• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      考慮粗糙度敏感位置的鈍尾緣翼型氣動(dòng)性能研究

      2017-05-25 08:00:37劉海龍王格格
      關(guān)鍵詞:改型尾緣風(fēng)力機(jī)

      張 旭,劉海龍,王格格,李 偉

      ?

      考慮粗糙度敏感位置的鈍尾緣翼型氣動(dòng)性能研究

      張 旭1,2,劉海龍1,王格格1,李 偉2,3

      (1. 天津工業(yè)大學(xué)天津市現(xiàn)代機(jī)電裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300387;2. 建筑安全與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100013;3. 天津城建大學(xué)能源與安全工程學(xué)院,天津 300384)

      針對(duì)考慮粗糙度敏感位置的風(fēng)力機(jī)翼型鈍尾緣改型前后的氣動(dòng)性能進(jìn)行研究,揭示鈍尾緣改型對(duì)表面粗糙翼型增升效果的影響規(guī)律?;?SST湍流模型,計(jì)算表面光滑與粗糙的S822翼型的升、阻力系數(shù),并與試驗(yàn)結(jié)果進(jìn)行比較;采用坐標(biāo)旋轉(zhuǎn)變換與縮放橫縱坐標(biāo)系數(shù)相結(jié)合的方法,建立鈍尾緣改型型線數(shù)學(xué)表達(dá)式,分析對(duì)稱鈍尾緣改型増升效果得到S822翼型的最佳尾緣厚度;研究吸力面和壓力面布置粗糙度時(shí)翼型的氣動(dòng)性能,獲得上、下翼面的粗糙度敏感位置;對(duì)具有粗糙度敏感位置的翼型按最佳尾緣厚度進(jìn)行鈍尾緣改型,計(jì)算改型前后翼型的升、阻力系數(shù)和升阻比,并分析尖、鈍尾緣翼型的粗糙度敏感性。結(jié)果表明:翼型進(jìn)行鈍尾緣改型的最佳尾緣厚度為2%弦長(zhǎng);吸力面和壓力面的粗糙度敏感位置分別為距前緣1%弦長(zhǎng)和5%弦長(zhǎng)處;鈍尾緣改型使升力系數(shù)和最大升阻比均明顯升高,顯著改善了表面粗糙翼型的氣動(dòng)性能,且尖、鈍尾緣翼型的粗糙度敏感性綜合指標(biāo)值為10.68%和8.15%,降低了翼型對(duì)粗糙度位置的敏感性。研究結(jié)論可為表面粗糙風(fēng)力機(jī)葉片翼型的設(shè)計(jì)和優(yōu)化提供指導(dǎo)。

      風(fēng)力機(jī);翼型;粗糙度;敏感位置;鈍尾緣改型;氣動(dòng)性能

      0 引 言

      安裝于高寒、沿海地帶的風(fēng)力機(jī),經(jīng)常遇到灰塵、昆蟲(chóng)以及雨雪等,葉片表面會(huì)出現(xiàn)污垢附著現(xiàn)象。污垢會(huì)改變?nèi)~片氣動(dòng)外形并增大表面粗糙度,從而導(dǎo)致風(fēng)能轉(zhuǎn)化率降低[1-8]。而鈍尾緣改型能增加最大升力和失速攻角,降低最大升力對(duì)前緣粗糙的敏感度[9-11]。因此,研究表面粗糙翼型鈍尾緣修改后的氣動(dòng)性能對(duì)提高風(fēng)力機(jī)的風(fēng)能利用系數(shù)具有重要意義。

      針對(duì)粗糙度對(duì)翼型氣動(dòng)性能的影響,很多學(xué)者開(kāi)展了一系列數(shù)值與試驗(yàn)研究。Khalfallah等[12]實(shí)驗(yàn)分析葉片表面積灰形成的粗糙度對(duì)風(fēng)力機(jī)出力的影響,研究表明隨灰塵的積累,升力下降,阻力升高,且積灰降低了風(fēng)力機(jī)的輸出功率。Soltani等[13]通過(guò)風(fēng)洞試驗(yàn)、Ferrer等[14]利用計(jì)算流體動(dòng)力學(xué)(computational fluid dynamics,CFD)方法以及Sagol等[1]采用數(shù)值模擬和風(fēng)洞試驗(yàn)相結(jié)合,均獲得表面粗糙度降低翼型的氣動(dòng)性能以及翼型前緣對(duì)粗糙度最敏感等結(jié)論。包能勝等[15]利用粗糙帶貼片試驗(yàn),研究壓力面前緣粗糙度對(duì)葉型氣動(dòng)性能的影響,結(jié)果表明升力系數(shù)在失速之后變化非常大,阻力系數(shù)變化很小。陳進(jìn)等[16]探討了前緣粗糙條件對(duì)翼型氣動(dòng)特性的影響,并優(yōu)化設(shè)計(jì)得到一種風(fēng)力機(jī)專用新翼型。李德順等[17]數(shù)值研究粗糙度對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能的影響,結(jié)果顯示適當(dāng)增加壓力面后緣粗糙度可提高升力系數(shù),且升阻比始終低于光滑表面的翼型。但吳攀等[18]研究發(fā)現(xiàn)該結(jié)論并不適用于FFA-W3-211翼型。張駿等[19]采用CFD方法研究風(fēng)力機(jī)積灰和昆蟲(chóng)引起的粗糙度效應(yīng),結(jié)果表明前緣粗糙度嚴(yán)重影響翼型的氣動(dòng)性能,壓力面尾緣布置適當(dāng)粗糙度卻有積極作用。以上文獻(xiàn)并未涉及通過(guò)降低粗糙度敏感性提高翼型氣動(dòng)性能的研究。

      此外,國(guó)內(nèi)外學(xué)者也在風(fēng)力機(jī)鈍尾緣翼型氣動(dòng)性能的研究方面取得了一些進(jìn)展。Baker等[20]用風(fēng)洞試驗(yàn)研究鈍尾緣翼型的氣動(dòng)性能,發(fā)現(xiàn)適度增加尾緣厚度可增大升阻比并減小對(duì)前緣過(guò)渡的敏感性。Standish等[21]采用4種數(shù)值解法對(duì)鈍尾緣翼型進(jìn)行數(shù)值模擬,研究表明鈍尾緣改型能增加最大升力和升力曲線斜率,降低過(guò)早的邊界層轉(zhuǎn)捩。韓中合等[22]通過(guò)改進(jìn)翼型尾部的Gurney襟翼形成鈍尾緣翼型,分析翼型修改前后風(fēng)力機(jī)的功率輸出特性。劉杰平等[23]利用XFOIL軟件比較不同尾緣加厚方式所得翼型的氣動(dòng)性能。楊瑞等[24]采用CFD方法模擬薄、鈍尾緣翼型的氣動(dòng)性能,結(jié)果顯示鈍尾緣翼型增大了最大升力系數(shù),并降低前緣污染對(duì)升力特性的影響。馬林靜等[25]參數(shù)化研究尾緣厚度對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能的影響,發(fā)現(xiàn)尾緣厚度在一定范圍內(nèi)增大時(shí),升、阻力系數(shù)增大,升阻比先增后降。徐浩然等[26]數(shù)值模擬尾緣對(duì)稱加厚翼型的氣動(dòng)性能,結(jié)果表明最大升力系數(shù)隨尾緣厚度增大而增大,但厚度應(yīng)控制在約5%弦長(zhǎng)范圍內(nèi)。然而,以上關(guān)于粗糙度和鈍尾緣改型對(duì)翼型氣動(dòng)性能影響的研究多是單獨(dú)開(kāi)展的。針對(duì)表面粗糙的翼型進(jìn)行尾緣對(duì)稱加厚,研究考慮粗糙度敏感位置的鈍尾緣改型對(duì)翼型氣動(dòng)性能的影響較少。

      本文以美國(guó)可再生能源實(shí)驗(yàn)室設(shè)計(jì)的風(fēng)力機(jī)專用翼型S822為研究對(duì)象,建立鈍尾緣改型型線公式并進(jìn)行改型??紤]鈍尾緣的最佳厚度以及粗糙度敏感位置,采用CFD方法對(duì)表面粗糙翼型鈍尾緣修改后的氣動(dòng)性能進(jìn)行詳細(xì)研究,并分析尖、鈍尾緣翼型的粗糙度敏感性。

      1 計(jì)算模型及方法

      基于CFD軟件Fluent,計(jì)算表面光滑與粗糙的S822翼型氣動(dòng)性能,并與試驗(yàn)結(jié)果進(jìn)行比較分析。

      1.1 幾何模型

      S822翼型廣泛應(yīng)用于風(fēng)力機(jī)葉片的主要功率產(chǎn)生區(qū),具有16%的最大相對(duì)厚度,以及最大相對(duì)彎度為1.92%。風(fēng)洞試驗(yàn)在美國(guó)伊利諾伊大學(xué)香檳分校的低紊流亞音速風(fēng)洞進(jìn)行,雷諾數(shù)=5×105,風(fēng)速24.38 m/s,翼型弦長(zhǎng)0.305 m。使用圖1所示Zigzag粗糙帶,分別布置在上、下翼面距前緣2%和5%位置處[27]。粗糙帶厚0.33 mm,沿翼展方向相鄰鋸齒齒尖距離4.98 mm,齒尖角度83°,由此可計(jì)算出沿氣流方向相鄰鋸齒齒尖距離為3 mm。

      圖1 Zigzag粗糙帶幾何尺寸

      為了較好模擬風(fēng)洞試驗(yàn),并與數(shù)據(jù)進(jìn)行對(duì)比,表面光滑與粗糙的S822翼型幾何模型的弦長(zhǎng)同樣選用 0.305 m。采用凸臺(tái)描述試驗(yàn)中的粗糙帶,建立翼型粗糙度模型。凸臺(tái)高0.33 mm(即粗糙帶厚),寬3 mm(即沿氣流方向相鄰鋸齒齒尖距離)。

      利用Fluent的前處理軟件Gambit生成翼型的幾何模型、計(jì)算域和網(wǎng)格,如圖2所示。計(jì)算域由一個(gè)直徑為50的半圓形和一個(gè)長(zhǎng)50、寬25的矩形構(gòu)成,翼型位于半圓中心。表面光滑的S822翼型計(jì)算網(wǎng)格采用C型四邊形網(wǎng)格。在光滑翼型上布置320個(gè)節(jié)點(diǎn),采用邊界層進(jìn)行近壁面加密。邊界層首層網(wǎng)格高度10-5m,共劃分15層,壁面率值小于5。表面布置粗糙度的S822翼型幾何形狀較復(fù)雜,采用分塊結(jié)構(gòu)化網(wǎng)格處理凸臺(tái)區(qū)域。沿凸臺(tái)側(cè)邊引出與半圓邊界相交的線段,將表面粗糙翼型的半圓形計(jì)算域分成6部分,每部分均構(gòu)成四邊形。使用映射網(wǎng)格進(jìn)行劃分,得到結(jié)構(gòu)化C型網(wǎng)格。在含粗糙度的翼型上布置380個(gè)節(jié)點(diǎn),且邊界層同表面光滑的S822翼型,值也小于5。

      注:A和B為光滑和粗糙翼型的網(wǎng)格局部放大圖。

      1.2 控制方程

      風(fēng)力機(jī)翼型繞流為不可壓縮流動(dòng)[28],其控制方程為連續(xù)性方程

      和二維不可壓縮Navier-Stokes方程

      (2)

      1.3 計(jì)算方法

      使用Fluent軟件進(jìn)行翼型的氣動(dòng)性能數(shù)值計(jì)算。-SST湍流模型綜合了-與-模型的優(yōu)勢(shì),適合處理帶有逆壓梯度和分離流動(dòng)的問(wèn)題[29]。壓力和速度耦合采用SIMPLE算法,各方程離散格式均采用二階迎風(fēng)格式。速度和連續(xù)性方程的殘差值分別為10-6和10-4,和方程的為10-5。計(jì)算域左側(cè)及上下兩側(cè)進(jìn)流邊界設(shè)定為速度入口,風(fēng)速由=5×105確定,湍流強(qiáng)度為0.05%。計(jì)算域右側(cè)出流邊界設(shè)定為壓力出口,表壓力給定0 Pa。翼型表面設(shè)定為固壁絕熱無(wú)滑移邊界條件。

      1.4 網(wǎng)格無(wú)關(guān)性與模型適應(yīng)性驗(yàn)證

      利用上述計(jì)算模型及方法,計(jì)算攻角在-5.17o~20o之間變化時(shí)表面光滑和粗糙的S822翼型的升、阻力系數(shù),并與文獻(xiàn)[27]的風(fēng)洞試驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖3所示。表面光滑和粗糙的S822翼型的網(wǎng)格數(shù)分別采用74 990、 95 185、112 740和79 214、109 046、128 546。

      圖3 光滑和粗糙的S822翼型計(jì)算值與試驗(yàn)值比較

      由圖3可知,表面光滑的S822翼型的升、阻力系數(shù)在74 990、95 185和112 740網(wǎng)格數(shù)下均相差很小,表面粗糙的S822翼型在79 214、109 046和28 546網(wǎng)格數(shù)下亦如此??紤]到節(jié)省計(jì)算資源,光滑和粗糙的翼型的網(wǎng)格數(shù)分別采用95 185和109 046比較合適,均可得到精確的計(jì)算結(jié)果。

      由圖3a可知,光滑翼型的升、阻力系數(shù)分別在8.19°和10.19°攻角之前與試驗(yàn)值吻合良好,在8.19°和10.19°攻角之后高于、低于試驗(yàn)值。由圖3b可知,粗糙翼型的升力系數(shù)在攻角小于4.06°時(shí)與試驗(yàn)值比較接近,在4.06°攻角之后略高于試驗(yàn)值;阻力系數(shù)在11.19°攻角之前與試驗(yàn)值吻合很好??傮w來(lái)看,表面光滑和粗糙的翼型的氣動(dòng)性能計(jì)算值均與試驗(yàn)值基本相同,且總體變化趨勢(shì)一致,故可采用本文數(shù)值模型和方法進(jìn)行模擬計(jì)算。

      2 鈍尾緣改型公式及最佳尾緣厚度

      建立鈍尾緣改型型線的數(shù)學(xué)表達(dá)式,數(shù)值計(jì)算S822翼型的不同尾緣厚度鈍尾緣改型的氣動(dòng)性能。分析尾緣厚度對(duì)翼型的升、阻力系數(shù)和升阻比的影響,獲得鈍尾緣改型時(shí)最佳的尾緣厚度。

      2.1 鈍尾緣改型公式

      原始S822翼型的型線如圖4a所示。在不改變翼型的最大相對(duì)厚度及其位置、彎度和弦長(zhǎng)的情況下,利用坐標(biāo)旋轉(zhuǎn)變換以及縮放橫縱坐標(biāo)系數(shù)建立圖4a所示鈍尾緣改型型線的數(shù)學(xué)表達(dá)式。

      a. S822翼型鈍尾緣改型示意圖

      a. Curve design of S822 airfoil and its blunt trailing-edge modification

      注::虛線為經(jīng)過(guò)坐標(biāo)旋轉(zhuǎn)變換得到的翼型型線;r為的長(zhǎng)度,m;α為與軸的夾角,rad;β和φ為逆、順時(shí)針旋轉(zhuǎn)角度,rad;h為尾緣厚度,m;、、為尖、鈍尾緣和坐標(biāo)旋轉(zhuǎn)后的翼型控制點(diǎn)坐標(biāo);S822_1、S822_2、S822_3、S822_4為尾緣厚度為1%c、2%c、3%c和4%c的對(duì)稱鈍尾緣翼型;c為翼型弦長(zhǎng),m。

      (5)

      將式(3)帶入式(4)和式(5),可得

      (7)

      經(jīng)過(guò)坐標(biāo)旋轉(zhuǎn)變換,翼型的弦長(zhǎng)變短。此時(shí),可通過(guò)上、下翼面型線的橫坐標(biāo)分別乘以因式和保證改型后翼型弦長(zhǎng)不變,其中和為上、下翼面旋轉(zhuǎn)后尾緣點(diǎn)的橫坐標(biāo)。因此,鈍尾緣改型上、下翼面橫坐標(biāo)的表達(dá)式為

      為使鈍尾緣改型與原翼型具有相同的最大相對(duì)厚度及其位置,基于有限元方法中形函數(shù)的思想,將坐標(biāo)旋轉(zhuǎn)后翼型上、下翼面的縱坐標(biāo)分別減去和加上,從而得到鈍尾緣改型上、下翼面縱坐標(biāo)的表達(dá)式

      (9)

      采用式(8)和式(9)對(duì)S822翼型進(jìn)行尾緣厚度為1%、2%、3%和4%的對(duì)稱鈍尾緣改型,翼型型線如圖4b所示。并用S822_1、S822_2、S822_3和S822_4分別表示上述4種尾緣厚度情況。

      2.2 最佳尾緣厚度

      圖5為S822翼型及其鈍尾緣改型的升、阻力系數(shù)和升阻比隨攻角變化的曲線。由圖5a可知,4種改型的升力系數(shù)在0.03°攻角之前比較接近,0.03°攻角之后隨尾緣厚度增加呈先增大后減小的趨勢(shì),S822_1、S822_2和S822_3改型的升力系數(shù)均高于原型和S822_4改型,且S822_4改型的升力系數(shù)在5.09°攻角之后低于S822翼型。由圖5b可知,阻力系數(shù)在-5.17o~20o攻角范圍內(nèi)十分接近。

      圖5 不同尾緣厚度翼型的升、阻力系數(shù)和升阻比

      由圖5c可知,4種改型的升阻比在1°攻角之前很接近,且均高于S822翼型;在1°~8.19°攻角范圍內(nèi),升阻比隨尾緣厚度增加而先增后減,S822_2改型的最大。在8.19°攻角之后,S822_1、S822_2和S822_3改型的升阻比與原型相差不大,且S822_3改型在9.17°~12.22°攻角之間高于原型及其他改型。S822_4改型的升阻比在3.07°攻角之后低于其他翼型。S822_2改型的最大升阻比高于原型及其他改型。綜上所述,鈍尾緣改型時(shí),并不是尾緣厚度越大翼型的氣動(dòng)性能越好。S822翼型對(duì)稱鈍尾緣改型的最佳尾緣厚度為2%。

      3 粗糙度位置對(duì)翼型氣動(dòng)性能的影響

      為了研究粗糙度位置對(duì)翼型氣動(dòng)性能的影響,分別在翼型吸力面與壓力面的距前緣1%、2%、5%、10%、20%、30%、40%、50%、60%、90%、100%位置處布置一個(gè)高0.33 mm、寬3 mm的凸臺(tái),進(jìn)行翼型的升、阻力系數(shù)和升阻比計(jì)算。

      3.1 吸力面布置粗糙度翼型的氣動(dòng)性能

      圖6為吸力面布置粗糙度的翼型的升、阻力系數(shù)和升阻比隨粗糙度位置變化的曲線。由圖6a和圖6b可知,升、阻力系數(shù)分別在7.16°和10.19°攻角之前非常接近。S822_1%_s、S822_2%_s和S822_5%_s翼型的升力系數(shù)在7.16°攻角之后隨粗糙度位置靠近前緣而減小并低于光滑翼型,而阻力系數(shù)在10.19°攻角之后呈遞增趨勢(shì)且高于光滑翼型。吸力面其他位置粗糙的翼型的升力系數(shù)在7.16°~16°攻角之間和阻力系數(shù)均與光滑翼型十分接近,且升力系數(shù)在攻角大于16°之后明顯高于光滑翼型。

      注:S822_1%c_s、S822_2%c_s、S822_5%c_s、S822_10%c_s、S822_20%c_s、S822_30%c_s、S822_40%c_s、S822_50%c_s、S822_60%c_s為吸力面1%c、2%c、5%c、10%c、20%c、30%c、40%c、50%c、60%c位置處布置粗糙度的翼型。

      由圖6c可知,S822_1%_s、S822_2%_s和S822_ 5%_s翼型的升阻比在2°攻角之前相差不大,且均高于 光滑翼型,2°攻角之后隨粗糙度位置靠近前緣而減小,并低于光滑翼型。吸力面其他位置粗糙的翼型的升阻比在6.17°攻角之前和12.22°攻角之后均與光滑翼型比較接近,6.17°~12.22°攻角之間低于光滑翼型。最大升阻比隨吸力面粗糙度位置靠近前緣呈遞減趨勢(shì),且低于光滑翼型。

      3.2 壓力面布置粗糙度翼型的氣動(dòng)性能

      圖7為壓力面布置粗糙度的翼型的升、阻力系數(shù)和升阻比隨粗糙度位置變化的曲線。由圖7a和圖7c可知,S822_1%_p、S822_2%_p、S822_5%_p和S822_100%_ p翼型的升力系數(shù)和升阻比均在3.07°攻角之前非常接近,且高于光滑翼型;壓力面其他位置粗糙的翼型的升力系數(shù)和升阻比在攻角小于18°時(shí)與光滑翼型十分接近,18°攻角之后明顯高于光滑翼型。S822_100%_p翼型的升力系數(shù)在3.07°~6.17°和10.19°~16°攻角范圍內(nèi)以及升阻比在3.07°~6.17°攻角之間高于壓力面其他位置粗糙和光滑的翼型。S822_5%_p翼型的升力系數(shù)在9.17°~18°攻角之間以及升阻比在9.17°~13.3°攻角范圍內(nèi)均最小。壓力面粗糙的翼型的升阻比在7.16°~9.17°和13.3°~18°攻角范圍內(nèi)分別低于和非常接近光滑翼型,最大升阻比相差不大且低于光滑翼型。由圖7b可知,阻力系數(shù)在18°攻角之前十分接近,18°攻角之后低于光滑翼型。

      注:S822_1%c_p、S822_2%c_p、S822_5%c_p、S822_10%c_p、S822_20%c_p、S822_30%c_p、S822_40%c_p、S822_50%c_p、S822_60%c_p、S822_90%c_p、S822_100%c_p為壓力面1%c、2%c、5%c、10%c、20%c、30%c、40%c、50%c、60%c、90%c、100%c位置處布置粗糙度的翼型。

      圖7a和圖7c描述壓力面粗糙翼型的升力系數(shù)和升阻比隨攻角變化的規(guī)律,并未清晰顯示同一攻角下不同粗糙度位置對(duì)翼型氣動(dòng)性能的影響。因此,以9.17°~12.22°的4個(gè)攻角為例,分析升力系數(shù)和升阻比隨粗糙度位置變化的情況,如圖7d和圖7e所示。由圖7d和圖7e可知,升力系數(shù)隨攻角增加呈遞增趨勢(shì),升阻比卻呈遞減趨勢(shì)。升力系數(shù)和升阻比在粗糙度距前緣小于1%時(shí)快速減小,1%~5%范圍內(nèi)基本呈先增大后減小的趨勢(shì),5%位置處達(dá)到最小值。升力系數(shù)在粗糙度距前緣10%~50%之間時(shí)相差不大,50%~100%范圍內(nèi)呈先減小后增大的趨勢(shì)。升阻比在粗糙度距前緣10%~50%范圍內(nèi)基本呈先增大后減小的趨勢(shì),60%~100%之間時(shí)比較接近,且低于光滑翼型。

      分析可知,吸力面距前緣1%位置處布置粗糙度后,升、阻力系數(shù)和升阻比變化最劇烈,因而吸力面粗糙度敏感位置為距前緣1%處。壓力面距前緣5%和100%位置處布置粗糙度后,升、阻力系數(shù)和升阻比變化都比較明顯。但實(shí)際上翼型的前緣較易污染,研究前緣粗糙對(duì)翼型氣動(dòng)性能的影響更具有意義。因此,壓力面粗糙度的敏感位置為距前緣5%處。

      4 表面粗糙翼型改型后氣動(dòng)性能計(jì)算及粗糙度敏感性分析

      利用建立的鈍尾緣改型公式對(duì)表面粗糙的S822翼型進(jìn)行尾緣厚度為2%的對(duì)稱鈍尾緣改型,研究考慮粗糙度敏感位置的鈍尾緣改型對(duì)翼型的升、阻力系數(shù)和升阻比的影響規(guī)律,并進(jìn)行尖、鈍尾緣翼型的粗糙度敏感性分析。

      4.1 鈍尾緣改型對(duì)吸力面粗糙翼型氣動(dòng)性能的影響

      在吸力面1%位置處布置粗糙度,翼型鈍尾緣改型前后的升、阻力系數(shù)和升阻比隨攻角變化的曲線如圖8a、8b、8c所示。由圖8a可知,相較于尖尾緣S822_1%_s翼型,S822_1%_s_2改型的升力系數(shù)明顯升高。由圖8b可知,改型的阻力系數(shù)在9.17°攻角之前與S822_1%_s翼型非常接近,9.17°攻角之后高于S822_1%_s翼型。由圖8c可知,S822_1%_s_2改型的升阻比在攻角小于11.19°時(shí)高于S822_1%_s翼型,11.19°攻角之后低于S822_1%_s翼型。吸力面粗糙翼型的最大升阻比在鈍尾緣改型后升高14.6%。

      4.2 鈍尾緣改型對(duì)壓力面粗糙翼型氣動(dòng)性能的影響

      在壓力面5%位置處布置粗糙度,翼型鈍尾緣改型前后的升、阻力系數(shù)和升阻比隨攻角變化的曲線如圖8d、8e、8f所示。由圖8d和圖8e可知,S822_5%_p_2改型的升、阻力系數(shù)分別在0.03°和10.19°攻角之前與S822_5%_p翼型非常接近,0.03°和10.19°攻角之后高于S822_5%_p翼型,而20°攻角時(shí)改型的升力系數(shù)低于S822_5%_p翼型。

      由圖8f可知,攻角小于1°以及在13.23°~16°之間變化時(shí),S822_5%_p_2改型和S822_5%_p翼型的升阻比十分接近;在1°~13.23°攻角范圍內(nèi)和16°攻角之后,改型的升阻比分別高于、低于S822_5%_p翼型。S822_5%_ p_2改型的最大升阻比明顯高于S822_5%_p翼型。

      4.3 鈍尾緣改型對(duì)表面粗糙翼型氣動(dòng)性能的影響

      在吸力面1%和壓力面5%兩個(gè)位置處布置粗糙度,翼型鈍尾緣改型前后的升、阻力系數(shù)和升阻比隨攻角變化的曲線如圖9所示。

      圖8 吸力面或壓力面粗糙翼型鈍尾緣(尾緣厚度為2%c)改型前后的升、阻力系數(shù)和升阻比

      圖9 粗糙翼型鈍尾緣改型前后的升、阻力系數(shù)和升阻比

      由圖9a可知,S822_1%_s & 5%_p_2改型的升力系數(shù)高于S822_1%_s & 5%_p翼型。由圖9b可知,改型的阻力系數(shù)在10.19°攻角之前與S822_1%_s & 5%_p翼型非常接近,10.19°攻角之后高于S822_1%_s & 5%_p翼型。由圖9c可知,S822_1%_s & 5%_p_2改型的升阻比在11.19°攻角之前高于S822_1%_s & 5%_p翼型,11.19°攻角之后低于S822_1%_s & 5%_p翼型。鈍尾緣改型后表面粗糙翼型的最大升阻比提升16.9%。

      4.4 鈍尾緣翼型粗糙度敏感性分析

      為了定量地評(píng)價(jià)鈍尾緣改型對(duì)翼型粗糙度敏感性的影響,需要找出一個(gè)評(píng)價(jià)指標(biāo)。根據(jù)風(fēng)力機(jī)葉片翼型的特點(diǎn),取升力系數(shù)下降率和升阻比下降率的加權(quán)平均值作為粗糙度敏感性評(píng)價(jià)指標(biāo)[30]。

      定義升力系數(shù)下降率

      定義升阻比下降率

      根據(jù)文獻(xiàn)[30]可知,升力系數(shù)下降率和升阻比下降率的權(quán)重系數(shù)分別為0.49和0.51,即綜合指標(biāo)。根據(jù)表面光滑和粗糙的尖、鈍尾緣翼型的升力系數(shù)與升阻比計(jì)算結(jié)果,計(jì)算升力系數(shù)下降率、升阻比下降率以及綜合指標(biāo)值,如表1所示。由表1可以看出,鈍尾緣翼型綜合指標(biāo)值為8.15%,低于尖尾緣翼型的10.68%,說(shuō)明鈍尾緣改型可使翼型具有更低的粗糙度敏感性。

      表1 尖、鈍尾緣翼型粗糙度敏感性綜合指標(biāo)值

      注: CC′、(C/C)max、(C′/C′)max為光滑和粗糙翼型的升力系數(shù)、最大升阻比,δC、(C/C)為升力系數(shù)和升阻比的下降率。

      Note:C, C′, (C/C)maxand (C′/C′)maxare the lift coefficients and the maximum lift-drag ratios of airfoils with smooth and rough surfaces;δC,(C/C) are the decline rates of lift coefficient and lift-drag ratio.

      5 結(jié) 論

      通過(guò)數(shù)值模擬研究,關(guān)于考慮粗糙度敏感位置的鈍尾緣改型的增升效果可得到如下結(jié)論:

      1)通過(guò)坐標(biāo)旋轉(zhuǎn)變換與縮放坐標(biāo)系數(shù),建立鈍尾緣改型型線表達(dá)式;鈍尾緣翼型的升力系數(shù)和升阻比隨尾緣厚度增加而先增后減,且最大升阻比在尾緣厚度為2%(為翼型弦長(zhǎng))時(shí)最高。

      2)吸力面1%、2%和5%位置處粗糙的翼型的升力系數(shù)隨粗糙度位置靠近前緣而減小,且與升阻比均低于光滑翼型,阻力系數(shù)增大并高于光滑翼型;其他位置粗糙翼型的升、阻力系數(shù)與光滑翼型很接近。壓力面5%位置處粗糙的翼型的升力系數(shù)在9.17°~18°攻角之間低于其他位置粗糙和光滑的翼型;壓力面粗糙翼型的最大升阻比相差不大且低于光滑翼型。吸、壓力面的粗糙度敏感位置分別為1%和5%處。

      3)具有粗糙度敏感位置的翼型鈍尾緣改型后,升力系數(shù)和最大升阻比均明顯升高;尖、鈍尾緣翼型的粗糙度敏感性綜合指標(biāo)值分別為10.68%和8.15%,鈍尾緣改型使翼型對(duì)粗糙度位置的敏感性降低。

      [1] Sagol E, Reggio M, Ilinca A. Issues concerning roughness on wind turbine blades[J]. Renewable and Sustainable Energy Reviews, 2013, 23(4): 514-525.

      [2] Corten G P, Veldkamp H F. Insects cause double stall[C]//European Wind Energy Conference. Copenhagen, Denmark: 1999.

      [3] Corten G P, Veldkamp H F. Insects can halve wind-turbine power[J]. Nature, 2001, 412(6842): 41-42.

      [4] Morgan C, Bossanyi E, Seifert H. Assessment of safety risks arising from wind turbine icing [C]//BOREAS IV-Wind Energy Production in Cold Climate. Hetta, Finland: 1998: 113-121.

      [5] Fu P, Farzaneh M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wing Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188.

      [6] Lamraoui F, Fortin G, Benoit R, et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology, 2014, 100(4): 36-49.

      [7] Shu L C, Liang J, Hu Q, et al.Study on small wind turbine icing and its performance[J]. Cold Regions Science and Technology, 2017, 134(1): 11-19.

      [8] 焦靈燕,汪建文,賀玲麗. 粗糙度對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能影響的模擬研究[J]. 可再生能源,2014,32(12):1816-1820. Jiao Lingyan, Wang Jianwen, He Lingli. Simulation study on effect of surface roughness on aerodynamic performance of wind turbine airfoil[J]. Renewable Energy Resources, 2014, 32(12): 1816-1820. (in Chinese with English abstract)

      [9] Jackson K J, Zuteck M D, van Dam C P, et al. Innovative design approaches for large wind turbine blades[J]. Office of Scientific & Technical Information Technical Reports, 2003, 8(2): 141-171.

      [10] Zhang X, Li W, Liu H L. Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification[J]. Renewable Energy, 2015, 80: 489-497.

      [11] Yoo H S, Lee J C. Numerical analysis of NACA64-418 airfoil with blunt trailing edge[J]. International Journal of Aeronautical and Space Sciences, 2015, 16(4): 493-499.

      [12] Khalfallah M G, Koliub A M. Effect of dust on the performance of wind turbines[J]. Desalination, 2007, 209(1): 209-220.

      [13] Soltani M R, Birjandi A H, Moorani M S. Effect of surface contamination on the performance of a section of a wind turbine blade[J]. Scientia Iranica, 2011, 18(3): 349-357.

      [14] Ferrer E, Munduate X. CFD predictions of transition and distributed roughness over a wind turbine airfoil[C]//47thAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: 2009, 1-13.

      [15] 包能勝,倪維斗. 風(fēng)力機(jī)翼型前緣表面粗糙度對(duì)氣動(dòng)性能影響[J]. 太陽(yáng)能學(xué)報(bào),2008,29(12):1465-1470. Bao Nengsheng, Ni Weidou. Influence of additional rough strap of wind turbine airfoil leading edge surface on aerodynamic performance[J]. Acta Energiae Solaris Sinica, 2008, 29(12): 1465-1470. (in Chinese with English abstract)

      [16] 陳進(jìn),張石強(qiáng),王旭東,等. 基于粗糙度敏感性研究的風(fēng)力機(jī)專用翼型設(shè)計(jì)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào),2011,29(2): 142-149. Chen Jin, Zhang Shiqiang, Wang Xudong, et al. Dedicated wind turbine airfoil design based on the roughness sensitivity considerations[J]. Acta Aerodynamica Sinica, 2011, 29(2): 142-149. (in Chinese with English abstract)

      [17] 李德順, 李仁年, 楊從新, 等. 粗糙度對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能影響的數(shù)值預(yù)測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011, 42(5): 111-115. Li Deshun, Li Rennian, Yang Congxin, et al. Numerical prediction of the effect of surface roughness on aerodynamic performance of a wind turbine airfoil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 111-115. (in Chinese with English abstract)

      [18] 吳攀, 李春, 葉舟, 等. 粗糙度對(duì)風(fēng)力機(jī)專用翼型氣動(dòng)性能影響[J]. 流體機(jī)械, 2014, 42(1): 17-21, 62. Wu Pan, Li Chun, Ye Zhou, et al. Influence of roughness on aerodynamic performance of dedicated wind turbine airfoil [J]. Fluid Machinery, 2014, 42(1): 17-21, 62. (in Chinese with English abstract)

      [19] 張駿, 袁奇, 吳聰, 等. 大型風(fēng)力機(jī)葉片表面粗糙度效應(yīng)數(shù)值研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2014, 34(20): 3384-3391. Zhang Jun, Yuan Qi, Wu Cong, et al. Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 34(20): 3384-3391. (in Chinese with English abstract)

      [20] Baker J P, Mayda E A, van Dam C P. Experimental analysis of thick blunt trailing-edge wind turbine airfoils [J]. Journal of Solar Energy Engineering, 2006, 128(4): 422-431.

      [21] Standish K J, van Dam C P. Aerodynamic analysis of blunt trailing edge airfoils [J]. Journal of Solar Energy Engineering, 2003, 125(4): 479-487.

      [22] 韓中合,焦紅瑞. 加裝鈍尾緣改善風(fēng)力機(jī)槳葉氣動(dòng)性能的研究[J]. 動(dòng)力工程,2009,29(11):1073-1077.Han Zhonghe, Jiao Hongrui. Study on aerodynamic performance of airfoil by mounting a blunt trailing edge to wind blade[J]. Journal of Power Engineering, 2009, 29(11): 1073-1077. (in Chinese with English abstract)

      [23] 劉杰平,陳培,張衛(wèi)民. 后緣加厚方式對(duì)典型風(fēng)力機(jī)翼型氣動(dòng)性能的影響[J]. 太陽(yáng)能學(xué)報(bào),2009,30(8):1092-1096. Liu Jieping, Chen Pei, Zhang Weimin. Influence of enlarging trailing edge thickness on the representative wind turbine airfoil’s aerodynamic performances[J]. Acta Energiae Solaris Sinica, 2009, 30(8): 1092-1096. (in Chinese with English abstract)

      [24] 楊瑞,李仁年,張士昂,等. 鈍尾緣風(fēng)力機(jī)翼型氣動(dòng)性能計(jì)算分析[J]. 機(jī)械工程學(xué)報(bào),2010,46(2):106-110. Yang Rui, Li Rennian, Zhang Shiang, et al. Computational analyses on aerodynamic characteristics of flatback wind turbine airfoils [J]. Journal of Mechanical Engineering, 2010, 46(2): 106-110. (in Chinese with English abstract)

      [25] 馬林靜,陳江,杜剛,等. 尾緣厚度對(duì)風(fēng)力機(jī)翼型氣動(dòng)特性影響參數(shù)化研究[J]. 太陽(yáng)能學(xué)報(bào),2010,31(8):1060-1067. Ma Linjing, Chen Jiang, Du Gang, et al. Parametric research on influence of trailing edge’s thickness to aerodynamic performance for wind turbine airfoils[J]. Acta Energiae Solaris Sinica, 2010, 31(8): 1060-1067. (in Chinese with English abstract)

      [26] 徐浩然,楊華,劉超. 尾緣加厚的DU系列翼型氣動(dòng)性能數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(17):101-108.Xu Haoran, Yang Hua, Liu Chao. Numerical value analysis on aerodynamic performance of DU series airfoils with thickened trailing edge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 101-108. (in Chinese with English abstract)

      [27] Selig M S, Mcgranahan B D. Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines [R]. Golden, Colorado: National Renewable Energy Laboratory, 2003.

      [28] 楊從新,巫發(fā)明,張玉良. 基于滑移網(wǎng)格的垂直軸風(fēng)力機(jī)非定常數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(6):98-102. Yang Congxin, Wu Faming, Zhang Yuliang. Numerical simulation on unsteady rotated flow of a vertical axis wind turbine based on moving meshes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(6): 98-102. (in Chinese with English abstract)

      [29] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598-1605.

      [30] 黃宸武,楊科,劉強(qiáng),等. 風(fēng)力機(jī)葉片21%相對(duì)厚度翼型粗糙敏感性研究[J]. 工程熱物理學(xué)報(bào),2012,33(6): 953-956. Huang Chenwu, Yang Ke, Liu Qiang, et al. Investigation on roughness sensitivity for 21% relative thichness airfoil of wind turbine blade[J]. Journal of Engineering Thermophysics, 2012, 33(6): 953-956. (in Chinese with English abstract)

      Aerodynamic performance of blunt trailing-edge airfoil considering roughness sensitivity position

      Zhang Xu1,2, Liu Hailong1, Wang Gege1, Li Wei2,3

      (1.300387,; 2.100013,; 3.300384,)

      Wind turbine is often exposed to dramatically different operational conditions, from icy environments to deserts with sand storms, and there are contaminants in these environments, like dust, dirt, ice, and even insects. These contaminants change the aerodynamic shape of blade and increase the surface roughness, which results in the lower utilization rate of wind energy.The aerodynamic performance of wind turbine blade can be improved through the airfoil modification, so the blunt trailing-edge structure is adopted during the design of an airfoil.Compared with the original airfoil, the blunt trailing-edge modification with bigger trailing-edge thickness and cross-section area not only has a great improvement in the maximum lift coefficient and the stall angle of attack, but also makes the maximum lift less sensitive to the leading-edge roughness.Therefore, it is of great significance to study the aerodynamic performance of blunt trailing-edge modification of the airfoil with rough surface for the improvement of the power utilization coefficient of wind turbine. The aerodynamic performance of the airfoil with rough surface and the blunt trailing-edge modification have been numerically and experimentally investigated in recent years. However, these 2 problems have been discussed separately, and the effects of the blunt trailing-edge modificationon the aerodynamic performance improvement of wind turbine airfoil have been less investigated considering the roughness sensitivity position.In the present study, the aerodynamic performance of wind turbine airfoil and its blunt trailing-edge modification considering the roughness sensitivity position was numerically investigated to reveal the effect of the blunt trailing-edge modification on the lift enhancement of airfoil with rough surface. The dedicated wind turbine airfoil S822 from National Renewable Energy Laboratory (NREL) was used for the simulation. The lift and drag coefficients of S822 airfoil with smooth or rough surfaces were calculated by theSST turbulence model, and were compared with the aerodynamic data from wind tunnel tests, which offered a good opportunity to examine the capability of CFD (computational fluid dynamics) simulation. The mathematical expression of the blunt trailing-edge airfoil profile was established using the coordinates’ rotation combined with the zoom coefficient of coordinates, and the airfoil S822 was modified to be symmetrical blunt trailing-edge airfoil. The lift enhancement of modified airfoils was analyzed to get the best trailing-edge thickness. In order to obtain the roughness sensitivity position of suction and pressure surfaces, the aerodynamic performance of the airfoil with rough surface was studied. The lift and drag coefficients and the lift-drag ratio were calculated for the airfoils with the roughness sensitivity position and their symmetrical modifications with the best trailing-edge thickness. Andthe roughness sensitivity of sharp and blunt trailing-edge airfoils was also analyzed. The results indicated that the best trailing-edge thickness was 2% of chord length for symmetrical blunt trailing-edge airfoil. The roughness sensitivity positions of suction and pressure surfaces were 1% and 5% of chord length away from the leading-edge, respectively. After the blunt trailing-edge modification, the lift coefficient and the maximum lift-drag ratio of the airfoil with the roughness sensitivity position significantly increased. The lift-drag ratio of the blunt trailing-edge airfoil was higher than that of the original airfoilfor the angle of attack less than 11.19° when the suction surface of airfoil is rough, and so does the airfoil with rough suction and pressure surfaces. It is the same change ruler as abovefor the airfoil with rough pressure surface at different angles of attack ranging from 1° to 13.23°. The blunt trailing-edge modification makes the lift coefficient and the maximum lift-drag ratio significantly increase, which remarkably improves the aerodynamic performance of rough airfoil. The compositive index of the roughness sensitivity was 10.68% and 8.15% for sharp and blunt trailing-edge airfoils, respectively. The modification reduces the airfoil’s sensitivity to the roughness position. The research provides a significant guidance for designing and optimizing the wind turbine airfoil under rough blade surface conditions.

      wind turbines; airfoils; roughness; sensitivity position; blunt trailing-edge modification; aerodynamic performance

      10.11975/j.issn.1002-6819.2017.08.011

      TK83

      A

      1002-6819(2017)-08-0082-08

      2016-08-10

      2017-04-17

      國(guó)家自然科學(xué)基金(11402168);建筑安全與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(BSBE2015-03,BSBE2014-08);天津市自然科學(xué)基金面上項(xiàng)目(17JCYBJC20800,15JCYBJC48600)

      張 旭,女,河北安平人,副教授,博士后,主要從事風(fēng)力機(jī)空氣動(dòng)力學(xué)和結(jié)構(gòu)力學(xué)研究。天津 天津工業(yè)大學(xué)天津市現(xiàn)代機(jī)電裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,300387。Email:zhangxu@tjpu.edu.cn

      張 旭,劉海龍,王格格,李 偉.考慮粗糙度敏感位置的鈍尾緣翼型氣動(dòng)性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):82-89. doi:10.11975/j.issn.1002-6819.2017.08.011 http://www.tcsae.org

      Zhang Xu, Liu Hailong, Wang Gege, Li Wei. Aerodynamic performance of blunt trailing-edge airfoil considering roughness sensitivity position[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 82-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.011 http://www.tcsae.org

      猜你喜歡
      改型尾緣風(fēng)力機(jī)
      基于強(qiáng)化換熱的偏斜尾緣設(shè)計(jì)
      能源工程(2021年1期)2021-04-13 02:05:46
      基于UIOs的風(fēng)力機(jī)傳動(dòng)系統(tǒng)多故障診斷
      翼型湍流尾緣噪聲半經(jīng)驗(yàn)預(yù)測(cè)公式改進(jìn)
      具有尾緣襟翼的風(fēng)力機(jī)動(dòng)力學(xué)建模與恒功率控制
      河鋼唐鋼冷軋部酸軋液壓系統(tǒng)改造
      長(zhǎng)征建奇功 改型更輝煌
      太空探索(2016年12期)2016-07-18 11:13:43
      透平進(jìn)氣裝置的改型設(shè)計(jì)及應(yīng)用
      送電線路施工過(guò)程中桿塔基礎(chǔ)的改型和優(yōu)化問(wèn)題分析
      大型風(fēng)力機(jī)整機(jī)氣動(dòng)彈性響應(yīng)計(jì)算
      小型風(fēng)力機(jī)葉片快速建模方法
      平罗县| 中方县| 自贡市| 张北县| 辉南县| 宣汉县| 丁青县| 西乌| 大田县| 林口县| 西丰县| 荥阳市| 永州市| 大新县| 封开县| 湘乡市| 兰考县| 临沭县| 长岛县| 绩溪县| 舒兰市| 金阳县| 华宁县| 徐闻县| 庆元县| 宁安市| 河池市| 年辖:市辖区| 贵州省| 潜山县| 冕宁县| 饶河县| 姚安县| 南安市| 莱芜市| 胶州市| 垣曲县| 山东省| 民权县| 泽普县| 汤原县|