• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Patterns of the Two-Dimensional Rogue Waves:(2+1)-Dimensional Maccari System?

    2017-05-12 08:52:43GaiHuaWang王改華LiHongWang王立洪JiGuangRao饒繼光andJingSongHe賀勁松
    Communications in Theoretical Physics 2017年6期

    Gai-Hua Wang(王改華),Li-Hong Wang(王立洪),Ji-Guang Rao(饒繼光),and Jing-Song He(賀勁松),?

    1Department of Mathematics,Ningbo University,Ningbo 315211,China

    2School of Mechanical Engineering&Mechanics,Ningbo University,Ningbo 315211,China

    3School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China

    1 Introduction

    Rogue waves(RWs)in the ocean are catastrophic natural phenomena with a long history and fascinating mariner stories,[1]which are also called as freak waves,monster waves,killer waves,extreme waves and abnormal waves.Recently,a growing consensus is that both oceanic and optical rogue waves[2?3]appear as a result of modulation instability of monochromatic nonlinear waves.The well known prototype of the RW in(1+1)-dimensional equation is the first-order RW solution of the NLS,which is also called Peregrine solution.[4]This fundamental solution has one large peak with three-times height of the asymptotical background surrounded by two deep hollows.There are many elegant patterns of the higher-order RWs constructed from the “brick”-the first order RW,which demonstrate the triangular,circular,triplet,pentagram,heptagram,claw-line,[5?8]etc. These rogue waves are localized in both space and time.Specifically,it arises from the background at very early stage of the evolution,then reaches the main peak(or maximum of amplitude)of the fundamental pattern or the area of strong interaction of other patterns mentioned in above,and eventually retreats back to the same background again.So rogue wave is often said that“appear from nowhere and disappear without a trace”.[9]The vivid feature of the firstorder rogue wave can be summarized as follows:[10](i)(quasi-)rational solution(or equivalently rational modulus of solution);(ii)localized doubly in both time and space;and(iii)large amplitude(the peak has a height at least three times of background)allocated with one hole in each side.In addition to the NLS equation,[11?16]rogue waves have also been found in other wave equations,such as the Hirota equation,[17?18]the complex modified Korteweg–de Vries(mKdV)equation,[19]the derivative NLS equations,[20?26]the Sasa-Satsuma equation,[27?28]the two-component NLS equations,[29?31]the threecomponent NLS equations,[32?33]“AB” system[34]and other equations.[10,35?39]These results show that RWs may be generic phenomena in nonlinear systems.

    There are two propelling forces to study the RWs in two-dimensional-spatial and one-dimensional((2+1)-dimensional)temporal systems.The first is to explore the existence of the rogue waves in higher-dimensional space in order to extend the degree of the universality of the phenomena from the mathematical view. The second is originated from a realistic demand to establish the dynamical models with two spatial variables because of the two-dimensional nature of ocean RWs.Indeed,there are several(2+1)-dimensional equations such as the Davey–Ste warts on(DS)equation,[40?41]Yajima–Oikawa systems,[42]Fokas system,[43]which have rogue waves expressed by more complicated rational solutions.Above results show that the first-order RW in a(2+1)-dimensional equation is a line RW in(x,y)-plane,which is also used as“brick” to construct the higher-order RWs.The line pro file with two valleys of this fundamental(2+1)-dimensional RW generates gradually from a background,and then reaches the maximum around the timet=0,and finally decreases back into the background again.By comparing with the rich patterns[5?8]of the higher-order(1+1)-dimensional RWs,there just few patterns for the higher-order(2+1)-dimensional RWs,which is due to the complexity of the later,and the extreme difference between the interaction of their two “bricks”(i.e.,peak and line).However,recognizing new patterns of the(2+1)-dimensional RWs is useful to provide early warning of the ocean RWs.Thus,the(2+1)-dimensional RWs deserve further deep study with more efforts based on different methods.

    In this paper,we focus on the new patterns of the RWs for the two-dimensional Maccari system,[44]that is

    whereu≡u(x,y,t)andv≡v(x,y,t)represent a complex scalar field and a real scalar field,respectively.When“y=x”,it is similar[45](see its Eq.(6.6))to Zakharov equation[46]by a simple substitution,which is a model to describe the interaction between Langmuir(dispersive)and ion acoustic(approximately nondispersive)waves in a plasma.This fact provides a possible physical background of the two-dimensional Maccari system.Moreover,the nonlinear phenomena described by the Maccari system perhaps has connection with nonlinear waves of some models possessing modulated nonlinearities[47?48]and many methods can solve the nonlinear equations,such as Refs.[49–50].The Maccari system is derived by Maccari for the first time from the Kadomtsev–Petviashvili equation using asymptotically exact reduction method based on Fourier expansion and spatiotemporal re-scaling,and it is an integrable system because its Lax pair is obtained by applying the reduction technique to the Lax pair of the KP equation.[44]There are several kinds of solutions including periodic wave solutions and solitons for the Maccari system solved by several methods.[51?56]However,to the best of our knowledge,its lumps and rogue waves expressed by rational forms are still undisplayed in literatures.Therefore,the main purpose of the paper is to look for new patterns of the rogue waves from rational solutions of the Maccari system using the bilinear method.

    The plan in the paper is as follows:In Sec.2,an explicit formula of the rational solution is expressed by determinants using the bilinear method,which is used to discuss the lumps and rogue waves.In Sec.3,the twelve new patterns of the rogue waves are given from the different combinations of the first-order line-rogue waves.In Sec.4,the summary and discussion on the main results are provided.

    2 An Explicit Rational Solution in the Determinant Form

    In this section,we shall construct an explicit formula of the rational solution for the Maccari system by bilinear method.To this end,set following variable transformation

    wherefis a real function andgis a complex function,then Eq.(1)is transformed into two bilinear equations

    Here“?”denotes the complex conjugation,Dis a Hirota’s bilinear differential operator.[57]Note thatλis a constant of integration with respect toxand should be a function ofyandt,settingλ= ?1 for the simpli fication of calculation in context.To avoid the confusion,we should stress that Maccari has introduced another twodimensional equation,[58?60]which is different from the Maccari system in this paper.

    In order to get rational solutions ofuandvin the Maccari system,the first step is to obtainfandgin the polynomial forms by solving the bilinear forms in Eq.(3).Similar to the construction[61]of the rational solutions for the nonlinear Schr?dinger equation,we have following theorem.

    Theorem 1Two polynomial solutionsfandgof bilinear equations(3)are expressed byN×Ndeterminants,

    where

    andpi,cik,cjlare arbitrary complex constants,butniandnjare two arbitrary non-negative integers.

    The proof of the theorem is given in Appendix.Substitutingfandggiven by theorem 1 back into Eq.(2),it yields an explicit formula of the rational solutions for the Maccari system.By a scaling offandg,setci0=1 in solutions of the next section without loss of generality.From now on,pjRdenotes the real part ofpj,andpjIdenotes the imaginary part ofpjfor the convenience.

    3 New Patterns of the Rogue Wave for Maccari System

    In this section,twelve new patterns of the rogue waves will be given from the fundamental rational solutions ofN=1 and multi-rational solutions ofN≥2 based on Theorem 1 and Eq.(2).

    3.1 The First-Order Rational Solution

    SetN=1 andni=nj=n1=1,then theorem 1 providesfandgin bellow:

    Here=x?(2ip1+1/)y+2ip1t,c10=1,parametersp1andc11are two arbitrary complex constants.

    Settingp1=p1R+ip1I,c11=c11R+ic11Iand simplifying the expressions offandg,then

    Taking abovefandginto Eq.(2),thenuandvare two first-order rational solutions of the Maccari system,and given explicitly by

    These solutions are classified two categories:lump and line-rogue wave.

    (i)Lump solutions.Whenb2/=0,one can see thatuandvare constants along the trajectory[x(t),y(t)]where

    and(u,v)→ (1,0)as(x,y)→ (∞,∞)at arbitrarily given time.So,lump solutions can not disappear along time

    evolution but propagate with a significant amplitude on the constant background.

    In general,patterns on(x,y)-plane around the momentt=0 are very clear and remarkable,for above rational solutionsuandv.In order to discuss the different patterns,it is useful to calculate the all possible critical points of|u|2att=0.By a simple calculation,there are five possible critical points,i.e.,

    which are solved by?|u|2(0,x,y)/?x=?|u|2(0,x,y)/?y=0.Here

    Further,three kinds of second-order derivative of|u|2are:H1=?2|u|2/?x2,H2=?2|u|2/?y2,H3=?2|u|2/?x?yandH=H1H2?.A tedious calculation infers

    Here

    According toAi(1≤i≤5),H1andH,the lump solutionsuin Eqs.(12)can be classified into three patterns.

    (a)Bright lump.When 0≤≤(1/3)|u|has one local maximum(pointA1)and two local minimum points(pointA4andA5);

    (b)Bi-model lump.When(1/3)<<,|u|has two local maximums points(pointA2andA3)and two local minimum points(pointA4andA5);

    (c)Dark lump.When≥,|u|has two local maximums(pointA2andA3)and one local minimum point(pointA1).These extreme points are con firmed in the pro files of single-lump plotted in Fig.1 of|u|given by Eq.(12).

    Fig.1 Three patterns of a single-lump|u|in Eq.(12)at t=0 with different parameters.(a)A bright lump with p1R=1,p1I=1/4;(b)A bi-modal lump with p1R=1,p1I=1;(c)A dark lump with p1R=?1,p1I=?2.

    (ii)Rogue wave solution

    It is well-known that the rogue wave solution is a special case of the rational solution under certain constraint conditions.Setb2=0,namely

    then rational solutionuin Eq.(12)is a line-rogue wave.It arises from the constant background with a line pro file at early stage,then reaches a peak(or valley)aroundt=0,and finally retreats back to the same background.This shows that the large amplitude in the pro file of the line-rogue wave exists a short period of time,which is different from a moving line-soliton on(x,y)-plane for two-dimensional integrable equations.The validity of the evolution of the line-rogue wave is demonstrated in Fig.2.

    The line rogue wave can be classified into three patterns according to the distribution of the critical lines.The rogue wave solution|u|2in Eq.(12)underb2=0 has possible five critical lines,which are calculated from?|u|2/?y=?|u|2/?t=0 and expressed by

    Here

    Fig.3 A line-rogue wave|u|in Eq.(12)with p1R=1/2,p1I=1/2,which is vanished when t=0.This pattern is very particular by comparing with common line-rogue wave which reaches usually a large amplitude at t=0.When|t|≥20,this wave disappears into the background.

    Three patterns of line-rogue wave are listed by bright line-rogue wave,intermediate state line-rogue wave and dark line-rogue wave,which are plotted in three rows of Fig.2,respectively.

    (i)The bright line-rogue wave in the first row.It attains its maximum lineL1with height 3,which is three times the height of background,and minimum 0 at two linesL4andL5.This is a common line-rogue wave in the two-dimensional equations possessing one maximum line and two minimum lines in two sides.[40?42]This wave disappears into the background when|t|≥180.

    (ii)The intermediate state line-rogue wave in the second row.It has one maximum line(L2orL3)and one minimum line(L4orL5)fort/=0.However,it becomes a bright line-rogue wave att=0 with one maximum lineL1and two minimum lines.Under the choices of parameters in this row,its maximum reaches 1.9183 atL2fort<0 andL3fort>0,the minimum is 0 atL4andL5fort/=0.The one local maximum is 1.9128 atL1fort=0 and this wave is vanished into the background when|t|≥20.Note that intermediate state line-rogue wave is given firstly in the Yajima–Oikawa systems.[42]

    (iii)The dark line-rogue wave in the third row.It has one maximum line(L2orL3)and one minimum line(L4orL5)fort/=0,as the intermediate state line-rogue wave.However,it becomes a downward wave att=0 with two maximum lines and one deep minimum line,which is different from the latter.Under the choices of parameters in this row,it attains maximum 1.2819 atL2andL3,the minimum attitude 0 atL4andL5fort/=0.Meanwhile,the minimum is 0.5656 atL1fort=0.This wave disappears into the background when|t|≥20.

    According to above analysis,the difference between the bright and intermediate state RWS is the number of the line of extreme values whent/=0.However,the valley of the dark rogue wave is much deeper than the intermediate state RW.In particular,whent=0,both of them have three lines of the extreme values,the former has a significant downward amplitude,but the latter has a dominant upward amplitude.The dark line-rogue wave in the third row of Fig.2 of Ref.[42]has one minimum line and two maximum lines.Thus the dark line-rogue wave in our paper is a new pattern.

    Further,the pattern of|u|withp1R=1/2,p1I=1/2 in Fig.3 is new,although it has one maximum line and one minimum line whent/=0 as the second and third rows in Fig.2 because it is vanished whent=0.

    3.2 Multi-rogue Wave Solutions with N=2

    In the above subsection,we have studied the fundamental rational solution ofu,i.e.,the first-order solution,which is the simplest case.SettingN≥2,n1=n2=···=nN=1 in theorem 1 and the constraint conditions:

    then Eq. (2)generates one kind of special nonfundamental rational solution,which is called multirogue.[40]Here Im represents the imaginary part of a function and(pj)is defined by

    andpjis an arbitrary complex constant.

    In order to get the simplest multi-rogue wave,settingN=2 in Theorem 1,thenfandgcan be written out as

    and(34)into Eq.(2),thenuandvare two two-rogue waves.For this case,two solutionsuandvapproach to the constant background uniformly in the entire(x,y)-plane whent→±∞.In the intermediate time,there will occur two line-rogue waves,which arise from the constant background,interact with each other,and disappear into the background again.

    Fig.4 The evolution of two patterns for the two-rouge wave|u|.The first row is plotted for a bright-intermediate rogue wave|u|with p1I=1/500,p2I=1/20.The second row is plotted for an intermediate-intermediate rogue wave|u|with p1I=1/4,p2I=1/2.

    To illustrate the evolution of the two-rogue wave clearly,two patterns are displayed in Fig.4.This figure shows remarkably in the intermediate time that an X-shape signature appears in the(x,y)-plane,which is generated by the strong interaction of the two line-rogue waves.One of them is oriented along they-direction and the other is oriented along thex-direction.Furthermore,Fig.4 also demonstrates that one two-rogue wave disappears indeed without a trace for sufficient large time,i.e.|t|>150 in the first row and|t|>30 in the second row.The first row is a bright-intermediate state rogue wave which consists of one bright line-rogue wave oriented along thex-direction and one intermediate state line-rogue wave oriented along they-direction.When|t|is small,the intermediate state line-rogue wave still always have a maximum line and a valley similar to the evolution in the second row of Fig.2.The pattern given by the first row has been discovered for Yajima–Oikawa systems[42](see the third row of Fig.3 in this reference).The second row is an intermediate-intermediate state rogue wave consisting of two intermediate state line-rogue waves.It clearly displays that two fundamental line-rogue waves arise from the constant background and finally decrease back again into the same background for large timet.When|t|≤6,there exists two remarkable amplitudes of the wave.In particulart=0,its amplitude acquires the maximum,which is larger than the maximum of a single line-rogue wave because of the strong interaction of two line-rogue waves.At last,it is interesting to see from Fig.4 that the orientation of every line-rogue wave in two-rogue wave is preserved very well during the evolution with time,which shows visually the independence of two line-rogue waves.

    It is natural to explore more patterns in the two-rogue wave generated by the different combinations of the three fundamental line-rogue wave in Fig.2.Four patterns are plotted in Fig.5 with the help ofuin Eq.(2),fandgin Eqs.(33),(34),and the constraint in Eq.(31).These patterns of the two-rogue wave are bright-dark,bright-bright,intermediate-dark,and dark-dark,in Fig.5 from(a)to(d)in order.To save the space,we just provide the pro files of them att=0.There are three new patterns in(a),(c),and(d),because all of them have one new dark-line rogue wave in Fig.2.

    3.3 Multi-Rational Rogue Wave Solutions with N=3

    In this subsection,three-rogue wave is generated fromuin Eq.(2),fandgin Eq.(4)withN=3,and the constraint in Eq.(31).Six new patterns of three-rogue waves are plotted in Fig.6 according to this way.They are more complicated combinations of three fundamental line-rogue waves given by Fig.2.The parameters of them in order are:(a)p1I=1/200,p2I=1/500,p3I=4/7;(b)p1I=1/200,p2I=3/4,p3I=4/7;(c)p1I=1/200,p2I=1/3,p3I=2/3;(d)p1I=1/4,p2I=1/3,p3I=3/4;(e)p1I=4/7,p2I=3/4,p3I=2/3;(f)p1I=4/7,p2I=3/4,p3I=1/3.

    Fig.5 Four patterns of the two-rouge wave|u|.(a)The bright-dark rogue wave with p1I=1/640,p2I=3/4;(b)The bright-bright rogue wave with p1I=1/500,p2I=1/200;(c)The intermediate-dark rogue wave with p1I=1/2,p2I=3/4;(d)The dark-dark rogue wave with p1I=2/3,p2I=4/7.

    Fig.6 Six new patterns of three-rogue wave for|u|at t=0.(a)The bright-bright-dark rogue wave;(b)The bright-dark-dark rogue wave;(c)The bright-intermediate-dark rogue wave;(d)The intermediate-inter mediate dark rogue wave;(e)The dark-dark-dark rogue wave;(f)The intermediate-dark-dark rogue wave.

    4 Summary and Discussions

    We have derived an exact explicit formula of the rational solutionuandvin Eqs.(2)and(4)for the Maccari system by the bilinear method.The rational solution includes one kind of lump solution and one kind of rogue wave.Furthermore,we have discussed extreme pointsAi(i=1,2,···,5)of the first-order lumps and the extreme linesLi(i=1,2,···,5)of the first-order rogue waves.We have found twelve new patterns,see the third row of Fig.2,Fig.3,the second row of Fig.4,Figs.5(a),5(c),and 5(d).Fig.6,of the(2+1)-dimensional rogue wave.The conditionb2=0 in the first-order rational solution and Eq.(31)in the higher-order rational solution are crucial to generate the first-order rogue wave and the multi-rogue waves.

    In general,the higher-order rational solution of a twodimensional equation can generate higher-rogue wave besides the multi-rogue wave.[40?43,60]Note that the condition to generate higher-rogue waves in Refs.[40–43,60]does not work out the expected higher-rogue waves of the Maccari system.We shall continue the study on this problem in the future.

    Appendix

    In this appendix,we provide a simple proof of Theorem 1 by the bilinear transformation method based on the results of Ref.[61].

    Lemma 1The bilinear equations

    admit determinant solution

    Hereξi=pix1+x2+(1/pi)x?1,pi,cikare complex constants.AiandBjare differential operators of orderniandnjwith respect topiand.niandnjare non-negative integers.

    This Lemma can be proved by the same method as for Lemma 3.1 in Ref.[61],thus its proof is omitted here.Settingτ(0)=f,τ(1)=g,τ(?1)=g?,and taking the independent and dependent variables as

    meanwhile imposing the complex conjugate conditions

    then Eq.(35)is transformed into the bilinear Eq.(3).Therefore,according to Lemma 1 and Eq.(37),we get formula(4).This ends the proof of Theorem 1.

    Acknowledgment

    We thank the members of our group at Ningbo University for the useful suggestions and discussions on the draft of this paper.

    References

    [1]P.C.Liu,Geo fizika,24(2007)57.

    [2]C.Kharif,E.Pelinovsky,and A.Slunyaev,Rogue Waves in the Ocean,Springer,Beilin(2009).

    [3]D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,Nature(London)450(2007)1054.

    [4]D.H.Peregrine,J.Austral.Math.Soc.Ser.B 25(1983)16.

    [5]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 85(2012)066601.

    [6]J.S.He,H.R.Zhang,L.H.Wang,K.Porsezian,and A.S.Fokas,Phys.Rev.E 87(2013)052914.

    [7]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 88(2013)013207.

    [8]L.M.Ling and L.C.Zhao,Phys.Rev.E 88(2013)043201.

    [9]N.Akhmediev,A.Ankiewicz,and M.Taki,Phys.Lett.A 373(2009)675.

    [10]D.Q.Qiu,Y.S.Zhang,K.Porsezian,and J.S.He,Proc.R.Soc.A 471(2015)20150236.

    [11]N.Akhmediev,A.Ankiewicz,and J.M.Soto-Crespo,Phys.Rev.E 80(2009)026601.

    [12]P.Dubard,P.Gaillard,C.Klein,and V.B.Matveev,Eur.Phys.J.Spec.Top 185(2010)247.

    [13]P.Dubard and V.B.Matveev,Nat.Hazards&Earth Syst.Sci.11(2011)667.

    [14]P.Gaillard,J.Phys.A:Math.Theor.44(2011)4109.

    [15]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 84(2011)056611.

    [16]B.L.Guo,L.M.Ling,and Q.P.Liu,Phys.Rev.E 85(2012)026607.

    [17]A.Ankiewicz,J.M.Soto-Crespo,and N.Akhmediev,Phys.Rev.E 81(2010)046602.

    [18]Y.S.Tao and J.S.He,Phys.Rev.E 85(2012)026601.

    [19]J.S.He,L.H.Wang,L.J.Li,K.Porsezian,and R.Erd′elyi,Phys.Rev.E 89(2014)062917.

    [20]S.W.Xu,J.S.He,and L.H.Wang,J.Phys.A:Math.Theor.44(2011)305203.

    [21]S.W.Xu,J.S.He,and L.H.Wang,EPL 97(2012)29903.

    [22]B.L.Guo,L.M.Ling,and Q.P.Liu,Stud.Appl.Math.130(2012)317.

    [23]H.N.Chan,K.W.Chow,D.J.Kedziora,R.H.Grimshaw,and E.Ding,Phys.Rev.E 89(2014)032914.

    [24]L.J.Guo,Y.S.Zhang,S.W.Xu,Z.W.Wu,and J.S.He,Phys.Scr.89(2014)035501.

    [25]Y.S.Zhang,L.J.Guo,J.S.He,and Z.X.Zhou,Lett.Math.Phys.105(2015)853.

    [26]Y.S.Zhang,L.J.Guo,A.Chabchoub,and J.S.He,Commun.Nonlinear Sci.Numer.Simul.19(2014)1706.

    [27]U.Bandelow and N.Akhmediev,Phys.Rev.E 86(2012)026606.

    [28]S.H.Chen,Phys.Rev.E 88(2013)023202.

    [29]B.L.Guo and L.M.Ling,Chin.Phys.Lett.28(2011)110202.

    [30]F.Baronio,A.Degasperis,M.Conforti,and S.Wabnitz,Phys.Rev.Lett.109(2012)044102.

    [31]B.G.Zhai,W.G.Zhang,X.L.Wang,and H.Q.Zhang,Nonlinear Anal.Real World Appl.14(2013)14.

    [32]L.C.Zhao and J.Liu,Phys.Rev.E 87(2013)013201.

    [33]Z.Y.Qin and G.Mu,Phys.Rev.E 86(2012)036601.

    [34]C.F.Wu,R.H.J.Grimshaw,K.W.Chow,and H.N.Chan,Chaos 25(2015)103113.

    [35]F.Baronio,M.Conforti,A.Degasperis,and S.Lombardo,Phys.Rev.Lett.111(2013)114101.

    [36]A.Ankiewicz,Y.Wang,S.Wabnitz,and N.Akhmediev,Phys.Rev.E 89(2014)012907.

    [37]X.Wang and Y.Chen,Chin.Phys.B 23(2014)070203.

    [38]F.Baronio,S.H.Chen,P.Grelu,S.Wabnitz,and M.Conforti,Phys.Rev.A 91(2015)033804.

    [39]A.Degasperis,S.Wabnitz,and A.B.Aceves,Phys.Lett.A 379(2015)1067.

    [40]Y.Ohta and J.K.Yang,Phys.Rev.E 86(2012)036604.

    [41]Y.Ohta and J.K.Yang,J.Phys.A:Math.Theor.46(2013)105202.

    [42]J.C.Chen,Y.Chen,B.F.Feng,and K.I.Maruno,Phys.Lett.A 379(2015)1510.

    [43]J.G.Rao,L.H.Wang,Y.Zhang,and J.S.He,Commun.Theor.Phys.64(2015)605.

    [44]A.Maccari,J.Math.Phys.37(1996)6207.

    [45]J.Bourgain,Duke Math.J.76(1994)175.

    [46]V.E.Zakharov,JETP 35(1972)908.

    [47]S.L.Xu and M.R.Beli,J.Opt.Soc.Am.B 30(2013)2715.

    [48]S.L.Xu,J.X.Cheng,M.R.Beli,Z.L.Hu,and Y.Zhao,Opt.Express 24(2016)10066.

    [49]Z.Z.Zhang,Turkish J.Phys.32(2008)235.

    [50]X.J.Miao and Z.Y.Zhang,Commun.Nonlinear Sci.Numer.Simul.16(2011)4259.

    [51]K.Porsezian,J.Math.Phys.38(1997)4675.

    [52]S.Zhang,Phys.Lett.A 371(2007)65.

    [53]D.Rostamy,F.Zabihi,K.Karimi,and S.Khalehoghli,Appl.Math.2(2011)258.

    [54]A.M.Wazwaz,Phys.Scr.85(2012)65011.

    [55]H.Kumar and F.Chand,J.Theor.Appl.Phys.8(2014)114.

    [56]S.T.Demiray,Y.Pandir,and H.Bulut,Ocean Eng.103(2015)153.

    [57]R.Hirota,The Direct Method in Soliton Theory,Cambridge University Press,Cambridge(2004).

    [58]A.Maccari,J.Math.Phys.38(1997)4151.

    [59]W.H.Huang,Y.L.Liu,and Z.Y.Ma,Commun.Theor.Phys.47(2007)397.

    [60]F.Yuan,J.G.Rao,K.Porsezian,D.Mihalache,and J.S.He,Rom.J.Phys.61(2016)378.

    [61]Y.Ohta and J.K.Yang,Proc.R.Soc.A 468(2012)1716.

    一区二区三区四区激情视频| 一级片免费观看大全| 国产又爽黄色视频| 久久久国产一区二区| 各种免费的搞黄视频| 国产成人免费观看mmmm| 街头女战士在线观看网站| 肉色欧美久久久久久久蜜桃| 成人亚洲欧美一区二区av| 91成人精品电影| 好男人视频免费观看在线| 亚洲精品自拍成人| 成人午夜精彩视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲色图综合在线观看| 十分钟在线观看高清视频www| 国产免费福利视频在线观看| 考比视频在线观看| 亚洲av在线观看美女高潮| 久久精品国产亚洲av天美| 午夜福利乱码中文字幕| 成年av动漫网址| 天天躁夜夜躁狠狠躁躁| 久久久久久免费高清国产稀缺| 国产爽快片一区二区三区| av在线老鸭窝| 大香蕉久久网| 一级片免费观看大全| 99热国产这里只有精品6| 大码成人一级视频| 日日摸夜夜添夜夜爱| 99久久精品国产国产毛片| 最近2019中文字幕mv第一页| 黄色 视频免费看| 男女午夜视频在线观看| 伊人久久大香线蕉亚洲五| 一级黄片播放器| 亚洲精品日本国产第一区| 建设人人有责人人尽责人人享有的| 中文字幕制服av| 少妇精品久久久久久久| 看免费成人av毛片| 人成视频在线观看免费观看| 只有这里有精品99| av又黄又爽大尺度在线免费看| 久久ye,这里只有精品| 99久久综合免费| 亚洲欧美中文字幕日韩二区| 97精品久久久久久久久久精品| 久久久久久久大尺度免费视频| 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 亚洲欧美成人精品一区二区| 国产男女超爽视频在线观看| 香蕉国产在线看| 国产97色在线日韩免费| 国产1区2区3区精品| 嫩草影院入口| 亚洲三区欧美一区| 丝袜在线中文字幕| 国产成人午夜福利电影在线观看| 香蕉丝袜av| 成人亚洲精品一区在线观看| 成人手机av| 亚洲成国产人片在线观看| 人人澡人人妻人| 丰满少妇做爰视频| 中文字幕亚洲精品专区| 国产精品国产av在线观看| av有码第一页| 2022亚洲国产成人精品| 可以免费在线观看a视频的电影网站 | 国产人伦9x9x在线观看 | 国产在线视频一区二区| av网站免费在线观看视频| 日本午夜av视频| 国产精品亚洲av一区麻豆 | 亚洲av.av天堂| 欧美精品一区二区免费开放| 一级片'在线观看视频| 成人手机av| 高清不卡的av网站| 欧美亚洲 丝袜 人妻 在线| 亚洲久久久国产精品| 国产精品99久久99久久久不卡 | 国产免费福利视频在线观看| 国产精品不卡视频一区二区| av视频免费观看在线观看| 午夜福利一区二区在线看| 蜜桃在线观看..| 欧美+日韩+精品| 免费高清在线观看日韩| 亚洲美女视频黄频| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 视频区图区小说| 好男人视频免费观看在线| 久久久国产欧美日韩av| 成年美女黄网站色视频大全免费| 国产人伦9x9x在线观看 | 欧美 亚洲 国产 日韩一| 麻豆精品久久久久久蜜桃| 久久久久久久亚洲中文字幕| 久久鲁丝午夜福利片| 满18在线观看网站| 如日韩欧美国产精品一区二区三区| 爱豆传媒免费全集在线观看| 毛片一级片免费看久久久久| 建设人人有责人人尽责人人享有的| 日本91视频免费播放| 不卡av一区二区三区| 国产毛片在线视频| 国产片特级美女逼逼视频| 自拍欧美九色日韩亚洲蝌蚪91| 美女脱内裤让男人舔精品视频| 亚洲成人av在线免费| 日本av免费视频播放| 日韩中文字幕视频在线看片| 亚洲国产最新在线播放| 性色av一级| 午夜影院在线不卡| 国产精品av久久久久免费| 久久精品亚洲av国产电影网| 多毛熟女@视频| 亚洲国产欧美网| 三级国产精品片| 日韩一区二区三区影片| 欧美av亚洲av综合av国产av | 久久久精品94久久精品| 国产视频首页在线观看| 亚洲精品日本国产第一区| 999久久久国产精品视频| 宅男免费午夜| 久久久国产精品麻豆| 黄色毛片三级朝国网站| 亚洲综合色网址| 丝袜美足系列| 久久久精品区二区三区| 国产成人午夜福利电影在线观看| 中文字幕人妻丝袜制服| 久久国产精品大桥未久av| 18在线观看网站| 精品久久久久久电影网| 亚洲精品av麻豆狂野| 久久 成人 亚洲| 下体分泌物呈黄色| 国产精品久久久久久av不卡| 一区二区三区四区激情视频| 韩国高清视频一区二区三区| 精品人妻一区二区三区麻豆| 亚洲第一青青草原| 中文天堂在线官网| av免费观看日本| 成人国产av品久久久| 熟女少妇亚洲综合色aaa.| 午夜91福利影院| 亚洲成人一二三区av| 国产精品久久久av美女十八| 国产毛片在线视频| 欧美日韩成人在线一区二区| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| av线在线观看网站| 国产在线免费精品| 人人妻人人澡人人看| 美女xxoo啪啪120秒动态图| 亚洲av免费高清在线观看| 欧美 日韩 精品 国产| 久久这里有精品视频免费| 国产毛片在线视频| 香蕉国产在线看| 精品第一国产精品| 狂野欧美激情性bbbbbb| 欧美在线黄色| 国产福利在线免费观看视频| 黄色视频在线播放观看不卡| 亚洲精品成人av观看孕妇| 国产免费又黄又爽又色| 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 国产精品亚洲av一区麻豆 | 成年美女黄网站色视频大全免费| 在线观看免费日韩欧美大片| 欧美日韩一级在线毛片| 国产一级毛片在线| 我要看黄色一级片免费的| 久久国内精品自在自线图片| 国产精品久久久久久精品古装| 久久狼人影院| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 国产国语露脸激情在线看| av又黄又爽大尺度在线免费看| 欧美中文综合在线视频| 在线观看美女被高潮喷水网站| videossex国产| 在现免费观看毛片| 男人舔女人的私密视频| 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 亚洲一码二码三码区别大吗| 午夜日本视频在线| 国产男女内射视频| 最近手机中文字幕大全| 国产片特级美女逼逼视频| 如日韩欧美国产精品一区二区三区| 精品一区二区免费观看| 国产综合精华液| 一边摸一边做爽爽视频免费| av有码第一页| 成人影院久久| 老女人水多毛片| freevideosex欧美| 亚洲国产色片| 欧美激情高清一区二区三区 | 亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 色婷婷av一区二区三区视频| 女的被弄到高潮叫床怎么办| 日韩av在线免费看完整版不卡| 国产成人免费无遮挡视频| 日韩一区二区视频免费看| 69精品国产乱码久久久| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 久久热在线av| 性色av一级| 一级毛片黄色毛片免费观看视频| av国产精品久久久久影院| 国产免费又黄又爽又色| 亚洲av.av天堂| 免费黄色在线免费观看| 国产男女超爽视频在线观看| 久久97久久精品| 一区二区日韩欧美中文字幕| 日韩中文字幕视频在线看片| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 最近的中文字幕免费完整| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| 日韩中字成人| 黄网站色视频无遮挡免费观看| 国产av码专区亚洲av| 国产男人的电影天堂91| 国产精品三级大全| 一级毛片黄色毛片免费观看视频| 亚洲精华国产精华液的使用体验| 日韩视频在线欧美| 欧美激情极品国产一区二区三区| 视频在线观看一区二区三区| 国产精品亚洲av一区麻豆 | 久久这里只有精品19| 亚洲色图综合在线观看| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 亚洲欧美一区二区三区黑人 | 久久国内精品自在自线图片| 日本wwww免费看| 国产成人精品婷婷| 日韩成人av中文字幕在线观看| av国产精品久久久久影院| 人妻人人澡人人爽人人| 秋霞伦理黄片| 亚洲美女视频黄频| 一二三四在线观看免费中文在| 久久久国产精品麻豆| 成人手机av| 天堂8中文在线网| 丝袜在线中文字幕| 久久久久久久久久久免费av| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 丝袜在线中文字幕| 久久久久精品人妻al黑| 久久精品国产自在天天线| 国产1区2区3区精品| videos熟女内射| 狠狠婷婷综合久久久久久88av| 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 久久精品久久久久久久性| 久久久久精品人妻al黑| 欧美精品一区二区免费开放| 美女xxoo啪啪120秒动态图| 国产成人欧美| 欧美在线黄色| 免费人妻精品一区二区三区视频| 黄片播放在线免费| 亚洲精品中文字幕在线视频| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 午夜91福利影院| 久久人人97超碰香蕉20202| 伦理电影大哥的女人| 国产97色在线日韩免费| 中文乱码字字幕精品一区二区三区| 国产av一区二区精品久久| 婷婷色麻豆天堂久久| 多毛熟女@视频| 国产 精品1| 高清在线视频一区二区三区| 国产精品一区二区在线观看99| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 久久人人97超碰香蕉20202| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 久久午夜综合久久蜜桃| 欧美日韩av久久| videos熟女内射| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 国产1区2区3区精品| 十八禁高潮呻吟视频| 黄频高清免费视频| 国产精品免费大片| 丝袜脚勾引网站| 一区福利在线观看| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 久久久久久免费高清国产稀缺| 国产午夜精品一二区理论片| 永久免费av网站大全| 青春草亚洲视频在线观看| 99久久人妻综合| 这个男人来自地球电影免费观看 | 一级片'在线观看视频| 国产一级毛片在线| 国产成人精品久久二区二区91 | 免费av中文字幕在线| 伊人久久大香线蕉亚洲五| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 亚洲国产看品久久| 99热国产这里只有精品6| 欧美日韩精品网址| 90打野战视频偷拍视频| 国产人伦9x9x在线观看 | 777米奇影视久久| 国产欧美日韩一区二区三区在线| 人妻一区二区av| 国产精品偷伦视频观看了| 中国国产av一级| 日韩欧美精品免费久久| 日韩视频在线欧美| 国产女主播在线喷水免费视频网站| 日日撸夜夜添| 国产1区2区3区精品| 国产乱来视频区| 成人亚洲精品一区在线观看| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 岛国毛片在线播放| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 丝瓜视频免费看黄片| 亚洲国产精品一区二区三区在线| 极品人妻少妇av视频| 亚洲婷婷狠狠爱综合网| 纯流量卡能插随身wifi吗| 99re6热这里在线精品视频| 日韩制服骚丝袜av| 男男h啪啪无遮挡| 久久狼人影院| 久久精品久久久久久噜噜老黄| 国产精品久久久久久av不卡| 精品一品国产午夜福利视频| 欧美xxⅹ黑人| 久久99热这里只频精品6学生| 97精品久久久久久久久久精品| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲成人一二三区av| 波野结衣二区三区在线| 久久久久久伊人网av| 日韩中文字幕欧美一区二区 | 老司机亚洲免费影院| 午夜免费男女啪啪视频观看| 免费在线观看黄色视频的| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 亚洲综合色惰| 亚洲成人手机| 丁香六月天网| 2022亚洲国产成人精品| 午夜日韩欧美国产| 久久精品熟女亚洲av麻豆精品| 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 国语对白做爰xxxⅹ性视频网站| 欧美变态另类bdsm刘玥| av免费在线看不卡| 久久久久久久国产电影| 黄频高清免费视频| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 国产不卡av网站在线观看| 女人精品久久久久毛片| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 欧美日韩视频精品一区| 亚洲国产欧美网| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品va在线观看不卡| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 免费不卡的大黄色大毛片视频在线观看| 精品少妇内射三级| 晚上一个人看的免费电影| 久久久精品免费免费高清| 亚洲色图 男人天堂 中文字幕| 大码成人一级视频| 三上悠亚av全集在线观看| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 久久精品aⅴ一区二区三区四区 | 国产男女内射视频| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 久久热在线av| tube8黄色片| 一本久久精品| 亚洲久久久国产精品| 在线观看免费高清a一片| 色网站视频免费| 在线 av 中文字幕| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 亚洲av.av天堂| 精品视频人人做人人爽| 天堂8中文在线网| 亚洲成色77777| 亚洲综合精品二区| 亚洲精品自拍成人| 999久久久国产精品视频| av免费在线看不卡| 亚洲人成网站在线观看播放| 一区二区三区四区激情视频| 狠狠婷婷综合久久久久久88av| 国产 精品1| 91aial.com中文字幕在线观看| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 9热在线视频观看99| 欧美日韩视频高清一区二区三区二| 一个人免费看片子| 电影成人av| 丝袜脚勾引网站| 精品福利永久在线观看| 日韩免费高清中文字幕av| 黄色一级大片看看| 久久久久人妻精品一区果冻| 在线观看一区二区三区激情| 最新中文字幕久久久久| 亚洲精品在线美女| 日韩一本色道免费dvd| 亚洲国产欧美网| 十八禁网站网址无遮挡| 欧美中文综合在线视频| 十八禁高潮呻吟视频| 美女大奶头黄色视频| 国语对白做爰xxxⅹ性视频网站| 黄色一级大片看看| 9色porny在线观看| 一区福利在线观看| 色婷婷av一区二区三区视频| 在线观看www视频免费| 1024视频免费在线观看| 午夜福利视频精品| 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久 | 国产精品成人在线| 国产爽快片一区二区三区| 欧美精品国产亚洲| 不卡视频在线观看欧美| 亚洲综合精品二区| 一区二区三区精品91| 久久久久久人妻| 大片电影免费在线观看免费| 国产在线视频一区二区| 亚洲av免费高清在线观看| 国产精品成人在线| 久久久a久久爽久久v久久| 久久久久人妻精品一区果冻| 成人亚洲欧美一区二区av| 狂野欧美激情性bbbbbb| 久久精品国产自在天天线| 在线亚洲精品国产二区图片欧美| 久久久久精品久久久久真实原创| 午夜影院在线不卡| 观看美女的网站| 99re6热这里在线精品视频| 久久久久久久精品精品| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 免费看av在线观看网站| 久久人人97超碰香蕉20202| 91精品三级在线观看| 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 欧美中文综合在线视频| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 久久久a久久爽久久v久久| 最黄视频免费看| 精品国产超薄肉色丝袜足j| 亚洲av中文av极速乱| 99久久综合免费| 国产伦理片在线播放av一区| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av | 亚洲欧美精品自产自拍| av卡一久久| 国产成人精品福利久久| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 免费不卡的大黄色大毛片视频在线观看| www.自偷自拍.com| 男女国产视频网站| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 亚洲精品久久成人aⅴ小说| 91在线精品国自产拍蜜月| 国产成人精品无人区| 国产成人欧美| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 国产免费一区二区三区四区乱码| 国产精品国产三级专区第一集| 久久精品国产a三级三级三级| 亚洲欧洲精品一区二区精品久久久 | 国产淫语在线视频| 91精品国产国语对白视频| 边亲边吃奶的免费视频| 中文字幕制服av| 午夜激情久久久久久久| 国产欧美亚洲国产| 嫩草影院入口| 人体艺术视频欧美日本| 大香蕉久久成人网| 91精品国产国语对白视频| 国产在线视频一区二区| 亚洲色图综合在线观看| kizo精华| 国产一区二区 视频在线| 国产一区二区三区综合在线观看| 9色porny在线观看| 捣出白浆h1v1| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 国产在视频线精品| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 性少妇av在线| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 日本免费在线观看一区| 水蜜桃什么品种好| 欧美日韩精品成人综合77777| 亚洲欧美色中文字幕在线| 国产片内射在线| 不卡视频在线观看欧美| av不卡在线播放| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 在线观看三级黄色| 欧美老熟妇乱子伦牲交| 久久 成人 亚洲| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 麻豆av在线久日| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 免费少妇av软件| 久久久久久久精品精品| 最近中文字幕2019免费版| 高清欧美精品videossex| 国产极品天堂在线| 老汉色∧v一级毛片| 99热国产这里只有精品6| 国产野战对白在线观看| av天堂久久9| 一级毛片黄色毛片免费观看视频| 国产乱来视频区| 亚洲av中文av极速乱| 18禁动态无遮挡网站| 一级片'在线观看视频| 蜜桃在线观看..| 热re99久久国产66热|