• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Inclined Magnetic Field and Copper Nanoparticles on Peristaltic Flow of Nano fluid through Inclined Annulus:Application of the Clot Model

    2017-05-12 08:53:11IqraShahzadiandNadeem
    Communications in Theoretical Physics 2017年6期

    Iqra Shahzadiand S.Nadeem

    Department of Mathematics,Quaid-i-Azam University,Islamabad 44000,Pakistan

    1 Introduction

    Nano fluid dynamics is appeared as the newly developed branch of fluid dynamics,which discovers sundry applications in biology,energetics,and medical science.The nanoparticles particularly metallic nanoparticles like copper have been broadly utilized for diagnosis,treatment,drug delivery,and medical device coating such as in Refs.[1–3].Nanofluids are the suspension of nanoparticles within the considered base fluid and were firstly investigated by Choi.[4]After him Akbar et al.[5]examined the contemporary study of ciliary motion under the impact of metallic nanoparticles.Here they examined the model for mucus layer Nadeem et al.[6]investigated the two phase nano fluid model in a curved channel.Due to the exclusive properties,nano fluids have gained considerable attention from investigators and latest studies explored the indispensable advantages of nano fluids in various biomedical applications as given in Refs.[7–15].

    In peristalsis,sinusoidal wave propagation is responsible for flow generation through channel,tube or duct.This phenomenon has great utility in industry and biology.Some physiological examples include transport of bile,urine,chyme and food,cilia transport,male and female breeding cells through their specific tracks.Engineering applications of peristalsis include roller, finger and hose pumps,dialysis,food mixing processes,hear tlung machines,and so forth.Due to such usefulness and immense continuation of peristaltic flows,various investigations are introduced to examine the peristalsis by considering distinct flow con figurations.[16?21]

    Flow of electrically conducting fluid under the impact of applied magnetic field is affected by electromagnetic forces apart from other body and surface forces.Mechanics as well as the thermodynamics of the system is influenced by electromagnetic forces.This situation is occurred in case of severe injuries during bleeding reduction.Several disorders in the human body are diagnosis with the help of different diagnostic test like magnetic resonance imaging.MHD has numerous applications in cosmology,astrophysics,sensors,geophysics,magnetic drug engineering and targeting.Sheikholeslami et al.[22]discussed the effects of magnetic field on natural convection of nano fluid through cubic cavity.These facts realize the importance of determining magneto hydrodynamic peristaltic transport of various fluids through different geometries.[23?28]

    A genuine neurotic condition is experienced when some blood constituents saved on the wall of the artery get confined from the wall,again join the circulation system,and coagulation occurred.This can prompt to partial or even total blockage of the veins.Mekheimer and Elmaboud[29]examined the mathematical model defined for micropolar fluid of incompressible nature in a stenosed artery having coagulation inside it.In order to discuss such a serious situation and its repercussions regarding vortices,we have considered such an analysis.We intend to model and analyze the peristaltic transport of nano fluid in an inclined annulus under the influence of copper nanoparticles.Inclined magnetic field concept is utilized in the problem formulation.In fact,magnetic nanofluids have both the characteristic of fluid as well as the magnetic field.Such types of fluids have many significant applications such as adjustable filters,modulators,optical switches,gratings,cancer therapy,hyperthermia and drug delivery etc.The influence of magnetic nanoparticles on the tumor cells has been found to more adhesive than invigorating cells.Therefore,we have considered the copper as the nanoparticles.The present analysis is completed with the aid of lubrication approach and solved exactly.Some vital conclusions have been gotten on the premise of the present considered investigation.The impulsion of emerging parameters is presented via graphical illustration,trapping phenomena and tables.The results obtained from the examination have many biomedical engineering applications.

    2 Formulation of the Problem

    Consider an incompressible,laminar and viscous nano fluid in an annular region of inclined annulus between two coaxial tube in which inner tube have a clot on its walls.An external magnetic field of strengthB0is inclined at an angleαwhereas annulus is inclined at an angleη,respectively.The consequence of induced magnetic field are ignored for the condition of low magnetic Reynolds number.Nano fluid flow phenomena is consist of blood with copper as the nanoparticles.The central tube is maintained at temperatureT0while the outer tube has a sinusoidal wave of amplitudeband wavelengthλthat is traveling down through its wall with constant speedcand having temperatureT1.It is supposed that the thermal equilibrium is maintained between the nanoparticles and the base fluid.The coordinates(R,Z)are elected in such a way thatR-axis is along radial direction andZ-axis lies along length of the tube.Schematic geometry sketch is visualized through Fig.1.

    Fig.1 Geometry of the problem.

    The two wall surface geometry is described as:

    whereR0is the radius of the outer tube,aR0is the radius of inner tube that keeps the clot inside the tube,bis the amplitude of the wave,f(ˉZ,′t)is the arbitrary shape that can be executed by suitable choice,λis the wavelength,cis the wave speed.

    In the above equations,is the temperature of the fluid,is the pressure,ηis the inclination angle,B0is the strength of magnetic field,andQ0is the constant heat absorption or generation.For the proposed nanofuid model,ρnfis the density of the nano fluid,μnfis the variable nanofuid viscosity,βnfis the thermal expansion coefficient,σnfis the electrical conductivity of the nano fluid,Knfis the thermal conductivity of the nano fluid and(ρCp)nfis the nano fluid heat capacitance.

    The effective viscosity,density and specific heat of nano fluid,are defined as,[14]

    Here,ρ,β,cp,andφare the density,thermal expansion coefficient,specific heat and nanoparticle volume fraction,respectively.The subscriptsfandsare used to indicate the fluid and nanoparticle phases,respectively.Numerical values of the physical parameters are given in Table 1.The H–C model(Hamilton&Crosser,1962)for the effective thermal conductivity of nanofluids is used in this analysis.Hence the expression of effective thermal conductivity of nano fluids is given by

    Table 1 Thermo physical parameters of blood and copper.

    whereKis the thermal conductivity.In this modelndenotes the shape factor of nanoparticles given by 3/ψ,whereψis the sphericity of the nanoparticles and it depends on the shape of the nanoparticles.For spherical nanoparticlesn=3 orψ=1.For cylindrical nanoparticlesψ=0.5 orn=6.For the analysis in this study we assume that the nanoparticles have a spherical shape,i.e.,n=6.

    In the fixed frame the no slip boundary conditions are defined as

    In the above expressionsGr,?θ,Ren,γ,δ,M,Frrepresent the Grashr of number,dimensionless temperature,Reynolds number,dimensionless heat source parameter,wave number,Hart mann number,and Froude number respectively.After using the lubrication approach,the continuity equation is exactly satisfied and Eqs.(13)–(15)take the form:

    The suitable no slip boundary conditions in the wave frame are given as

    Dimensionless flow rateFin the laboratory frame is associated to the dimensionless flow rateqin the wave frame is defined as

    whereq,q1,andq2are defined as,

    The nondimensional form for the suitable choice of the clot model as suggested by Mekheimer and Elmaboud[29]is given as

    where maximum height achieved by the clot atz=zd+0.5 is represented byζ,inner tube radius ratio that keeps the clot in position is represented byaand clot axial displacement is represented byzd.

    3 Solution of the Problem

    Equations(18)and(19)are solved exactly by utilizing the boundary conditions given in Eq.(20).The solutions for temperature and velocity pro file are as follow

    whereC1,C2,C3,andC4can be calculated by using Mathematica.

    We obtain the pressure gradient as defined below,

    wherel1andl2can be calculated by using Mathematica.

    4 Graphical Results and Discussion

    The assurance of velocity pro file,pressure gradient,pressure rise,and streamlines outcomes in light of included parameters have been exhibited graphically in this section.These graphs are set up by controlling the parameters such asη=0?π/2,Gr=0.5?6,γ=0.1?0.9,φ=0?0.1,Ha=1.5?3.5,α=0?π/3,ζ=0.1?0.25,Re=0.2?2.5,andFr=0.2?1.5.Axial velocitywdescribes the parabolic trajectory against the radial distance for all the involved parameters.Figure 2(a)interprets the impact of inclination angleηon axial velocity.The values ofη=0,π/4,π/2 correspond to the horizontal,inclined and vertical annulus,respectively.The magnitude of the velocity increases in the presence of copper nanoparticles as we move from horizontal to vertical annulus having clot inside it.The amplitude of the velocity pro file increases in the regionr ?[0.1,0.7]and decreases inr ?[0.71,1.2].

    The effects ofGronware found increasing from Fig.2(b)in the regionr ?[0.1,0.7]while the opposite trend is observed in the rest of region.This velocity development occurs due to decrease in viscosity.On physical grounds mixed convection is useful in nuclear reactor technology and electronic cooling processes where forced convection is not sufficient to dissipate energy.Figures 3(a)and 3(b)interpret the impact of heat source parameterγand Hartmann numberHaon axail velocity.The variations in heat source parameterγcause increase in the magnitude of velocity whenrlies in the region of 0.1≤r≤0.7 while decreases in the rest of region.The variations of Hartmann numberHaare given in Fig.3(b).It is observed that with an increase in the intensity of magnetic field the velocity pro file increases and then start decreases.It is due to the fact that when magnetic field is applied normal to the fluid,random motion of the particles within the considered base fluid gets slower down and hence flow of blood is retarded.The captured results of Fig.4(a)comprised of increasing impact of velocity pro file upon increasing values of magnetic field inclinationα.As we consider the effects of inclined magnetic field,the magnitude of the velocity increases and inclusion of copper nanoparticles increases the velocity pro file more prominently in comparison to pure blood case.Figure 4(b)is plotted to show the influence of clot heightζon velocity in the presence of copper nanoparticles and concluded that the velocity decreases by increasing the height of the clot which is physically true.It is due to the fact that the increasing values of?causes the resistance to the flow.

    Fig.2 Velocity pro file for different values of(a)inclination angle η;(b)Grashroff number Gr.

    Fig.3 Velocity pro file for different values of(a)heat source parameter γ;(b)Hartmann number Ha.

    Fig.4 Velocity pro file for different values of(a)magnetic field inclination α;(b)Clot height ζ.

    From Fig.5(a),it is analyzed thatwincreases with an increase in the values of Reynolds numberRe.Smaller values ofRemakes the fluid flow more laminar therefore the velocity increases by increasingRe.The velocity pro file for different values of Froude numberFris plotted in Fig.5(b)and observed that the significance of velocity increases with an increase inFrin the presence of copper nanoparticles.Change in pressure gradient for inclination angle,Grashoffnumber,heat source parameter,Hartmann number,mgnetic field inclination,clot height,Reynolds number and Froude number is observed through Figs.6–9.The effect of inclination angleηon dp/dzis displayed in Fig.6(a).It is found that upon increasingηthe amplitude of dp/dzincreases.

    Fig.5 Velocity pro file for different values of(a)Reynolds number Re;(b)Froude number Fr.

    Fig.6 Pressure gradient of distinct values of(a)inclination angle η;(b)Grashroff number Gr.

    Fig.7 Pressure gradient of distinct values of(a)heat source parameter γ;(b)Hartman number Ha.

    It is observed that the growth in pressure gradient is more prominent when we move from horizontal to vertical annulus.The effect of Grashof numberGron the pressure gradient is discussed in Fig.6(b)and noticed that with the growth of the buoyancy forces the pressure gradient increases in the presence of metallic nanoparticles.Figure 7(a)depicts that the increase in the heat source/sink parameter decreases the amplitude of pressure gradient since more heat is generated inside the considered base fluid.And decrease is more prominent for Cu-blood.Figure 7(b)represents the effect of Hartmann number(Ha)on dp/dz.It is investigated that the pressure gradient in inclined annulus gives higher height for copper nanoparticles than pure blood in the presence inclined magnetic field.

    Figure 8(a)reveals that the variation of pressure gradient for an inclined annulus will decrease with the enhancing effect of magnetic field inclinationα.It is revealed that the decrease is more prominent for Cu-blood case in comparison to pure blood.Figure 8(b)represents the behavior of dp/dzversuszfor the different values of clot heightζand revealed that with the increase of clot height the pressure gradient increases under the influence of inclined magnetic field.

    Fig.8 Pressure gradient of distinct values of(a)magnetic field inclination α;(b)Clot height ζ.

    Fig.9 Pressure gradient of distinct values of(a)Reynolds number Re;(b)Froude number Fr.

    Fig.10 Pressure gradient of distinct values of(a)inclination angle eta;(b)Grashroffnumber Gr.

    Figure 9 indicates that the behavior of pressure gradient is inversely proportional to the Froude numberFrand directly related to the Reynolds numberReunder the combine effect of copper nanoparticles and inclined magnetic field.The pressure rise per wavelength is important to explained the pumping properly and sketched here from Figs.10–13.

    Fig.11 Pressure rise for distinct values of(a)heat source parameter γ;(b)Hartmann number Ha.

    Fig.12 Pressure rise for distinct values of(a)magnetic filed inclination α;(b)Clot height ζ.

    Fig.13 Pressure rise for distinct values of(a)Reynolds number Re;(b)Froude number Fr.

    One regular observation from these figures is that the pressure rise per wavelength reduces with the expansion in flow rate.It is important to note that inclusion of nanoparticles changes the free pumping flux(value ofqfor Δp=0).Figure 10(a)is plotted for the analysis of pressure rise for changing values of inclination angleηand observed that the pressure rise enhances when we move from horizontal to vertical annulus having clot inside it.Pressure rise increases more prominently in the retrograde region as compared to augmented region when the effects of nanoparticles are taken into account.Figure 10(b)shows the impact of Grashof number on the pressure rise against the flow rate.Important observation from this figure is that the increase inGrincreases the pressure rise in the retrograde pumping region(q<0,Δp>0)and decreases in augmented pumping region(q>0,Δp>0)when the effects of viscous forces are more prominent in the presence of copper nanoparticles and inclined magnetic field.The fluctuation of pressure rise versusqfor different values of heat source parameterγis given in Fig.11(a)and observed that addition of copper nanoparticles increases the retrograde pumping region more significantly than pure blood in the existence of clot.Figure 11(b)shows that the pressure rise increases with an increase in the Hartmann numberHa.It is depicted that by increasing values of Hartmann number pressure rise becomes an increasing function in the region(?1≤q≤ 0)whereas reverse behavior is seen in the rest of the region.Figure 12 describes the effect of magnetic field inclinationαand clot heightζon the pressure rise.It is declared from these figures that the pressure rise per wavelength is directly related toζbut inversely related toα.Furthermore,pressure rise enhsnces in the retrograde pumping region(q<0,Δp>0)with the increase of nanoparticle volume fraction.

    Fig.14 Streamlines for Copper nanoparticles for distinct values of(a)Gr=4;(b)Gr=5;(c)Gr=6.

    Fig.15 Streamlines for Copper nanoparticles for distinct values of(a)η=0;(b)η= π/4;(c)η=2/π.

    Figure 13 describes the results obtained for the Δpversus the flow rateqfor increasing values of Reynolds numberReand Froude numberFr.It is seen that the pressure rise is an increasing function ofRewhile decreasing function ofFrand variations are more enhanced in the presence of metallic nanoparticles and under the effect of inclined magnetic field.Trapping,describing an interesting phenomenon for the blood flow pattern in an inclined annulus having clot is discussed in Figs.14–20 by considering the copper as nanoparticles.It is analyzed that the number of trapped bolus increases but the size of the bolus decreases by increasing Grashoffnumber with the inclusion of copper nanoparticles by the closed stream lines as shown in Fig.14.The influence of inclination angleηon streamlines are shown in Fig.15.It is seen that no bolus appears for horizontal annulus but size of bolus increases as we considered the inclined annulus having clot and than decreases for vertical case.From Fig.16,it is inspected that the number of trapping bolus increases when we increase the concentration of nanoparticlesφas contrast with pure blood case.It is important to note that the number of bolus decreases when we further increase the concentraion of copper nanoparticles.

    Fig.16 Streamlines for distinct values of nanoparticle volume fraction(a)?=0.00;(b)?=0.05;(c)?=0.1.

    Fig.17 Streamlines for Copper nanoparticles for distinct values of(a)Re=0.2;(b)Re=0.4;(c)Re=0.6.

    Fig.18 Streamlines for Copper nanoparticles for distinct values of(a)Fr=0.1;(b)Fr=0.15;(c)Fr=0.2.

    Figure 17 describes the impact of Reynolds numberReon the trapping phenomena.Increasing the values ofReincreases the number of bolus for Cu-blood.The trapping phenomena for Froude numberFris examined through Fig.18.It is inspected that the streamlines gets closer for increasing values ofFr.The number of the trapped bolus increases with increasing Hartmann numberHain the presence of copper nanoparticles as presented in Fig.19.The trapping phenomena for the heat source parameterγis given in Fig.20.The number of the trapped inner bolus decreases with an increase in the values ofγfor copper nanoparticles.

    Fig.19 Streamlines for Copper nanoparticles for distinct values of(a)Ha=0.2;(b)Ha=0.9;(c)Ha=1.2.

    Fig.20 Streamlines for Copper nanoparticles for distinct values of(a)γ=0.5;(b)γ=0.7;(c)γ=0.9.

    Fig.21 Streamlines for Copper nanoparticles for distinct values of(a)ζ=0.1;(b)ζ=0.21;(c)ζ=0.25.

    Fig.22 Streamlines for Copper nanoparticles for distinct values of(a)α=0;(b)α=π/4;(c)α=π/3.

    Figures 21 and 22 describe the impact of clot heightζand magnetic field inclinationαon the streamlines pattern.The number of circulating bolus increases by increasing clot heightζwhereas opposite behavior is observed for magnetic field inclinationα.Table 2 shows the variation of temperature pro file for increasing values of heat source parameterγ.It is inspected that the enhancing values of heat source parameterγenhance the temperature of the considered base fluid through metabolic system.

    Table 2 Variations of temperature pro file for different values of heat source parameter γ.

    5 Conclusions

    Impact of inclined magnetic field and copper nanoparticles on the peristaltic flow of nano fluid through inclined annulus having clot inside it is discussed in this analysis.Some crucial observations of the considered analysis are listed below

    ?Amplitude of velocity pro files exhibit higher results for copper blood than for the pure blood.

    ?Velocity for viscous fluid flowing through an inclined annulus is less in comparison to that of a nano fluid in the presence of copper nanoparticles.

    ?Pressure gradient for the flow in a horizontal annulus is lower when compared with that of an inclined and vertical annulus.

    ?With an increase in Hartmann number the pressure rise enhances in the retrograde pumping region while opposite behavior is observed in the augmented pumping region.

    ?For the flow through an inclined annulus the pressure rise decreases more for inclined magnetic field when compared with the constant magnetic field.

    References

    [1]R.U.Haq,Z.H.Khanb,S.T.Hussain,and Z.Hammouch,J.Mol.Liq.221(2016)298.

    [2]S.Ijaz and S.Nadeem,Comput.Meth.Prog.Bio.134(2016)43.

    [3]S.U.Rahman,R.Ellahi,S.Nadeem,and Q.M.Z.Zia,J.Mol.Liq.218(2016)484.

    [4]S.U.S.Choi and J.A.Eastman,ASME Int.Mech.Eng.Cong.Expos.66(1995)99.

    [5]N.S.Akbar and A.W.Butt,Comput.Meth.Prog.Bio.134(2016)43.

    [6]S.Nadeem and I.Shahzadi,Commun.Theor.Phys.64(2015)547.

    [7]N.S.Akbar,Comput.Meth.Prog.Bio.132(2016)45.

    [8]S.Nadeem and Iqra shahzadi,Int.J.Heat Mass Trans.97(2016)794.

    [9]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Trans.103(2016)1133.

    [10]M.Atlas,R.U.Haq,and T.Mekkaoui,J.Mol.Liq.doi:10.1016/j.molliq.2016.08.032.

    [11]Y.Xuan,ASME J.Heat Transf.125(2003)151.

    [12]H.C.Brinkman,J.Chem.Phys.20(1952)571.

    [13]R.K.Tiwari and M.K.Das,Int.J.Heat Mass Transf.50(2007)2002.

    [14]R.U.Haq,Z.H.Khanb,S.T.Hussain,and Z.Hammouch,J.Mol.Liq.221(2016)298.

    [15]I.Shahzadi,H.Sadaf,S.Nadeem,and A.Saleem,Comput.Meth.Prog.Bio.139(2016)137.

    [16]S.Nadeem and N.S.Akbar,Int.J.Numer.Meth.Fluids 66(2011)919.

    [17]A.H.Shapiro,M.Y.Jaffrin,and S.Wienberg,J.Fluid Mech.37(1969)799.

    [18]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Transf.103(2016)1133.

    [19]N.S.Akbar,M.Raza,and R.Ellahi,European Phys.J.Plus 129(2014)155.

    [20]Kh.S.Mekheimer,S.Z.A.Husseny,and A.I.Abdellateef,App.Bion.Biomech.8(2011)1.

    [21]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Transf.106(2017)244.

    [22]M.Sheikholeslami and R.Ellahi,Int.J.Heat Mass Transf.89(2015)799.

    [23]S.Nadeem and I.Shahzadi,AIP Advances 6(2015)015110.

    [24]M.M.Bhatti,R.Ellahi,and A.Zeeshan,J.Mol.Liq.222(2016)101.

    [25]A.Zeeshan,A.Majeed,and R.Ellahi,J.Mol.Liq.215(2016)549.

    [26]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,J.Mol.Liq.223(2016)469.

    [27]I.Shahzadi and S.Nadeem,J.Mol.Liq.225(2017)365.

    [28]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Results in Physics doi:org/10.1016/j.rinp.2016.12.048.

    [29]Kh.S.Mekheimer and Y.Abd Elmaboud,Appl.Bionics Biomech.5(2008)13.

    日日摸夜夜添夜夜爱| 悠悠久久av| 99riav亚洲国产免费| 欧美日韩国产亚洲二区| 99热只有精品国产| 老师上课跳d突然被开到最大视频| 久久久成人免费电影| 午夜爱爱视频在线播放| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 97在线视频观看| 尤物成人国产欧美一区二区三区| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 成人二区视频| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 成人美女网站在线观看视频| 久久精品国产自在天天线| 午夜激情福利司机影院| 欧美不卡视频在线免费观看| 乱人视频在线观看| 亚洲在线观看片| 国产精品一及| 51国产日韩欧美| 联通29元200g的流量卡| 国产高清激情床上av| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 日本欧美国产在线视频| av福利片在线观看| 欧美激情在线99| 91狼人影院| 久久久精品94久久精品| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| av女优亚洲男人天堂| 高清午夜精品一区二区三区 | 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 色在线成人网| 老司机影院成人| av在线亚洲专区| 亚洲,欧美,日韩| 亚洲av成人av| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 在现免费观看毛片| 国产精品1区2区在线观看.| 欧美日韩乱码在线| 亚洲精华国产精华液的使用体验 | 亚洲自偷自拍三级| 日韩在线高清观看一区二区三区| 一级黄片播放器| a级毛片免费高清观看在线播放| 国产一级毛片七仙女欲春2| 日韩亚洲欧美综合| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 卡戴珊不雅视频在线播放| 婷婷亚洲欧美| 国产成人a∨麻豆精品| 人妻制服诱惑在线中文字幕| 超碰av人人做人人爽久久| 久久久久久伊人网av| 身体一侧抽搐| 99久久精品一区二区三区| 51国产日韩欧美| 日韩强制内射视频| 在线国产一区二区在线| 中国国产av一级| 成人永久免费在线观看视频| 一区二区三区四区激情视频 | av在线播放精品| 婷婷亚洲欧美| 免费观看的影片在线观看| 全区人妻精品视频| 国产成人影院久久av| 人人妻人人澡人人爽人人夜夜 | 国产三级在线视频| 成人二区视频| 亚洲国产精品成人久久小说 | 亚洲五月天丁香| 欧美不卡视频在线免费观看| 日本爱情动作片www.在线观看 | 神马国产精品三级电影在线观看| 熟女人妻精品中文字幕| 国产三级中文精品| 麻豆乱淫一区二区| 国产 一区精品| 又爽又黄a免费视频| 床上黄色一级片| 日韩在线高清观看一区二区三区| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 国产淫片久久久久久久久| 婷婷精品国产亚洲av在线| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 免费看日本二区| 一进一出好大好爽视频| 国产高清三级在线| 哪里可以看免费的av片| 真人做人爱边吃奶动态| 中国国产av一级| 久久久欧美国产精品| 日本爱情动作片www.在线观看 | h日本视频在线播放| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 我要搜黄色片| 黄色日韩在线| 亚洲av熟女| 熟女电影av网| 一进一出抽搐动态| 亚洲成人精品中文字幕电影| 直男gayav资源| 国产国拍精品亚洲av在线观看| 啦啦啦韩国在线观看视频| 丰满乱子伦码专区| 可以在线观看毛片的网站| 久久久精品94久久精品| 两性午夜刺激爽爽歪歪视频在线观看| av在线播放精品| 精品一区二区三区人妻视频| 久久午夜亚洲精品久久| 最好的美女福利视频网| 精品久久久久久成人av| 国产一区二区激情短视频| 中文资源天堂在线| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看| 最后的刺客免费高清国语| 亚洲精品亚洲一区二区| 91久久精品电影网| 国产精品亚洲美女久久久| 国产av一区在线观看免费| 乱系列少妇在线播放| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩在线中文字幕 | 亚洲精品一卡2卡三卡4卡5卡| 最近2019中文字幕mv第一页| 91麻豆精品激情在线观看国产| av在线亚洲专区| 国产精品嫩草影院av在线观看| 亚洲av免费高清在线观看| 午夜影院日韩av| 变态另类成人亚洲欧美熟女| 国产一级毛片七仙女欲春2| 嫩草影视91久久| 丰满的人妻完整版| 中国国产av一级| 嫩草影院精品99| 国产成人影院久久av| 99热全是精品| 国产又黄又爽又无遮挡在线| 国内精品久久久久精免费| 91在线观看av| 日韩,欧美,国产一区二区三区 | 身体一侧抽搐| 亚洲激情五月婷婷啪啪| 12—13女人毛片做爰片一| 伦理电影大哥的女人| 看免费成人av毛片| 日韩一本色道免费dvd| 成人毛片a级毛片在线播放| 亚洲精品在线观看二区| 久久这里只有精品中国| 蜜臀久久99精品久久宅男| 91av网一区二区| 欧美精品国产亚洲| 变态另类丝袜制服| 久久精品综合一区二区三区| 99国产精品一区二区蜜桃av| 久久久久国内视频| 能在线免费观看的黄片| 免费黄网站久久成人精品| 别揉我奶头 嗯啊视频| 真实男女啪啪啪动态图| 午夜视频国产福利| 搞女人的毛片| 全区人妻精品视频| 三级国产精品欧美在线观看| 色噜噜av男人的天堂激情| av国产免费在线观看| 国产一区二区亚洲精品在线观看| 日韩成人av中文字幕在线观看 | 日本免费a在线| 国产精品久久久久久av不卡| 国产美女午夜福利| 午夜精品国产一区二区电影 | 日本在线视频免费播放| 成人一区二区视频在线观看| 婷婷亚洲欧美| 国内精品美女久久久久久| 两个人的视频大全免费| 久久久久久久久大av| 床上黄色一级片| 日韩成人av中文字幕在线观看 | 观看美女的网站| 久久久精品欧美日韩精品| 天天躁日日操中文字幕| 国产亚洲精品久久久com| 91精品国产九色| h日本视频在线播放| 亚洲精品成人久久久久久| 我的女老师完整版在线观看| 精品久久久久久久久av| 日日摸夜夜添夜夜爱| 99在线视频只有这里精品首页| 欧美色视频一区免费| 晚上一个人看的免费电影| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| 日韩欧美免费精品| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 99在线人妻在线中文字幕| 韩国av在线不卡| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出| 成人二区视频| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 99精品在免费线老司机午夜| 精品久久久久久久久亚洲| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 成人三级黄色视频| 男人和女人高潮做爰伦理| 校园春色视频在线观看| 免费黄网站久久成人精品| 国产精品野战在线观看| 变态另类成人亚洲欧美熟女| 18禁黄网站禁片免费观看直播| 亚州av有码| 中国国产av一级| 亚洲欧美日韩高清专用| 亚洲第一电影网av| 国产黄片美女视频| 亚洲自偷自拍三级| a级毛色黄片| 免费无遮挡裸体视频| 五月玫瑰六月丁香| 99热这里只有精品一区| 国产毛片a区久久久久| 精品一区二区免费观看| 最近的中文字幕免费完整| 免费看光身美女| 精品乱码久久久久久99久播| aaaaa片日本免费| 亚洲专区国产一区二区| 深爱激情五月婷婷| 中文在线观看免费www的网站| 国内精品美女久久久久久| 黄色视频,在线免费观看| 91精品国产九色| 黄色日韩在线| 亚洲av一区综合| 久久人妻av系列| 一区二区三区高清视频在线| 91久久精品国产一区二区成人| 真实男女啪啪啪动态图| 蜜臀久久99精品久久宅男| 亚洲av熟女| 亚洲欧美成人精品一区二区| 十八禁网站免费在线| 美女高潮的动态| 九九在线视频观看精品| 久久久久久大精品| 亚洲第一电影网av| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| 校园春色视频在线观看| 精华霜和精华液先用哪个| 1024手机看黄色片| 免费av不卡在线播放| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 永久网站在线| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址| 一a级毛片在线观看| 99久久无色码亚洲精品果冻| 午夜免费男女啪啪视频观看 | 国产精华一区二区三区| 国产免费男女视频| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 亚洲精品日韩在线中文字幕 | 亚洲国产精品成人久久小说 | 国产精品,欧美在线| 色av中文字幕| 精品久久久久久久久亚洲| a级毛色黄片| 22中文网久久字幕| 日本欧美国产在线视频| av.在线天堂| 精品久久久久久久末码| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 国产白丝娇喘喷水9色精品| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 丰满人妻一区二区三区视频av| 亚洲成a人片在线一区二区| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 日日啪夜夜撸| 欧美zozozo另类| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 麻豆av噜噜一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩乱码在线| 国产探花在线观看一区二区| 久久亚洲精品不卡| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 久久婷婷人人爽人人干人人爱| 韩国av在线不卡| 久久精品91蜜桃| 美女xxoo啪啪120秒动态图| 久久久久精品国产欧美久久久| 国产女主播在线喷水免费视频网站 | 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 波野结衣二区三区在线| 在线天堂最新版资源| 久久99热这里只有精品18| 久久久久九九精品影院| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| avwww免费| 一级黄片播放器| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 精品久久久久久成人av| 国内精品美女久久久久久| 六月丁香七月| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 精品久久久噜噜| 久久精品国产亚洲av香蕉五月| a级毛色黄片| 亚洲成人久久性| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 久久天躁狠狠躁夜夜2o2o| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 日韩中字成人| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 夜夜爽天天搞| 看黄色毛片网站| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 色在线成人网| 国产美女午夜福利| 麻豆久久精品国产亚洲av| 亚洲精品久久国产高清桃花| 你懂的网址亚洲精品在线观看 | 成人特级av手机在线观看| 赤兔流量卡办理| 国产精品爽爽va在线观看网站| 国产亚洲精品综合一区在线观看| 亚洲18禁久久av| 夜夜夜夜夜久久久久| 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品合色在线| 天美传媒精品一区二区| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 精品日产1卡2卡| 日产精品乱码卡一卡2卡三| 久99久视频精品免费| 一个人看的www免费观看视频| 欧美成人a在线观看| 国产精品一区二区三区四区免费观看 | 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看| 日韩,欧美,国产一区二区三区 | 成人精品一区二区免费| 欧美精品国产亚洲| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| 桃色一区二区三区在线观看| 国产精品久久久久久久电影| 乱人视频在线观看| 亚洲中文日韩欧美视频| 女生性感内裤真人,穿戴方法视频| 精品久久久噜噜| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 天堂√8在线中文| 日韩欧美国产在线观看| 草草在线视频免费看| 亚洲天堂国产精品一区在线| 丰满的人妻完整版| 亚洲不卡免费看| av中文乱码字幕在线| 性欧美人与动物交配| 2021天堂中文幕一二区在线观| 国产精品美女特级片免费视频播放器| 我的老师免费观看完整版| 少妇猛男粗大的猛烈进出视频 | 国产精品一区二区免费欧美| 色哟哟·www| 国产乱人偷精品视频| 大型黄色视频在线免费观看| 午夜爱爱视频在线播放| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 久久久久国产网址| 精品乱码久久久久久99久播| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 中文字幕av成人在线电影| 日本免费a在线| av在线老鸭窝| 免费一级毛片在线播放高清视频| 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| 联通29元200g的流量卡| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人午夜福利视频| 亚洲性久久影院| 激情 狠狠 欧美| 成人精品一区二区免费| 舔av片在线| 天堂av国产一区二区熟女人妻| 精品久久国产蜜桃| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 国产日本99.免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲成a人片在线一区二区| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 精品久久久久久成人av| 国产精品,欧美在线| 免费一级毛片在线播放高清视频| 一级毛片久久久久久久久女| 色综合色国产| 亚洲最大成人手机在线| 国产乱人视频| 亚洲av不卡在线观看| 99热网站在线观看| 免费人成在线观看视频色| 免费看美女性在线毛片视频| 三级经典国产精品| 国产精品嫩草影院av在线观看| 老熟妇仑乱视频hdxx| 啦啦啦啦在线视频资源| av免费在线看不卡| 久久久欧美国产精品| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| aaaaa片日本免费| 国产高清激情床上av| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区三区| 亚洲性久久影院| 亚洲精品影视一区二区三区av| 永久网站在线| 久久久国产成人精品二区| 香蕉av资源在线| 成人精品一区二区免费| 国产成人a∨麻豆精品| 国产成人精品久久久久久| 97超级碰碰碰精品色视频在线观看| 久久精品国产自在天天线| 国产大屁股一区二区在线视频| avwww免费| 联通29元200g的流量卡| 亚洲七黄色美女视频| 欧美日韩综合久久久久久| 国产精品一区www在线观看| 亚洲精品成人久久久久久| 99热这里只有是精品50| 深爱激情五月婷婷| 成人特级黄色片久久久久久久| 午夜激情欧美在线| 搡女人真爽免费视频火全软件 | eeuss影院久久| 久久久精品大字幕| 超碰av人人做人人爽久久| 插逼视频在线观看| 秋霞在线观看毛片| 日韩欧美一区二区三区在线观看| 久久久久久久久中文| 欧美成人a在线观看| 日韩一本色道免费dvd| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 看免费成人av毛片| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 国产精品一区二区免费欧美| 一个人免费在线观看电影| 成人特级黄色片久久久久久久| 久久99热6这里只有精品| 成人国产麻豆网| 亚洲丝袜综合中文字幕| 夜夜爽天天搞| 男人舔奶头视频| 久久精品国产亚洲av天美| 欧美一区二区国产精品久久精品| 国产精品1区2区在线观看.| 三级毛片av免费| 菩萨蛮人人尽说江南好唐韦庄 | 最新在线观看一区二区三区| 99热只有精品国产| 欧美激情国产日韩精品一区| 老司机影院成人| 精华霜和精华液先用哪个| 精品国内亚洲2022精品成人| 69av精品久久久久久| 在线观看av片永久免费下载| 国产精品久久电影中文字幕| 国国产精品蜜臀av免费| 国产黄片美女视频| 免费在线观看成人毛片| 国产精品久久久久久精品电影| 欧美日本视频| 毛片女人毛片| 少妇人妻一区二区三区视频| 成人美女网站在线观看视频| 国产黄色小视频在线观看| 国内精品美女久久久久久| 色av中文字幕| 亚洲无线在线观看| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类| 精品乱码久久久久久99久播| 精品少妇黑人巨大在线播放 | 18禁裸乳无遮挡免费网站照片| 欧美日本亚洲视频在线播放| 欧美一级a爱片免费观看看| 女人十人毛片免费观看3o分钟| 在线观看av片永久免费下载| 又爽又黄a免费视频| 欧美一区二区亚洲| 国产免费一级a男人的天堂| 成熟少妇高潮喷水视频| a级毛片免费高清观看在线播放| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 亚洲色图av天堂| 午夜激情欧美在线| 99热只有精品国产| 又黄又爽又免费观看的视频| 在线免费观看不下载黄p国产| 国产精品免费一区二区三区在线| 日本熟妇午夜| 一进一出抽搐动态| 免费电影在线观看免费观看| 精品少妇黑人巨大在线播放 | 免费观看的影片在线观看| 美女大奶头视频| 国产伦精品一区二区三区四那| 日韩欧美精品免费久久| 久久国产乱子免费精品| 日日摸夜夜添夜夜添小说| 一区二区三区免费毛片| 亚洲成人精品中文字幕电影| 一级毛片aaaaaa免费看小| 欧美成人一区二区免费高清观看| 亚洲欧美日韩无卡精品| 联通29元200g的流量卡| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 99久久精品一区二区三区| 在线观看午夜福利视频| 美女免费视频网站| 久久久久久久久中文| 久久久久性生活片| 97超视频在线观看视频| 99久久九九国产精品国产免费| aaaaa片日本免费| 长腿黑丝高跟| 成人亚洲欧美一区二区av| 极品教师在线视频| 狂野欧美激情性xxxx在线观看| 你懂的网址亚洲精品在线观看 |