化[J].上海醫(yī)學,2010,33(10):922.
[26] Kuno A,Critz S D,Cohen M V,et al.Nicorandil opens mitochondrial KATP channels not only directly but also through a NOPKGdependent pathway [J]. Basic Res Cardiol,2007,102(1):73.
[27] Horimoto H,Gaudette G R,Saltman A E,et al.The role of nitric oxide, K(+)(ATP) channels,and cGMP in the preconditioning pesponse of the rabbit [J]. J Surg Res,2000,92(1):56.
[28] Han J,Kim N,Joo H, et al.ATPsensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes [J].Am J Physiol,2002,283(4):H1545.
[29] Wang H, Long C, Duan Z, et al.A new ATPsensitive potassium channel opener protects endothelial function in cultured aortic endothelial cells[J]. Cardiovasc Res,2007,73(3):497.
[責任編輯 張寧寧]