• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Analysis of Cosmological Black Hole

    2017-05-18 05:56:32AkbarTayebBrahimiandQaisar
    Communications in Theoretical Physics 2017年1期

    M.Akbar, Tayeb Brahimi, and S.M.Qaisar

    E ff at University,Electrical and Computer Engineering Department,P.O.Box 34689,Jeddah,Saudi Arabia

    1 Introduction

    Black holes and cosmological metrics are obtained by solving Einstein’s field equations under different domains.Generally,the black metric represents a point mass covered by the horizons without expanding behavior of the universe.The main issue with the black holes is that these metrics disregard the expanding behavior of the universe.On the other hand,the cosmological metrics persist expanding universe without holding a point mass describing a black hole.However,the McVittie metric persists an integrated treatment holding a strongly gravitating central object,embedded in spatially fl at Friendmann-Robertson-Walker(FRW)universe.[1]This is one of the primary motivations of this study in order to integrate the thermodynamic treatment of the Mcvittie universe.Generally,the thermodynamics of the spacetime metrics are two folds:(i)Thermodynamics of black hole metrics at black hole horizons and(ii)Thermodynamics of the cosmological metrics at their respective horizons.In the case of black hole metrics,Padmanabhan[2]was the first who initiated the key development to launch relationship between the Einstein field equations and the first law of thermodynamics near the black hole horizons.It has been shown that in Einstein’s gravity as well as in a wider class of gravitational theories,the Einstein field equations establish the first law of thermodynamic T dS=dE+PdV.[2?3]Recently,various laws of thermodynamics have been studied[4?8]to explore deep relationship between gravity theory and thermodynamics.In the case of cosmological metrics,Cai and Kim[7]initiated and derived the Friendmann equations of FRW universe by employing the equilibrium Clausius relation at the apparent horizon.Later on,Akbar and Cai[9]formulated and recast the differential form of the Einstein field equations as a uni fi ed first law T dS=dE+W dV near the apparent horizon of FRW universe.This connection has also been extended for other gravity theories.[10?12]Due to this deep connection between gravity theory and the laws of ordinary thermodynamics,it has been argued[13]that thermal behavior of the Einstein field equations would be a generic property of the spacetime metrics and can be extended to any spacetime metric with horizons.In the present work,we consider a more general spacetime metric,called McVittie metric,to integrate and explore its thermodynamics.This metric has been modeled to present a family of spherically symmetric non-vacuum spacetime universe in which a black hole is embedded in a fl at FRW universe.In this study,we analyze qualitatively the roots of a cubic equation arising from the apparent horizon of the McVittie universe.The surface gravity of McVittie universe is discussed near apparent horizon and various conditions in terms of McVittie parameters are explored.The field equations of McVittie metric are obtained by applying the Uni fi ed first law of thermodynamics.Furthermore,heat capacity at constant pressure and generalized second law(GSL)are discussed at apparent horizon.

    This paper is organized as follows.In Sec.2,we shall review brie fl y properties of McVittie metric.The horizons of McVittie universe shall be discussed in Sec.3.In Secs.4 and 5,we shall analyze conditions on surface gravity and heat capacity.The field equations will be derived via unifi ed first law in Sec.6.Furthermore we shall discuss GSL in Sec.7 while we shall conclude our results in Sec.8.

    2 McVittie Universe

    In his original work,McVitte was able to find[1]his well-known spacetime metric called McVittie universe and its line element is given in isotropic coordinates by

    where d?2,M and a(t)are the line element on the unit 2-sphere,a positive constant which represents the mass of the black hole and an arbitrary positive function called the cosmic scale factor respectively.Throughout this paper,we adopt the units G=c=κ=~=1.In particular,the above metric(1)reduces to a spatially fl at FRW metric when M→0 while it reduces to the Schwarzschild black hole in isotropic coordinate at a(t)=constant.Apparently,McVittie metric seems to stand for a Schwarzschild black hole embedded in a homogeneous,spatially fl at FRW metric[14]but its physical interpretation is still under debate.[14?15]On the other hand,it has been argued in Ref.[15]that the McVittie metric,in general,can not represent a black hole embedded in a homogeneous,spatially fl at FRW universe because it becomes singular on the 2-sphere at r=M/2a and this singularity is spacelike.[16]Furthermore,it was found that the pressure of the matter density is in fi nite at r=M/2a while its energy density is if nite.It is also argued that the McVittie universe may illustrate a point mass situated at r=0 and embedded in a spatially fl at FRW universe.Moreover,in general,this point mass is covered by a singularity at r=M/2a.[16]In Ref.[17],Nolan found that it is a weak singularity in the sense that the volume of an object does not shrink to zero at a surface where r=M/2a,and therefore the energy density of the cosmic fl uid remains fi nite.On the other hand,the pressure of the cosmic fl uid and Ricci scalar diverge at r=M/2a.Also,Nolan rewrote McVittie metric in terms of R=ar(1+M/2ar)2and argued that the resulting metric behaves like a point-mass at R=0,covered by a singularity at R=2M.He also argued that if the present universe is expanding the surface at R=2M is covered by an anti-trapped region which admits white hole rather than a black hole.Meanwhile,other authors[18]discarded Nolan interpretation and suggested black hole interpretation by de fi ning ingoing radial null geodesics at a particular choice of the scale factor a(t).So,the McVittie metric represents some kind of strongly gravitating central object,embedded in fl at FRW universe.However,its physical interpretation is not totally clear and remains the subject of debate.

    3 Apparent Horizon

    Let us rewrite the McVittie metric(1)in spherical symmetric form

    where R=a(t)r(1+M/2a(t)r)2is the time dependent areal radius of the universe,x0=t,x1=r and twodimensional metric

    The apparent horizon is de fi ned by a marginally trapped surface with vanishing expansion.Thus mathematically,hab?aR?bR=0 fi xes the location of the apparent horizons,which after evaluating through McVittie metric(2),gives a cubic equation in terms of apparent radius RAgiven below

    where H refers to the time dependent Hubble parameter and RAdenotes the apparent horizon radius.Particularly,at M=0,the apparent horizon reduces to the apparent horizon/cosmological horizon,RA=1/H,of fl at FRW universe,while at a(t)=constant i.e.H=0,it admits event horizon of Schwarzschild black hole located at RA=RE=2M.It has been argued in Ref.[19]that the apparent horizon described a causal horizon of dynamical spacetime holding gravitational entropy,surface gravity and other thermodynamical properties.It has been shown that these thermodynamic quantities associated with the apparent horizons obey the first law of thermodynamics in the Einstein gravity as well as a wider class of gravity theories.[20]In the present work,we study various thermodynamic characteristics associated with the apparent horizons of McVittie universe and analyze the process of energy fl ow through apparent horizon to provide the uni fi ed first law.Let us first proceed to find the apparent horizons,RA,of the McVittie universe by finding real positive roots of Eq.(3).It is convenient first to analyze Eq.(3)qualitatively and fi x conditions in terms of H and M for the existence of its horizons.In order to proceed this analysis,we de fi ne a real function f(RA)=H2?RA+2M of variable RA>0 via Eq.(3).Mathematically,its extreme points are obtained by putting df(RA)/dRA=0,which admits two real points,RA±= ±1/H.Neglecting RA?<0 negative root,the root RA=RA+=1/H is a unique root representing extreme point.The second deriv√ative d2f(RA)/d>0 at its extreme point RA=1/H,which implies that the extremal point corresponds to minimum and its minimumvalue is f(Rmin)= ?2/3H+2M at RA=Rmin=1/H.Also note that as RA→∞implies f(RA)→∞and f(RA=0)=2M.Since the function f(RA)is twice differentiable and positive at critical point,hence it is concave up.With reference to its minimum value,there are three cases;

    Case 1 In this case,f(R)cuts the R-axis at two points admitting two real distinct roots RA1and RA2.Hence,there are two horizons inner and outer de fi ned by Eqs.(4)and(5)respectively.These roots are shown graphically by Fig.1.When f(Rmin)<0,McVittie metric admits two horizon provided M<1/3H.

    Fig.1 Function f(R)for M=1 and H=1/6 is shown which admits two horizons when M<1/3H.

    Case 2This gives repeated roots and identi fi ed as an extremal case.In this case f(R)touches R-axis at RA=Rminas shown in Fig.2.Furthermore,f(Rmin)=0,admits the condition,M=1/3H.

    Fig.2 Repeated ho√rizons of McVittie Universe with M=1 and H=1/3 satisfying the condition M=1/3H.

    Case 3 This case involves naked singularity and hence there are no real roots when f(Rmin)>0.The graph of f(R)lies above the R-axis as shown in Fig.3.Beside the qualitative analysis of Eq.(3),one can obtain its exact roots.Since it is a cubic equation in RAand there are various methods available in literature to solve such an equation.However we follow the procedure given by Nickalls[21]to find its roots.These roots are given below,

    where sin3θ =3MH(t).Obviously,after neglecting negative root R3<0,we have two real positive roots admitting two apparent horizons,RA1and RA2of McVittie universe.These two horizons RA1and RA2exist provided 0

    Fig.3 No horizons of McVittie Universe with M=1 and H=1/2 satisfying M>1/3H.

    4 Horizon Thermodynamics

    This section deals with the various thermodynamic quantities associated with the apparent horizons of McVittie universe.It has been shown by Hawking that a black hole emits thermal radiation at its horizon with a temperature proportional to the surface gravity and with an entropy proportional to the horizon area.These notions of temperature and entropy are not limited with the black holes horizons but also extended with other horizons of various spacetime geometries.Among these horizons,apparent horizon has been argued to be a causal horizon associated with the notions of temperature and entropy.Thus for our purpose,it would be suitable to study thermodynamic properties of McVittie universe at its apparent horizons.Let us de fi ne entropy SHassociated with apparent horizon of McVittie universe which is proportional to surface area A of the horizon

    where RAis the horizon radius.The temperature THassociated with the apparent horizon is proportional to the surface gravity κ through relation TH= κ/2π,where κ is given by[8]

    where?h is the determinant of hab=diag(g00,g11)with g00and g11t-r components of McVittie metric(1).Using above Eq.(8),the surface gravity κ of the McVittie universe turns out

    where an over-dot denotes derivative with respect to the cosmic time t.Particularly,as M→0,the surface gravity of the McVittie universe reduces to the fl at FRW universe which admits

    where in this case R=a(t)r is the apparent radius of the fl at FRW universe.It is evident from the above Eq.(10)that the surface gravity of FRW universe is positive,zero and negative provided/H2

    wherePis the pressure of the perfect fl uid.The surface gravity of McVittie universe is positive,zero and negative provide the mass M>(/4)(H2? 8πP),M=(/4)(H2? 8πP),and M<(/4)(H2? 8πP)respectively.On the other hand,One can easily check when the scale factor a(t)=constant andP=0,the surface gravity of Schwarzschild black hole at the event horizon rE=2M takes the form,κ=1/2rE.In case of matter dominated universe where the matter is given by the dust particles with no pressure,P=0,the surface gravity of the McVittie universe takes the simple form;κ=M/R2?H2R/4.Let us consider a special case of Kottler Schwarzschild de-sitter metric for which a(t)=In this case surface gravity reduces to

    Furthermore when a(t)=a0t2/3,the surface gravity is positive and zero accordingly

    and negative when

    5 Heat Capacity

    Another important thermodynamic quantity is that of heat capacity of a thermal system.The heat capacity of a black hole has been determined to study its stability conditions.[22]The heat capacity of a cosmological metric is de fi ned via enthalpyN=E+PV of the thermal system enclosed by the apparent horizon,whereE,Pand V are the internal energy of the system,pressure and volume enclosed by the horizon respectively.We assume the Misner–Sharp Mms=E.Hence the enthalpy of the system is expressed as a function of horizon radius RAof McVittie universe asN=RA/2+(4/3)πP.Similarly the temperature in Eq.(18)is written as a function of RAby elimination M through Eq.(3).Hence the heat capacity CPof the thermal system at constant pressure is de fi ned via enthalpy as

    Using the above Definition of heat capacity along with the horizon temperature

    in terms of horizon radius,the heat capacity Cpof McVittie universe enclosed by apparent horizon reads

    Obviously whenP>0,the heat capacity of the universe is positive,negative and divergent accordingly RA>and RA=From these conditions,one can easily conclude 8πP? 3H2>0.The divergence of the heat capacity at RA=indicate the universe undergo second order phase transition.[22]It is clear from Eq.(15)that the heat capacity Cpof the universe is always negative for the matter dominated phase havingP=0 and is positive provided the pressureP>(2+3H2R2)/8πR2>0.Obviously whenP<0,Cp>0 providedP< ?1/8πR2.Furthermore,the horizon temperature(15)TH→∞as RA→0 and TH→0 as RA→The case whenP>0,the temperature THof the universe attains its minimum value Tmin=1/2πRminat Rmin=Interestingly,the heat capacity diverges at Rminwhere temperature is minimum.

    6 Uni fi ed First Law of Thermodynamics

    In this section,we shall apply uni fi ed first law of thermodynamics to derive Einstein’s field equation which demonstrates a deep connection between gravity theory and laws of ordinary thermodynamics.Uni fi ed first law was first proposed by Hayward to handle thermodynamics associated with the trapping horizon of a dynamical black hole.[23]Consequently he was able to derive Einstein’s field equations with the application of uni fi ed first law.In this paper,we shall apply a similar procedure to extract Einstein’s field equations of McVittie metric from uni fi ed first law.The Einstein field equations,Rμν?Rgμν/2=8πTμν,admit the following non-zero components arising from McVittie metric,

    where=pand= ?p are the energy density and pressure of the fl uid respectively and Tμν=(p+P)UμUν?Pgμνis the stress energy tensor of the perfect fl uid.Applying the stress-energy conservation=0,we get

    Note that other components of Einstein’s field equations satisfyThe temperature associated with the apparent horizon is determined via TH= κ/2π which admits,

    The horizon temperature THin terms of apparent horizon RAcan be written as

    The entropy SHassociated with horizon is given by

    where A is the horizon area.The Misner–Sharp energy[24]of a spherically symmetric spacetime geometry is de fi ned by 1? 2Mms/R=gab?aR?bR.This energy Mmsreveals total matter energy enclosed by the sphere of radius R and is constructed from spacetime metric gab.In addition to this,various Definitions of energy are given in general relativity,such as,ADM mass,Bondi–Sachs energy,Brown–York energy and others.[25]A detail comparison of various energy Definitions in general relativity has been given in references.[24]However,the Misner-Sharp energy is purely geometric quantity and is related with a spacetime structure.Therefore we consider Misner–Sharp energy as total matter energy in order to derive the Einstein field equations via uni fi ed first law.The Misner–Sharp energy for the McVittie metric is given by

    The unified first law is defined by[23]

    where dE=dMmsis the change of energy within the volume enclosed by the apparent horizon.This change occurs due to the crossing of energy through the apparent horizon.W is the work density and V=4π/3 is volume of the spherical system bounded by the apparent horizon.The first term on the right side of the above Eq.(23)could be presented by the energy supply term while the second term can be interpreted as work done by the energy content to support this state.Let us turn to de fi ne two invariant quantities,the work density W and energy supply vector Ψ through stress-energy tensorSo the work-density associated with the stress energy tensor is given by

    where haband Tabare the 2×2 components of the McVittie metric and stress-energy tensor respectively.Energy supply vector is de fi ned by

    which after simpli fication,admits

    whereandrepresent derivatives with respect to cosmic time t and radius r respectively.Thus the scalar Ψ is given by

    Substituting these quantities in Eq.(23)and evaluate AΨ+W dV which admits

    From Misner–Sharp energy(22),one reads

    Substituting Eqs.(28)and(29)in uni fi ed first law,dE=AΨ+W dV,and then first comparing the coefficients of dt on both side,we get

    Substituting the value of RA/˙RAto the above Eq.(30)and simplifying,we get

    which is exactlycomponent of the Einstein field equation.Similarly,comparing the coefficients of dr,we immediately getcomponent of the Einstein field equation.From the above analysis,we are able to extract the Einstein field equations from the Uni fi ed first law.

    7 Generalized Second Law of Thermodynamics

    Generalized Second Law(GSL)states that the sum of the entropy,SH,associated with geometrical horizon and the entropy,SRassociated with the matter and radiation fields within the horizon never decreases.Mathematically,GSL can be expressed as

    which obviously express dynamical nature of the apparent horizon RA.It is straightforward to know that→∞as RA→ 1/letus now turn to differentiate equation(7)to find out TH

    Since GSL veri fi es a special connection between thermodynamics,gravitation,and quantum theory,[26]therefore the validity of GSL has been investigated widely for black holes as well as cosmological spacetimes.[27]The purpose of this section is to find the conditions under which GSL will satisfy at the apparent horizon of McVittie universe.Let us first differentiate Eq.(3)with respect to cosmic time,we get

    To ensure that the thermal system bounded by apparent horizon is in thermal equilibrium near the apparent horizon,we assume that the horizon temperature THshould equal to the temperature Tmof the perfect fl uid so that TH=Tm=T.Using Eqs.(34)and(35)together with assumption of the thermal equilibrium near apparent horizon,one can get

    wherePis the pressure of the perfect fl uid.It is shown in the above section that the Einstein field equations satisfy uni fi ed first law dE=THdSH+PdW instead of usual first law dE=THdSH+PdV.However the matter energy densityEm=pV,the matter entropy Smand the temperature Tmof the matter field hold the Gibbs identity TmdSm=dEm+PdV on the apparent horizon.By solving Gibbs identity on the apparent horizon RAof McVittie universe,it turns out

    By introducing horizon temperature THfrom Eq.(20)in the above equation,one can get

    AssumingP>0,it is easy to show that GSL holds near the apparent horizon only if˙RA>0.

    8 Conclusion

    In this paper a cubic equation constructed from the apparent horizon of McVittie universe is analyzed qualitatively.We derived conditions in terms of McVittie parameters in order to obtain two,repeated,and complex roots and presented graphically.We derived surface gravity at apparent horizon of McVittie universe and particular cases are also presented.It is shown that for a particular case when M=0,earlier known surface gravity of fl at FRW universe is recovered.Furthermore,the heat capacity of the universe is obtained at the apparent horizon and discussed various cases.It is shown that the heat capacity diverges at the minimum value of apparent horizon Rminand the universe undergoes the second order phase transition.Also,in the case of matter dominated phase,the heat capacity is always negative.

    In addition,the Einstein field equations arising from the McVittie universe are derived by using uni fi ed first law,dE=AΨ+W dV,of thermodynamics,where dEis the amount of energy crossing the apparent horizon and the terms AΨ and W dV are interpreted as the energy supply term and work done by the energy content to change the volume dV of the universe bounded by the apparent horizon.In fact,these thermodynamic identities delegate intrinsic thermodynamic properties of spacetime metrics.Also,we discussed GSL at the apparent horizon of McVittie universe.It is shown that GSL is respected when>0 together withP>0.

    Acknowledgments

    The authors are grateful to the referee for his/her useful comments which have signi ficantly improve quality of the paper.

    References

    [1]G.C.McVittie,Mon.Not.R.Astron.Soc.93(1933)325.

    [2]T Padmanabhan,Class.Quantum Grav.19(2002)5387,[gr-qc/0204019].

    [3]A.Paranjape,etal.,Phys.Rev.D 74(2006)104015.

    [4]S.W.Hawking,Commun.Math.Phys.43(1975)199;S.W.Hawking,Phys.Rev.D 13(1976)191;J.M.Bardeen,etal.,Commun.Math.Phys.31(1973)161;J.D.Bekenstein,Phys.Rev.D 7(1973)2333;T.Jacobson,Phys.Rev.Lett.75(1995)1260;T.Jacobson,etal.,Int.J.Theor.Phys.44(2005)1807.

    [5]T.Padmanabhan,Relativ.Gravit.40(2008)2031;Phys.Reports.406(2005)49;AIP Conference Proceedings 989(2007)114.

    [6]D.Kothawala,etal.,Phys.Lett.B 652(2007)338[arXiv:gr-qc/0701002];T.Padmanabhan,Phys.Rev.D 79(2009)104020;R.G.Cai,etal.,Phys.Rev.D 78(2008)124012;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;M.Akbar and R.G.Cai,Phys.Lett.B 648(2007)243;Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;S.F.Wu,B.Wang,and G.H.Yang,Nucl.Phys.B 799(2008)330.

    [7]R.G.Cai and S.P.Kim,J.High Energy Phys.0502(2005)050;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;R.G.Cai,Prog.Theor.Phys.Suppl.172(2008)100;R.G.Cai,etal.,Nucl.Phys.B 785(2007)135.

    [8]R.G.Cai,Li-Ming Cao,and Nobuyoshi Ohta,Phys.Lett.B 679(2009)504,R.G.Cai,L.M.Cao,Y.P.Hu,and S.P.Kim,Phys.Rev.D 78(2008)124012;R.G.Cai,L.M.Cao,and Y.P.Hu,Class.Quantum Grav.26(2009)155018;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;M.Akbar,Chin.Phys.Lett.25(2008)4199;M.Akbar,Chin.Phys.Lett.24(2007)1158;A.Sheykhi,etal.,Nucl.Phys.B 779(2007)1;A.Sheykhi,etal.,Phys.Rev.D 76(2007)023515;R.G.Cai,Li-Ming Cao,Y.P Hu,J.High Energy Phys.0808(2008)090;M.Jamil and M.Akbar,Gen.Relativ.Gravit.43(2011)1061.

    [9]M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003.

    [10]A.V.Frolov and L.Kofman,J.Cosmol.Astropart.Phys.0305(2003)009;Jia Zhou,Bin Wang,Yungui Gong,and Elcio Abdalla,Phys.Lett.B 652(2007)86;M.Akbar,Int.J.Theor.Phys.48(2009)2665;N.Mazumder and S.Chakraborty,Astrophys.Space Sci.332(2011)509;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Phys.Lett.B 700(2011)254;K.Karami,M.S.Khaledian,and N.Abdollahi,Europhys.Lett.98(2012)30010;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 20(2011)1505;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 21(2012)1250034;K.Karami and A.Abdolmaleki,J.Cosmol.Astropart.Phys.04(2012)007;K.Bamba,M.Jamil,D.Momeni,and R.Myrzakulov,Astrophys.Space Sci.344(2013)259;M.Jamil,E.N.Saridakis,and M.R.Setare,J.Cosmol.Astropart.Phys.1011(2010)032;A.Sheykhi and B.Wang,Phys.Lett.B 678(2009)434;A.Sheykhi and B.Wang,Mod.Phys.Lett.A 25(2010)1199.

    [11]S.Carlip,Phys.Rev.Lett.82(1999)2828;E.Frodden,A.Ghosh,and A.Perez,Phys.Rev.D 87(2013)121503;A.Ashtekar,S.Fairhurst,and B.Krishnan,Phys.Rev.D 62(2000)104025;A.Ashtekar,C.Beetle,and J.Lewandowski,Phys.Rev.D 64(2001)044016;R.M.Wald,Phys.Rev D 48(1993)R3427;C.Eling,R.Guedens,and T.Jacobson,Phys.Rev.Lett.96(2006)121301;T.Jacobson and A.C.Wall,Found.Phys.40(2010)1076.

    [12]R.G.Cai,Phys.Lett.B 582(2004)237,[arXiv:hepth/0311240];T.Jacobson and R.C.Myers,Phys.Rev.Lett.70(1993)3684;G.W.Gibbons,M.J.Perry,and C.N.Pope,Class.Quantum Grav.22(2005)1503.

    [13]T.Padmanabhan,Gen.Relativ.Gravit.34(2002)2029.

    [14]C.Gao,X.Chen,V.Faraoni,and Y.G.Shen,Phys.Rev.D 78(2008)024008;P.D.Noerdlinger and V.Petrosian,Astrophys.J.168(1971)1;D.J.Shaw and J.D.Barrow,Phys.Rev.D 73(2006)123505;C.J.Gao and S.N.Zhang,Phys.Lett.B 595(2004)28;C.J.Gao,Class.Quantum Grav.21(2004)4805;B.Bolen,L.Bombelli,and R.Puzio,Class.Quantum Grav.18(2001)1173.

    [15]R.Sussman,Gen.Relavi.Gravit.17(1985)251;B.C.Nolan,Class.Quantum Grav.16(1999)1227;B.C.Nolan,Class.Quantum Grav.16(1999)3183.

    [16]M.Anderson,J.Phys.283(2011)012001;R.A.Sussmann,J.Math.Phys.29(1988)1177.

    [17]B.C.Nolan,Phys.Rev.D 58(1998)064006.

    [18]N.Kaloper,M.Kleban,and D.Martin,Phys.Rev.D 81(2010)104044.

    [19]S.A.Hayward,S.Mukohyama,and M.C.Ashworth,Phys.Lett.A 256(1999)347;S.A.Hayward,Class.Quantum Grav.15(1998)3147;D.Bak and S.J.Ray,Class.Quantum Grav.17(2000)L83.

    [20]Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;R.G.Cai and L.M.Cao,Nucl.Phys.B 785(2007)135;A.Sheykhi,B.Wang,and R.G.Cai,Nucl.Phys.B 779(2007)1;R.Di Criscienzo,M.Nadalini,L.Vanzo,S.Zerbini,and G.Zoccatelli,Phys.Lett.B 657(2007)107.

    [21]R.W.D.Nickalls,The Mathematical Gazzette 77(1993)354.

    [22]Meng-Sen Ma and Ren Zhao,Phys.Lett.B 751(2015)278;J.D.Brown,J.Creighton,and R.B.Mann,Phys.Rev.D 50(1994)6394.

    [23]S.A.Hayward,Class.Quantum Grav.15(1998)3147.

    [24]C.W.Misner and D.H.Sharp Phys.Rev.136(1964)B571;S.A.Hayward,Phys.Rev.D 53(1996)1938,[arXiv:gr-qc/9408002];D.Bak and S.J.Rey,Class.Quantum Grav.17(2000)L83,[arXiv:hep-th/9902173].

    [25]H.Bondi,M.G.J.van der Burg,and A.W.K.Metzner,Proc.Roy.Soc.London A 269(1962)21;R.K.Sachs,Proc.Roy.Soc.London A 270(1962)103;J.D.Brown and J.W.York,Phys.Rev.D 47(1993)1407;C.C.M.Liu and S.T.Yau,Phys.Rev.Lett.90(2003)231102.

    [26]David W.Tian and Ivan Booth,Phys.Rev.D 92(2015)024001;U.Debnath,S.Chattopadhyay,I.Hussain,M.Jamil,and R.Myzakulov,Eur.Phys.J.C 72(2012)1875.

    [27]R.Herrera and N.Videla,Int.J.Mod.Phys.D 23(2014)1450071;M.Sharif and S.Rani,Astrophys.Space Sci.346(2013)573;R.Herrera,Astrophys.Space Sci.350(2014)393;S.Chattapadhyay and R.Ghosh,Astrophys.Space Sci.341(2012)669.

    建设人人有责人人尽责人人享有的 | 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 精品国内亚洲2022精品成人| 日日啪夜夜撸| 精品久久久久久成人av| 97超视频在线观看视频| 国产免费福利视频在线观看| 联通29元200g的流量卡| 嫩草影院精品99| 国产精品一区二区三区四区免费观看| 级片在线观看| 最后的刺客免费高清国语| 变态另类丝袜制服| 婷婷色麻豆天堂久久 | 美女国产视频在线观看| 全区人妻精品视频| 日韩欧美在线乱码| 国产单亲对白刺激| 中文字幕熟女人妻在线| 国产一区二区三区av在线| 午夜精品国产一区二区电影 | 国产淫语在线视频| 国产高清有码在线观看视频| 少妇被粗大猛烈的视频| 成年女人看的毛片在线观看| 中国美白少妇内射xxxbb| 乱码一卡2卡4卡精品| 狂野欧美白嫩少妇大欣赏| 日本爱情动作片www.在线观看| 免费观看a级毛片全部| 国产伦一二天堂av在线观看| 女人十人毛片免费观看3o分钟| 国产亚洲5aaaaa淫片| 夜夜爽夜夜爽视频| 精品人妻熟女av久视频| 中国国产av一级| 国产免费一级a男人的天堂| 国产淫语在线视频| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 亚洲国产欧美人成| 亚洲欧美日韩无卡精品| 国产精品人妻久久久久久| 夜夜爽夜夜爽视频| 精品久久久久久成人av| 久久人人爽人人片av| 国产成人精品婷婷| 精华霜和精华液先用哪个| 91aial.com中文字幕在线观看| 1000部很黄的大片| 大话2 男鬼变身卡| 欧美极品一区二区三区四区| 欧美日本视频| 天美传媒精品一区二区| 久久精品国产鲁丝片午夜精品| 国国产精品蜜臀av免费| 亚洲电影在线观看av| 高清毛片免费看| 在现免费观看毛片| 国产高清国产精品国产三级 | 亚洲在线自拍视频| 91精品伊人久久大香线蕉| 久久精品影院6| 久久精品人妻少妇| 夜夜看夜夜爽夜夜摸| 高清视频免费观看一区二区 | 久久6这里有精品| 日韩强制内射视频| 国产av在哪里看| 国产午夜精品一二区理论片| 简卡轻食公司| 久久久精品欧美日韩精品| 久久精品夜夜夜夜夜久久蜜豆| 2021天堂中文幕一二区在线观| 天堂中文最新版在线下载 | 日本色播在线视频| 边亲边吃奶的免费视频| 日韩在线高清观看一区二区三区| 亚洲av不卡在线观看| 黑人高潮一二区| 人人妻人人澡人人爽人人夜夜 | 国产视频首页在线观看| 麻豆国产97在线/欧美| 国产成人福利小说| АⅤ资源中文在线天堂| 亚洲欧美精品自产自拍| 成年版毛片免费区| 在线播放国产精品三级| 春色校园在线视频观看| 国产精品久久久久久av不卡| 国产黄色小视频在线观看| 超碰av人人做人人爽久久| 五月玫瑰六月丁香| 午夜福利高清视频| 国语自产精品视频在线第100页| 国产亚洲精品av在线| 精品人妻熟女av久视频| 在线观看美女被高潮喷水网站| 美女xxoo啪啪120秒动态图| 免费看美女性在线毛片视频| 99九九线精品视频在线观看视频| 国产精品女同一区二区软件| 青青草视频在线视频观看| 国国产精品蜜臀av免费| 亚洲第一区二区三区不卡| 99久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品 | 国产爱豆传媒在线观看| 中文字幕av在线有码专区| 国产综合懂色| 最近的中文字幕免费完整| 欧美xxxx性猛交bbbb| 日本爱情动作片www.在线观看| 国产一区二区亚洲精品在线观看| 综合色丁香网| 国产探花极品一区二区| 国产精品不卡视频一区二区| 中文字幕制服av| 一卡2卡三卡四卡精品乱码亚洲| 一级av片app| 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线| 免费观看性生交大片5| 97超视频在线观看视频| 男的添女的下面高潮视频| 午夜视频国产福利| 久久久久久久久久久丰满| av女优亚洲男人天堂| 亚洲国产色片| 日韩亚洲欧美综合| 最近手机中文字幕大全| 国产老妇伦熟女老妇高清| 美女cb高潮喷水在线观看| 插阴视频在线观看视频| 亚洲婷婷狠狠爱综合网| 久久99热这里只频精品6学生 | 老司机影院毛片| 看片在线看免费视频| 亚洲无线观看免费| .国产精品久久| 99久久九九国产精品国产免费| 久久久久久久久中文| 久久久久久久久久久免费av| 欧美3d第一页| 卡戴珊不雅视频在线播放| 一级二级三级毛片免费看| 淫秽高清视频在线观看| 日韩欧美三级三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品色激情综合| 国产一区亚洲一区在线观看| 国产av不卡久久| 有码 亚洲区| 一级二级三级毛片免费看| 欧美一区二区国产精品久久精品| 淫秽高清视频在线观看| 日本av手机在线免费观看| 亚洲av福利一区| 身体一侧抽搐| 91精品一卡2卡3卡4卡| 97超碰精品成人国产| 一级av片app| 1024手机看黄色片| 国产在视频线精品| 嫩草影院精品99| 国产成人91sexporn| 少妇被粗大猛烈的视频| 久久99蜜桃精品久久| 亚洲自拍偷在线| 国产av在哪里看| 26uuu在线亚洲综合色| 国产成人免费观看mmmm| 一级毛片电影观看 | 美女内射精品一级片tv| 欧美xxxx黑人xx丫x性爽| videossex国产| 国产亚洲最大av| 欧美bdsm另类| 亚洲真实伦在线观看| 老师上课跳d突然被开到最大视频| 亚洲av中文字字幕乱码综合| 男人和女人高潮做爰伦理| 99久久无色码亚洲精品果冻| 有码 亚洲区| 91久久精品国产一区二区三区| 欧美性猛交╳xxx乱大交人| 偷拍熟女少妇极品色| 女人十人毛片免费观看3o分钟| 欧美成人一区二区免费高清观看| 性色avwww在线观看| 乱系列少妇在线播放| 午夜免费激情av| 97热精品久久久久久| 能在线免费看毛片的网站| 热99在线观看视频| 国产精品一区二区性色av| 日本黄大片高清| 欧美激情久久久久久爽电影| 中文亚洲av片在线观看爽| 精品一区二区三区人妻视频| 人人妻人人澡欧美一区二区| 久久久久久久久大av| 国产一区二区在线av高清观看| 中文字幕制服av| 亚洲av男天堂| 在线观看一区二区三区| 国产高清视频在线观看网站| 有码 亚洲区| 国产国拍精品亚洲av在线观看| 欧美一区二区国产精品久久精品| 国产精品女同一区二区软件| 久久午夜福利片| 在线免费观看不下载黄p国产| 婷婷色av中文字幕| 久久久久久久亚洲中文字幕| 免费av观看视频| 九九在线视频观看精品| 欧美日韩在线观看h| 色噜噜av男人的天堂激情| 亚洲美女视频黄频| 在线天堂最新版资源| 小说图片视频综合网站| 成年版毛片免费区| 青春草视频在线免费观看| 十八禁国产超污无遮挡网站| 日本一本二区三区精品| 晚上一个人看的免费电影| 99热这里只有精品一区| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 美女高潮的动态| 中文字幕免费在线视频6| 国产日韩欧美在线精品| 欧美97在线视频| 中文字幕久久专区| av福利片在线观看| 欧美又色又爽又黄视频| 日韩欧美三级三区| 日本猛色少妇xxxxx猛交久久| 亚洲aⅴ乱码一区二区在线播放| 久久精品久久精品一区二区三区| 日本欧美国产在线视频| 国产人妻一区二区三区在| 亚洲av一区综合| 日本免费a在线| 久久久精品94久久精品| 中文精品一卡2卡3卡4更新| 成年女人永久免费观看视频| 欧美zozozo另类| 99久国产av精品国产电影| 中文字幕精品亚洲无线码一区| 高清毛片免费看| 欧美日本视频| av在线蜜桃| 亚洲欧美成人综合另类久久久 | 日韩av在线大香蕉| 神马国产精品三级电影在线观看| 午夜福利在线在线| 永久免费av网站大全| 2021天堂中文幕一二区在线观| 亚洲国产精品sss在线观看| 久久久久久伊人网av| 一级毛片久久久久久久久女| 国模一区二区三区四区视频| 能在线免费看毛片的网站| 中文字幕精品亚洲无线码一区| 我要搜黄色片| 国产黄色小视频在线观看| 在线观看美女被高潮喷水网站| 免费搜索国产男女视频| 亚洲欧美一区二区三区国产| a级毛色黄片| 日本三级黄在线观看| 午夜免费男女啪啪视频观看| 国产熟女欧美一区二区| 又粗又爽又猛毛片免费看| 91av网一区二区| 亚洲av免费在线观看| 亚洲综合精品二区| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| av国产免费在线观看| 国产国拍精品亚洲av在线观看| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 欧美变态另类bdsm刘玥| 欧美高清成人免费视频www| .国产精品久久| 久久欧美精品欧美久久欧美| av福利片在线观看| 日韩欧美在线乱码| 国产免费又黄又爽又色| 不卡视频在线观看欧美| 少妇熟女aⅴ在线视频| 欧美日韩国产亚洲二区| 欧美激情国产日韩精品一区| 天天一区二区日本电影三级| 边亲边吃奶的免费视频| 精品不卡国产一区二区三区| 精品熟女少妇av免费看| 午夜日本视频在线| 床上黄色一级片| 成人漫画全彩无遮挡| 日韩欧美精品免费久久| 久久久久性生活片| av专区在线播放| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 国产乱人偷精品视频| 黄色一级大片看看| 少妇被粗大猛烈的视频| 少妇的逼好多水| 日本欧美国产在线视频| 国产乱人偷精品视频| 欧美日本视频| 成人毛片a级毛片在线播放| 亚洲欧美日韩无卡精品| 中文欧美无线码| www.色视频.com| 天美传媒精品一区二区| 精品久久久久久久久亚洲| 成年女人永久免费观看视频| 在线免费十八禁| 亚洲三级黄色毛片| 日本-黄色视频高清免费观看| 深夜a级毛片| www日本黄色视频网| 床上黄色一级片| 欧美成人a在线观看| 如何舔出高潮| 国产色婷婷99| 九草在线视频观看| 成人亚洲欧美一区二区av| 国产三级在线视频| 五月玫瑰六月丁香| 最后的刺客免费高清国语| 国产精品麻豆人妻色哟哟久久 | 国产日韩欧美在线精品| 国产av码专区亚洲av| 91aial.com中文字幕在线观看| 久久久久久国产a免费观看| 女人十人毛片免费观看3o分钟| 欧美色视频一区免费| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 自拍偷自拍亚洲精品老妇| 99九九线精品视频在线观看视频| 中文乱码字字幕精品一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 免费电影在线观看免费观看| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 午夜福利网站1000一区二区三区| 亚州av有码| 大香蕉97超碰在线| 久久精品熟女亚洲av麻豆精品 | 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 一级爰片在线观看| 中文字幕av成人在线电影| 亚洲怡红院男人天堂| 91精品伊人久久大香线蕉| 免费在线观看成人毛片| 国产精品野战在线观看| 在线a可以看的网站| 久久久久精品久久久久真实原创| or卡值多少钱| 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看| 九九在线视频观看精品| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 超碰97精品在线观看| 国产伦一二天堂av在线观看| 国产av在哪里看| 在线观看美女被高潮喷水网站| 一个人观看的视频www高清免费观看| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看| 国内揄拍国产精品人妻在线| 中国国产av一级| 国产视频内射| kizo精华| 日韩人妻高清精品专区| 亚洲内射少妇av| 最近2019中文字幕mv第一页| 免费一级毛片在线播放高清视频| 亚洲色图av天堂| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| av黄色大香蕉| 亚洲电影在线观看av| 长腿黑丝高跟| 国产精品国产三级国产专区5o | 亚洲国产欧美在线一区| 精品无人区乱码1区二区| 伊人久久精品亚洲午夜| 亚洲综合色惰| 1024手机看黄色片| 午夜久久久久精精品| 国产精品一区二区三区四区免费观看| 精品久久久久久电影网 | 尤物成人国产欧美一区二区三区| 国产伦理片在线播放av一区| 在线免费观看不下载黄p国产| 亚洲精品影视一区二区三区av| 国产黄色视频一区二区在线观看 | 少妇的逼好多水| 午夜爱爱视频在线播放| 日韩欧美在线乱码| 精品久久久久久久久亚洲| 成年女人永久免费观看视频| 亚洲五月天丁香| 在现免费观看毛片| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 18禁在线无遮挡免费观看视频| 亚洲在线观看片| 2021天堂中文幕一二区在线观| 一区二区三区高清视频在线| 久久精品综合一区二区三区| 亚洲成人久久爱视频| 高清视频免费观看一区二区 | 亚洲激情五月婷婷啪啪| av专区在线播放| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 九九爱精品视频在线观看| 日本熟妇午夜| 日本wwww免费看| 水蜜桃什么品种好| 边亲边吃奶的免费视频| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 亚洲五月天丁香| 男女那种视频在线观看| 日韩精品青青久久久久久| 成人无遮挡网站| 国产免费又黄又爽又色| 国产高潮美女av| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频| 干丝袜人妻中文字幕| 成年女人看的毛片在线观看| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 在线播放国产精品三级| 国内少妇人妻偷人精品xxx网站| 日日干狠狠操夜夜爽| 又爽又黄a免费视频| 久久99精品国语久久久| 国产在视频线精品| 国产免费男女视频| 亚洲18禁久久av| 国产v大片淫在线免费观看| 成人毛片60女人毛片免费| 久久精品久久精品一区二区三区| 一级爰片在线观看| 精品国产三级普通话版| 免费黄色在线免费观看| 波野结衣二区三区在线| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 内射极品少妇av片p| АⅤ资源中文在线天堂| 国产精品蜜桃在线观看| 国产精品.久久久| 国产成人福利小说| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 能在线免费看毛片的网站| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 免费观看的影片在线观看| 小说图片视频综合网站| 日韩成人av中文字幕在线观看| kizo精华| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 日韩av在线免费看完整版不卡| 精品一区二区三区视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 亚洲精品国产av成人精品| 少妇高潮的动态图| 观看美女的网站| 精品久久久久久久人妻蜜臀av| 日韩大片免费观看网站 | 熟女人妻精品中文字幕| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 亚洲性久久影院| 久久久精品94久久精品| 亚洲在线观看片| 日日撸夜夜添| 成年av动漫网址| 亚洲精品,欧美精品| 国产精品一区www在线观看| 国产在视频线在精品| 婷婷色综合大香蕉| 韩国av在线不卡| 国内精品美女久久久久久| 欧美成人一区二区免费高清观看| 一个人看视频在线观看www免费| 日韩强制内射视频| 国产在线男女| 精品久久久久久久久亚洲| 在线免费十八禁| 国产免费福利视频在线观看| 搡老妇女老女人老熟妇| 中文字幕久久专区| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 国产av码专区亚洲av| 国产高清有码在线观看视频| 成人漫画全彩无遮挡| 中文字幕制服av| 日本黄大片高清| 亚洲最大成人手机在线| 久久久久国产网址| 久久久精品94久久精品| 日本一本二区三区精品| 亚洲伊人久久精品综合 | 亚洲在线观看片| 久久久久久久久久黄片| 蜜桃久久精品国产亚洲av| 国产 一区精品| 干丝袜人妻中文字幕| 国产精品国产三级专区第一集| 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 少妇高潮的动态图| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 欧美一区二区国产精品久久精品| 中文字幕久久专区| 亚洲自偷自拍三级| 99热这里只有是精品50| 免费av毛片视频| 国产亚洲av片在线观看秒播厂 | 欧美变态另类bdsm刘玥| 美女黄网站色视频| 人妻少妇偷人精品九色| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 成年版毛片免费区| 岛国在线免费视频观看| 免费看光身美女| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 色哟哟·www| 99热精品在线国产| 一边亲一边摸免费视频| 精品久久久噜噜| 国产av不卡久久| 成人欧美大片| 国产精品日韩av在线免费观看| 一级毛片aaaaaa免费看小| 麻豆国产97在线/欧美| 亚洲av中文字字幕乱码综合| 国产av不卡久久| 一级毛片aaaaaa免费看小| 色哟哟·www| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 日韩一区二区视频免费看| 有码 亚洲区| 久久久欧美国产精品| 日韩强制内射视频| 欧美日本视频| 青青草视频在线视频观看| 亚洲,欧美,日韩| 观看美女的网站| 国内精品一区二区在线观看| 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜 | av在线蜜桃| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 国产69精品久久久久777片| av国产免费在线观看| 别揉我奶头 嗯啊视频| 亚洲av男天堂| 国产高清三级在线| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 免费一级毛片在线播放高清视频|