• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Modi fi ed Thermodynamics Method to Generate Exact Solutions of Einstein Equations?

    2017-05-18 05:56:28HongWeiTan譚鴻威JinBoYang楊錦波TangMeiHe何唐梅andJingYiZhang張靖儀
    Communications in Theoretical Physics 2017年1期

    Hong-Wei Tan(譚鴻威),Jin-Bo Yang(楊錦波),Tang-Mei He(何唐梅),and Jing-Yi Zhang(張靖儀)

    Center for Astrophysics,Guangzhou University,Guangzhou 510006,China

    1 Introduction

    Since Bekenstein found the relationship between black hole dynamics and thermodynamics,[1]and Hawking presented Hawking radiation according to the quantum field theory in curved spacetime,[2]which is a pure thermodynamical radiation,the researchers have focused on the deep relationship between the theory of the gravitation and thermodynamics for a long time.

    In fact,black hole thermodynamics can be viewed as spacetime thermodynamics,which means that the properties of the physical objects in black hole thermodynamics is global on a manifold which is equipped with a Lorentz metric,known as a spacetime.However,it is very difficult to construct thermodynamics in general situations for some common physical quantities such as mass,entropy and angular momentum which can not be well de fi ned.Moveover,in general spacetime,the thermodynamics is usually need to be considered as nonequilibrium state,which is very difficult to be dealt with even for ordinary matter.Though there are such difficulties to overcome,it does not stop the researchers from deriving the Einstein equations from thermodynamic laws.[3]

    In 1995,Jacobson derived the Einstein equations from the basic equations of thermodynamics and the Raychaudhuri equations on the null hypersurface,[4]by using the local first law of equilibrium thermodynamics.In such work,the researchers used the assumption that the entropy is proportional to the area of the local Rindler horizon of an in fi nitely accelerated observer,and the Hawking-Unruh temperature,which had been exploited in Ref.[5],was treated as the temperature observed by such observer.Basing on such assumptions,the Einstein equations were derived.However,in that work,the researchers assumed that the spacetime is in a locally thermal equilibrium system,but as the equations that describe the evolution of all kinds of spacetime,Einstein equations are expected to be able to describe all kinds of spacetime’s evolution in principle naturally,including the spacetime that does not satisfy the locally thermal equilibrium assumption.In other words,the researchers obtained the equations that can describe general situations only based on a special assumption,which is unnatural in logic.[3]

    For this reason,Ref.[3]put forward a new method to deal with this problem.In their paper,the researchers considered the spacetime equipped with spherically symmetry,whose metric ansatz is ds2=?f(r)dt2+h(r)dr2+r2d?2.In such spacetime,the energy of the gravitational field was de fi ned as the Misner–Sharp energy.[6]Firstly,the researchers applied the first law of equilibrium thermodynamics in an adiabatic system,dM=dW,to derive h(r).Deriving f(r)is a difficult task,to solve such problem,the researchers assumed that the surface gravity de fi ned in the traditional way is equal to the geometry surface de fi ned by the uni fi ed first law,[7]and then they generated several exact solutions of the Einstein equations.Furthermore,the authors also improved their work to high derivative gravity,and there is a mini review in Ref.[8].There is no doubt that the amazing results obtained in Ref.[3]provide a new way to study the gravitational thermodynamics.However,there is a limitation in this method,since such method requires the symmetry of the spacetime strictly because the Misner–Sharp energy can only be de fi ned in the spacetime with a spherically symmetry,a plane symmetry as well as a Pseudo spherically symmetry.[9?11]This difficulty motivates us to modify this method.

    There are two steps of such modi fication introduced in our paper.Firstly,we replace the Misner–Sharp mass with only the Komar mass,[12]by using the first law of equilibrium thermodynamics in an adiabatic system just like the original method did,and then the results obtained here are similar with that obtained in the original method.Note that the Definition of the Komar mass only requires that the spacetime is stationary,it means that once there is a time-like Killing vector in the spacetime,then our method can be used in principle.In addition,the black hole solution surrounded by quintessence is also generated in this paper.Our another achievement is that we construct another Definition of the geometry surface gravity,which is de fi ned by the Komar mass.In the second step of our work,we use the ADM mass,[13]together with the Komar mass to complete such modi fication.If we do so,then we can also regenerate these exact solutions of Einstein equations.Furthermore,we modify the Definition of the ADM mass,and then the global monopole spacetime can be generated.

    This paper is organized as follows:in Sec.2 we modify this method with only the Komar mass,and generate several exact solutions of Einstein equations.The geometry surface gravity de fi ned by Komar mass is also construct in this section.In Sec.3,we introduce the method modi fi ed by both the Komar mass and the ADM mass,and some comments on the situation that the spacetime with global monopole charge is arisen.In Secs.4 and 5,some discussion and conclusion are given.

    2 Modi fi ed with Only Komar Mass

    In this section,the method modi fi ed with only the Komar mass will be introduced.Here,the metric ansatz of a spherically symmetric spacetime is

    In a stationary spacetime,the Komar mass can be de fi ned as

    where ?abcdis the volume element of the four-dimensional spacetime and ξdis a time-like Killing vector field.According to the two formulas above,one can get the Komar mass in this metric ansatz as

    In the spherically symmetric spacetime,according to the uni fi ed first law,the geometry surface gravity can be de fi ned as[7]

    in which Mmsis the Misner–Sharp energy de fi ned as[6]

    and ω is the work term de fi ned as[7]

    where Iabis the inverse of the induced metric of the spacetime in the leading two dimensions whose line element reads

    On the other hand,in Eq.(1),the surface gravity is

    In Ref.[3],the researchers assumed that the surface gravity is equal to the geometry surface gravity

    In this paper we will follow this assumption.According to Eqs.(3),(4),(8),and(9),we can obtain the relationship between the Komar mass and the Misner–Sharp energy as

    2.1 The Schwarzschild Solution

    Considering a vacuum spacetime and the first law of equilibrium thermodynamics in an adiabatic system,one can get

    The energy-stress tensor is zero in the vacuum space,so the work term ω must be zero.Combining Eqs.(5),(10),and(11)together,we have

    Solving this equation,the result reads

    Substituting it into Eqs.(3)and(5),and combing with Eq.(10),f(r)is obtained as

    If we choose the asymptotically fl at spacetime as the boundary condition,then

    And the Komar mass reads

    Finally the result can be written as

    It is exactly the line element of the Schwarzschild spacetime.Now we can draw a conclusion that the Kormar mass describes an adiabatic process.Furthermore,combining Eqs.(3),(8),(9)together,one can obtain the geometry surface gravity de fi ned by the Komar mass as

    2.2 The Schwarzschild-de Sitter Solution

    Now let us deal with the situation that there is force works.Considering the first law of thermodynamics again

    wherePdonates the pressure and V is the volume

    the work term is[3]

    where Λ can be viewed as the cosmological constant.Substituting it into Eq.(10),then the Komar mass reads

    Based on Eqs.(19),(21),(22),we get

    Letting the Λ =4πP,the results are read as

    It is just the line element of the Schwarzschild de Sitter spacetime

    2.3 The RN-de Sitter Solution

    Furthermore,in the situation that there is an electric charge is considered,then

    Reference[3]assumed that the work of the electric field can be written as(q/r)dq,however,we find that using this assumption can not derive the RN solution.Indeed,in Ref.[7]the work of the electric force is considered as(q2/r2)dr.Moreover,if we use this as the assumption and then the RN solution can be obtained,which will be expressed as follows.

    To be more general,we should consider that there are both force and electric field doing work,so the work term is written as[3]

    One can obtain the Komar mass in this situation as

    So,we can get the equation as

    Considering Λ =4πPand solving the equation above,the solution is obtained as

    Substituting this into Eq.(3),we get

    And therefore,the line element of RN-de Sitter spacetime is obtained,that is,

    2.4 More General Situations

    In more general situations,if it is assumed that the work term ω and the pressurePare both power functions of r,applying the first law of thermodynamics,for convenient,the equation should be expressed as

    where a,b,c and d are all constants.The solution of this equation is

    If it is assumed that a,b,c and d are not independent with each other but constrained by following conditions

    then h can be rewritten as

    Above formula can be inserted into Eq.(10),then one can get

    and the solution is

    Setting C2=0,one can

    Rede fi ning a new parameter α as

    then the line element of the spacetime is

    where α can be viewed as the charge of the spacetime.For some speci fic examples,if α=0,then a=c=0,the Schwarzschild solution can be obtained,and if d=?1,then one arrives at the RN spacetime and α=q2,where q is the electric charge.

    Noted that if the range of d is set as

    then we arrive at the black hole solution surrounded by quintessence,which has been obtained by Kiselev in 2003.[14]

    It should be careful that when d=1.In such situation the solution is

    it seems that the global monopole spacetime is generated.However,if above is submitted into Eq.(3),then the Kormas can be obtained as

    and then the thermodynamical relationship reads

    which means that there is not any work in this situation.It requires that

    in Eq.(36),then we just arrive at the Schwarzschild situation again.

    3 Modi fi ed with both Komar Mass and ADM Mass

    In an asymptotically fl at sapcetime,the ADM mass can be de fi ned as[13]

    where the hijis the spatial component of the induced metric in the asymptotically Descartes coordinates.In our spacetime metric ansatz,the line element of the induced metric can be written as

    Since what we consider now is an asymptotically fl at sapcetime,so it can be believed that

    So the spatial line element can be written approximately as

    After some calculations,the ADM mass can be written as

    After the limitation has been taken,then

    3.1 The Schwarzschild Solution

    Applying again the first law of thermodynamics in a vacuum spacetime which is in an adiabatic system

    then the following differential equation can be obtained

    Solving this equation,the result reads

    The condition of asymptotic fl at spacetime requires that C1=1.Submitting Eq.(56)into Eq.(53),then the result can be obtained as

    Inserting above result into the Komar mass(3)and using the first law of thermodynamic

    then the following equation can be obtained

    Solving the above equation,the result is

    If the integral constants are chosen as

    then the solution can be written as follows

    Combining Eqs.(3),(57),and(62)together,then the following result is obtained

    This result suggests that our method is reasonable.Applying this result into Eq.(1),then the Schwarzschild solution can be obtained

    3.2 A Comment on the Spacetime with a Global Monopole Charge

    Let us consider Eq.(53)again,which is under the condition that Now,let us assume that Eq.(53)still works in the spacetime with a global monopole charge.However,such spacetime is not a spherically symmetry spacetime anymore.Speci fically,let us consider a global monopole spacetime,whose line element is

    where η is a constant.This line element can be rescaled as

    In this spacetime,the integral∫dS is not 4π but 4π(1?8πη2),see Ref.[15].So,in order to carry the information of the global charge,we de fi ne the ADM mass in such spacetime as

    It should be noted that when η=0,the Definition above reduces to Eq.(53).Now we have generalized the definition of ADM mass in the spacetime with a global monopole charge,and let us call this mass as quasi ADM mass.

    Now we are ready to explore what such generalization will give us.Firstly,we consider a global monopole spacetime.By using the Definition of the quasi ADM mass,then

    Next,let us consider the global monopole spacetime with an electric charge,whose line element is

    With calculation,the thermodynamical relationship can be obtained as

    This result means that the global monopole charge results in a correction factor in the thermodynamical relationship.

    Whatever,it is obvious that the first law of thermodynamics can be obtained in our Definition of quasi ADM mass,which suggests that such generalization is reasonable.

    4 Discussion

    There are several comments on our work introduced as follows:

    (i)In Sec.3,we introduce the method that modi fi ed by both the Komar mass and the ADM mass.However,to be honest,only the Schwarzschild solution has been generated completely in our work.However,with some trick,some other exact solutions can also be regenerated.Let us take the RN solution as an example.Firstly,let us consider the thermodynamical relationship for ADM mass in this situation

    and the solution reads

    Submitting above into Eq.(3),and using the same thermodynamical relationship,then we have

    the above equation is too difficult to be solved,but we can check that the following is one particular solution of this equation:

    Here,the RN spacetime is generated though this trick is not strict enough.

    (ii)Some analyses about the situation that the spacetime with global monopole charge are also given in Sec.3.However,we can consider the inverse logic.We assume that the thermodynamical relationship still works in this situation.In the vacuum,the thermodynamical relationship reads

    and the solution reads

    In this situation,the requirement of the asymptotically fl at sapcetime is loosen,so the integral constant can be chosen as C1=1?η,and the result reads

    The f(r)can also be solved as

    Then the global monopole spacetime has been generated.

    5 Conclusion

    In this paper,we modify the method to generate the exact solution of the Einstein equations with the laws of thermodynamics which was arisen in Ref.[3].In Ref.[3],the researchers used the Misner–Sharp energy and uni fi ed first law to derive several exact solutions of Einstein equations without involving it.However,the Misner–Sharp energy can only be de fi ned in the spacetime with a spherically symmetry,a plane symmetry as well as a Pseudo spherically symmetry,which limits this method to be generalized to more general situation.

    This method is modi fi ed in two steps in this paper.Firstly,we use only the Komar mass to take the place of the Misner–Sharp energy to modify such method,and then several exact solutions of the Einstein equations are regenerated.Moreover,we obtain the geometry surface gravity de fi ned by the Komar mass in the specially symmetry spacetime.Since the Komar mass requires the symmetry less than the Misner–Sharp energy,means that method could be used in more situations general in principle.

    Secondly,we modify this method with both the Komar mass and the ADM mass,some exact solutions of Einstein can also be regenerated.Moreover,the quasi ADM mass de fi ned in the spacetime with a global monopole charge and some thermodynamical properties of such mass are analyzed.We find that the first law of thermodynamics still works in such mass,and the global charge plays an important role in the relationship between the extra field and the work done by such extra field.

    References

    [1]J.D.Beckenstein,Phys.Rev.D 7(1973)2333.

    [2]S.W.Hawking,Commun.Math.Phys.43(1975)199.

    [3]H.Zhang,S.A.Hayward,X.H.Zhai,and X.Z.Li,Phys.Rev.D 89(2014)064052.

    [4]T.Jacobson,Phys.Rev.Lett.75(1995)1260.

    [5]W.G.Unruh,Phys.Rev.D 14(1976)870.

    [6]C.w.Misner and D.H.Sharp,Phys.Rev.136(1964)B571.

    [7]Hayward,Classical Quant.Grav.15(1998)3147.

    [8]Hong-Sheng Zhang,The Universe 3(2015)30.

    [9]H.Maeda and Nozawa,Phys.Rev.D 77(2008)064031.

    [10]R.G.Cai,L.M.Cao,Y.P.Hu,and N.Ohta,Phys.Rev.D 80(2009)104019.

    [11]H.Zhang,Y.Hu,and X.Z.Li,Phys.Rev.D 90(2014)024062.

    [12]A.Komar,Phys.Rev.113(1959)934.

    [13]R.Arnowitt,S.Deser,and C.Misner,Gen.Relativ.Grav.40(2008)1987.

    [14]V.V.Kiselev,Classical Quant.Grav.20(2003)1187.

    [15]Manuel Barriola and Alexander Vilenkin,Phys.Rev.Lett.63(1989)341.

    麻豆精品久久久久久蜜桃| 一二三四中文在线观看免费高清| 啦啦啦中文免费视频观看日本| 亚洲婷婷狠狠爱综合网| 久久精品久久久久久久性| 国产欧美日韩一区二区三区在线 | 一边亲一边摸免费视频| 久久综合国产亚洲精品| 女性被躁到高潮视频| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 国产在线视频一区二区| 亚洲欧美一区二区三区黑人 | 亚洲国产日韩一区二区| 2022亚洲国产成人精品| 啦啦啦在线观看免费高清www| 久久青草综合色| 久久久久国产精品人妻一区二区| 精品亚洲成国产av| 成年人免费黄色播放视频| 欧美精品一区二区大全| 狠狠婷婷综合久久久久久88av| 精品人妻偷拍中文字幕| 久久热精品热| 日本wwww免费看| xxxhd国产人妻xxx| 成年人午夜在线观看视频| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 亚洲精品亚洲一区二区| 精品午夜福利在线看| 国产精品久久久久久av不卡| 久久精品久久久久久久性| 亚洲人成网站在线观看播放| 亚洲国产精品一区二区三区在线| 国产免费现黄频在线看| 亚洲精品视频女| 免费不卡的大黄色大毛片视频在线观看| 免费观看无遮挡的男女| 国产黄色视频一区二区在线观看| 久久久国产欧美日韩av| 国产成人精品福利久久| 国产黄色免费在线视频| 男人操女人黄网站| 日韩,欧美,国产一区二区三区| 亚洲av中文av极速乱| 精品一区二区免费观看| 亚洲国产精品专区欧美| 国产精品无大码| 成年美女黄网站色视频大全免费 | 亚洲精品国产色婷婷电影| 日日撸夜夜添| av免费在线看不卡| 亚洲欧洲国产日韩| 国产欧美日韩综合在线一区二区| 精品酒店卫生间| 青春草视频在线免费观看| 国产一区二区三区综合在线观看 | 亚洲av.av天堂| 国产白丝娇喘喷水9色精品| 看免费成人av毛片| 亚洲经典国产精华液单| 日本91视频免费播放| 日韩一区二区三区影片| 久久99热这里只频精品6学生| 精品午夜福利在线看| www.色视频.com| 日韩一本色道免费dvd| 亚洲经典国产精华液单| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 亚洲人与动物交配视频| 最近最新中文字幕免费大全7| 男女高潮啪啪啪动态图| 欧美日韩国产mv在线观看视频| av天堂久久9| av一本久久久久| 美女xxoo啪啪120秒动态图| 搡老乐熟女国产| 午夜福利视频精品| 最近手机中文字幕大全| 性色av一级| 亚洲av成人精品一区久久| 免费黄频网站在线观看国产| 国产乱人偷精品视频| 精品一区二区三区视频在线| 免费观看性生交大片5| 九色成人免费人妻av| 国产成人91sexporn| 考比视频在线观看| 熟女电影av网| 亚洲精品,欧美精品| 午夜福利网站1000一区二区三区| 高清午夜精品一区二区三区| 成人黄色视频免费在线看| 极品人妻少妇av视频| 狂野欧美激情性xxxx在线观看| 美女内射精品一级片tv| 久久99热6这里只有精品| 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 日本免费在线观看一区| 午夜av观看不卡| a级毛片免费高清观看在线播放| 好男人视频免费观看在线| 国产亚洲欧美精品永久| 美女大奶头黄色视频| 九草在线视频观看| videosex国产| 国产高清有码在线观看视频| 久久精品久久久久久噜噜老黄| 十分钟在线观看高清视频www| √禁漫天堂资源中文www| 中文精品一卡2卡3卡4更新| 一级a做视频免费观看| av女优亚洲男人天堂| 亚洲图色成人| 欧美激情极品国产一区二区三区 | 丝袜美足系列| 好男人视频免费观看在线| 国产欧美日韩一区二区三区在线 | 制服诱惑二区| 国产精品无大码| 3wmmmm亚洲av在线观看| 插阴视频在线观看视频| 国产精品一区二区三区四区免费观看| 另类亚洲欧美激情| 亚洲av二区三区四区| 18+在线观看网站| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 丰满乱子伦码专区| 亚洲国产精品成人久久小说| 免费黄网站久久成人精品| 午夜影院在线不卡| 国产69精品久久久久777片| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| 久久av网站| 男人操女人黄网站| av天堂久久9| 在线 av 中文字幕| 午夜影院在线不卡| 欧美最新免费一区二区三区| 搡女人真爽免费视频火全软件| 免费av中文字幕在线| 一边亲一边摸免费视频| 国产成人免费无遮挡视频| av电影中文网址| 国产在线一区二区三区精| 国产深夜福利视频在线观看| 国模一区二区三区四区视频| 一级毛片电影观看| 成人黄色视频免费在线看| av在线播放精品| 亚洲,一卡二卡三卡| 国产精品嫩草影院av在线观看| 人妻系列 视频| 亚洲人与动物交配视频| 两个人免费观看高清视频| 99精国产麻豆久久婷婷| 国产永久视频网站| 久久久久久伊人网av| 久久综合国产亚洲精品| 一级毛片我不卡| 久久久久视频综合| 国产日韩欧美亚洲二区| 久久久久久久久大av| 少妇的逼水好多| 国产精品不卡视频一区二区| 满18在线观看网站| av.在线天堂| 极品人妻少妇av视频| 久久久久久久精品精品| 亚洲不卡免费看| 五月开心婷婷网| 久久久久久久久久久久大奶| 777米奇影视久久| 老司机影院成人| 亚洲精品久久成人aⅴ小说 | 男的添女的下面高潮视频| 少妇人妻 视频| 国产片内射在线| 日本-黄色视频高清免费观看| 在线播放无遮挡| 久久久亚洲精品成人影院| 国产精品免费大片| 免费av中文字幕在线| 欧美日韩av久久| 交换朋友夫妻互换小说| 另类精品久久| 丝袜喷水一区| 久久久国产欧美日韩av| 色94色欧美一区二区| 成人国产麻豆网| 男女免费视频国产| 亚洲第一区二区三区不卡| 人妻制服诱惑在线中文字幕| 国产免费福利视频在线观看| 亚洲av中文av极速乱| 亚洲精品自拍成人| 久久久久久久久大av| 人人妻人人添人人爽欧美一区卜| 大香蕉97超碰在线| 精品一区二区三区视频在线| 99热6这里只有精品| 免费少妇av软件| 国产成人一区二区在线| 狠狠婷婷综合久久久久久88av| 国产极品粉嫩免费观看在线 | 免费不卡的大黄色大毛片视频在线观看| 99久久精品国产国产毛片| 丝袜在线中文字幕| 亚洲av成人精品一二三区| 亚洲色图综合在线观看| 又大又黄又爽视频免费| 国产精品一国产av| 国产国拍精品亚洲av在线观看| 美女xxoo啪啪120秒动态图| 一级a做视频免费观看| 国产精品国产三级国产av玫瑰| 天美传媒精品一区二区| 99久久人妻综合| 中文欧美无线码| 国产精品女同一区二区软件| 国产黄色视频一区二区在线观看| 亚洲av成人精品一区久久| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 自拍欧美九色日韩亚洲蝌蚪91| 在现免费观看毛片| 日韩视频在线欧美| 中文天堂在线官网| 色哟哟·www| 在线观看免费高清a一片| av在线app专区| 两个人的视频大全免费| 国产亚洲最大av| 国产无遮挡羞羞视频在线观看| 99国产精品免费福利视频| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 赤兔流量卡办理| 人体艺术视频欧美日本| 91久久精品电影网| videosex国产| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 国产精品麻豆人妻色哟哟久久| 国产av码专区亚洲av| 日韩三级伦理在线观看| av卡一久久| 国产成人91sexporn| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 国产 精品1| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 国产成人精品久久久久久| 久久午夜综合久久蜜桃| 亚洲精品乱码久久久v下载方式| 纵有疾风起免费观看全集完整版| 观看美女的网站| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| videossex国产| 欧美激情 高清一区二区三区| 最黄视频免费看| 国产精品嫩草影院av在线观看| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 91久久精品电影网| 国产综合精华液| 一个人免费看片子| 久久99精品国语久久久| 婷婷色综合www| 伦精品一区二区三区| 欧美精品国产亚洲| 国产精品久久久久久精品古装| 99视频精品全部免费 在线| 久久午夜综合久久蜜桃| 亚洲欧美色中文字幕在线| av免费观看日本| 老司机亚洲免费影院| 伦理电影大哥的女人| 国产亚洲午夜精品一区二区久久| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 午夜老司机福利剧场| 日韩成人伦理影院| av播播在线观看一区| 免费久久久久久久精品成人欧美视频 | 国产毛片在线视频| 亚洲精品日韩在线中文字幕| 亚洲色图 男人天堂 中文字幕 | 亚洲国产精品专区欧美| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 午夜福利视频在线观看免费| 久久久久久久久久成人| 少妇被粗大猛烈的视频| 美女福利国产在线| 在线观看人妻少妇| 人成视频在线观看免费观看| 成人漫画全彩无遮挡| 热re99久久精品国产66热6| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 在线播放无遮挡| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 欧美精品高潮呻吟av久久| 91久久精品电影网| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线 | 青青草视频在线视频观看| 中文字幕亚洲精品专区| 中文字幕人妻丝袜制服| 色哟哟·www| 久热久热在线精品观看| 国产av精品麻豆| 多毛熟女@视频| 人妻系列 视频| 少妇高潮的动态图| 啦啦啦在线观看免费高清www| 在线免费观看不下载黄p国产| 大香蕉久久网| 日韩中文字幕视频在线看片| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 亚洲欧洲精品一区二区精品久久久 | 嫩草影院入口| 日韩精品免费视频一区二区三区 | 亚洲国产精品999| 欧美人与性动交α欧美精品济南到 | 美女福利国产在线| 亚洲人成网站在线播| 免费高清在线观看日韩| 99热网站在线观看| 午夜激情av网站| 高清视频免费观看一区二区| 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 有码 亚洲区| 香蕉精品网在线| 日本黄色日本黄色录像| 一区二区日韩欧美中文字幕 | 精品亚洲乱码少妇综合久久| 永久网站在线| 在线观看美女被高潮喷水网站| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 免费观看无遮挡的男女| 久久狼人影院| 亚洲av中文av极速乱| 丝袜美足系列| 国产成人午夜福利电影在线观看| 亚洲国产av影院在线观看| 国内精品宾馆在线| 99re6热这里在线精品视频| 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| 国产精品不卡视频一区二区| 亚洲怡红院男人天堂| 国产亚洲一区二区精品| 国产有黄有色有爽视频| av天堂久久9| 99久久人妻综合| 久久免费观看电影| 视频中文字幕在线观看| 十八禁高潮呻吟视频| 久久99精品国语久久久| 能在线免费看毛片的网站| 日韩成人伦理影院| 亚洲av.av天堂| 国产乱来视频区| 精品国产一区二区三区久久久樱花| 男女高潮啪啪啪动态图| 亚洲少妇的诱惑av| 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 18+在线观看网站| 日韩大片免费观看网站| 亚洲av综合色区一区| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生| 亚洲欧美色中文字幕在线| 日韩伦理黄色片| 少妇人妻精品综合一区二区| videosex国产| 国产精品一区二区在线不卡| av在线老鸭窝| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 最近最新中文字幕免费大全7| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 999精品在线视频| 两个人的视频大全免费| 91精品国产国语对白视频| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 黄片无遮挡物在线观看| 国内精品宾馆在线| 波野结衣二区三区在线| 视频中文字幕在线观看| 成人午夜精彩视频在线观看| 成人国语在线视频| 99热这里只有是精品在线观看| av.在线天堂| 少妇猛男粗大的猛烈进出视频| 97超碰精品成人国产| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 女性被躁到高潮视频| 久久国产精品大桥未久av| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩综合在线一区二区| 最近2019中文字幕mv第一页| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 精品人妻熟女毛片av久久网站| 五月玫瑰六月丁香| 91精品国产九色| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 国产一区二区三区综合在线观看 | 日韩精品有码人妻一区| 久久久亚洲精品成人影院| 欧美+日韩+精品| 国产午夜精品久久久久久一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产av国产精品国产| 91精品国产九色| 亚洲成人av在线免费| 最黄视频免费看| 美女大奶头黄色视频| 成人国产av品久久久| 精品国产国语对白av| 亚洲综合精品二区| 亚洲av不卡在线观看| 久热这里只有精品99| 黄片无遮挡物在线观看| 一二三四中文在线观看免费高清| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 女人精品久久久久毛片| 蜜桃久久精品国产亚洲av| 大码成人一级视频| 18+在线观看网站| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| 只有这里有精品99| 国产乱人偷精品视频| 美女国产视频在线观看| 男女无遮挡免费网站观看| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 中文字幕人妻丝袜制服| 少妇 在线观看| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆| a级毛片免费高清观看在线播放| 欧美激情国产日韩精品一区| 成人无遮挡网站| 日本黄大片高清| 国产69精品久久久久777片| 亚洲美女视频黄频| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂| 人人妻人人澡人人爽人人夜夜| 99九九在线精品视频| 交换朋友夫妻互换小说| 18禁动态无遮挡网站| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验| av国产精品久久久久影院| 黄色一级大片看看| 一本一本综合久久| 亚洲精品日韩av片在线观看| 在线观看一区二区三区激情| 国产片内射在线| 九草在线视频观看| 国内精品宾馆在线| 国产黄频视频在线观看| 久久精品国产鲁丝片午夜精品| 夫妻午夜视频| 久久久国产精品麻豆| a 毛片基地| 亚洲精品日韩av片在线观看| 免费少妇av软件| 成人漫画全彩无遮挡| 亚洲经典国产精华液单| 亚洲精品日本国产第一区| av在线观看视频网站免费| 久久精品国产a三级三级三级| 国国产精品蜜臀av免费| 精品酒店卫生间| 久久久久人妻精品一区果冻| av专区在线播放| 久久国产亚洲av麻豆专区| 国产精品99久久久久久久久| 日韩免费高清中文字幕av| 男女免费视频国产| 一级毛片我不卡| 不卡视频在线观看欧美| 国产免费福利视频在线观看| 亚洲av国产av综合av卡| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 一区二区三区精品91| 国内精品宾馆在线| 日韩熟女老妇一区二区性免费视频| 欧美少妇被猛烈插入视频| 伊人久久国产一区二区| 在线看a的网站| 亚洲精品av麻豆狂野| 亚洲性久久影院| 有码 亚洲区| 亚洲av成人精品一区久久| 亚洲色图 男人天堂 中文字幕 | 国产一区二区三区av在线| 涩涩av久久男人的天堂| 久久久久人妻精品一区果冻| 你懂的网址亚洲精品在线观看| 在线观看www视频免费| 久久久久久伊人网av| av视频免费观看在线观看| 热re99久久国产66热| 欧美精品人与动牲交sv欧美| 特大巨黑吊av在线直播| 日韩av免费高清视频| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 永久免费av网站大全| 免费看av在线观看网站| 精品久久蜜臀av无| 免费看光身美女| 国内精品宾馆在线| 婷婷色综合大香蕉| 国产色婷婷99| 国产成人av激情在线播放 | 国产高清有码在线观看视频| 色网站视频免费| 久久99热6这里只有精品| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 大香蕉97超碰在线| 精品国产乱码久久久久久小说| 精品视频人人做人人爽| 大片免费播放器 马上看| av在线观看视频网站免费| 在线观看一区二区三区激情| 亚洲欧美日韩卡通动漫| 永久免费av网站大全| 99久久人妻综合| 中文字幕最新亚洲高清| 国产不卡av网站在线观看| 大片免费播放器 马上看| 大香蕉久久成人网| 国产成人系列免费观看| 午夜免费鲁丝| 久久久久久久精品吃奶| 国产精品影院久久| 青青草视频在线视频观看| 国产免费福利视频在线观看| 久久人人97超碰香蕉20202| 久久影院123| 亚洲一码二码三码区别大吗| 18禁观看日本| 国产精品免费大片| 国产精品一区二区在线观看99| 精品少妇一区二区三区视频日本电影| 成人国语在线视频| 人人妻人人爽人人添夜夜欢视频| 丁香六月欧美| 亚洲av欧美aⅴ国产| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 亚洲免费av在线视频| 青青草视频在线视频观看| 精品乱码久久久久久99久播| 精品久久久久久电影网|