唐志武,徐馬記,陶欣,黎明鍇,何云斌
(功能材料綠色制備與應用教育部重點實驗室(湖北大學),湖北大學材料科學與工程學院,湖北 武漢 430062)
?
高質量外延VO2薄膜制備及其金屬-絕緣體相變特性研究
唐志武,徐馬記,陶欣,黎明鍇,何云斌
(功能材料綠色制備與應用教育部重點實驗室(湖北大學),湖北大學材料科學與工程學院,湖北 武漢 430062)
采用脈沖激光沉積法,在c面藍寶石襯底上,以VO2陶瓷作為燒蝕靶材,高純氧氣作為反應氣體,固定襯底溫度600 ℃,通過改變生長氧壓制備VO2薄膜.利用X線衍射儀、原子力顯微鏡、四探針測試儀測試,系統研究生長氧壓對VO2薄膜晶體結構、表面形貌、金屬-絕緣體相變(MIT)特性的影響.實驗結果表明:生長氧壓1.2 Pa時,薄膜(020)晶面搖擺曲線半高寬低至0.061°,結晶質量高;薄膜表面平整光滑;薄膜相變溫度接近68 ℃,金屬-絕緣體轉變特性顯著,電阻率有4個數量級變化.
VO2;金屬-絕緣體相變(MIT);脈沖激光沉積(PLD); 外延薄膜
1959年Morin[1]發(fā)現二氧化釩(VO2)具有由高溫金屬相到低溫絕緣體相的可逆相變特性,即MIT相變.VO2相變溫度為68 ℃,接近室溫.人們通過改進生長條件和摻雜方法進而調節(jié)其相變溫度,使得其成為人們研究相變的明星材料.在68 ℃時VO2晶體結構由高溫四方相轉變?yōu)榈蜏貑涡毕?,相變過程中伴隨著電阻率有4~5個量級的變化[2-3],光學(尤其是紅外光波段)[4]、磁學等性質的可逆突變,使得其在光電開關、智能玻璃、存儲材料等領域具有廣闊的應用前景[5-8].
VO2MIT特性對氧空位、應變等十分敏感[9],生長高質量的VO2是對其進行深入研究的基礎.釩的價態(tài)較多,釩的氧化物中較易形成V2O3,VO2,V2O5.生長純相的VO2比較困難[10].通常采用磁控濺射[11-13]、化學氣相沉積[14-16]、脈沖激光沉積[17-20]等技術來生長VO2薄膜.磁控濺射法作為一種重要的VO2薄膜制備方法,沉積速率快,薄膜較均勻,可以大面積的制備薄膜,但是制備出來的薄膜容易含有其他價態(tài)釩的氧化物.脈沖激光沉積法(PLD)于上世紀80年代出現,在研制氧化物薄膜中具有其優(yōu)越的特點.現在,PLD法已經在很多材料制備領域中獲得了巨大成功,被普遍認為是實驗室制備薄膜的最好方法之一.脈沖激光器產生固定能量的脈沖激光,通過聚光鏡將其聚焦在靶材表面,燒蝕靶材,使靶材表面產生高溫高壓的等離子體羽輝,等離子體運輸到襯底表面,并在襯底上凝聚、成核、生長,最終成膜.Borek[17]等人于1993年最先利用PLD方法制備VO2薄膜,Soltani[6]等人在c面和m面藍寶石上制備出VO2薄膜.
在本文中,采用脈沖激光沉積法,以VO2陶瓷作為燒蝕靶材,c面藍寶石作為襯底,高純氧氣作為反應氣體,固定襯底溫度600 ℃和沉積時間30 min,通過改變沉積氧壓大小制備出VO2薄膜,以探究沉積氧壓對薄膜結構及MIT特性的影響.
1.1 材料的制備 本實驗中,我們采用PLD,通過調節(jié)生長氧壓大小來制備VO2薄膜.實驗中使用的激光器是由德國Lambda Physik公司生產的KrF準分子激光器(COMPEX PRO 205F),輸出波長248 nm.固定激光頻率5 Hz,激光脈沖能量450 mJ/Pulse,以VO2陶瓷作為燒蝕靶材,采用c面藍寶石作為襯底,高純氧氣O2(99.999%)作為反應氣體制備了一系列VO2薄膜.首先將襯底放入真空管式爐中在空氣氣氛中1 100 ℃退火1 h,然后襯底依次在丙酮、乙醇、去離子水中超聲清洗15 min.清洗干凈的襯底用氮氣吹干后固定在樣品托上,并立即送入真空室內.固定靶材和襯底之間的距離為60 mm,待真空室壓強抽至5.0×10-4Pa以下,開始加熱襯底至薄膜生長所需的溫度600 ℃,隨后通入高純氧氣,開啟激光器沉積薄膜30 min.為了保證薄膜生長的均勻性,沉積薄膜時,靶材和襯底分別以5 r/min和10 r/min的速度轉動.薄膜生長完畢后,待樣品在真空室自然冷卻至室溫后取出.設定沉積時的氧壓為0.3、0.8、1.2、1.5、1.8 Pa,分別得到5個不同氧壓的實驗樣品.
1.2 樣品的測試 采用四圓單晶X線衍射儀(Bruker,D8 discover)對薄膜的晶體結構進行分析,采用日本Shimadzu(島津)公司的SPM 9700型原子力顯微鏡(AFM)觀測薄膜的表面形貌,通過四探針法來測量薄膜電阻率在升溫和降溫過程中變化.
2.1 沉積氧壓對薄膜晶體結構的影響 圖1(a)、(b)分別為不同氧壓下生長的VO2薄膜XRD全譜圖和窄譜圖.從全譜圖中可以看出,41.7°對應藍寶石襯底(006)面衍射峰,39.8°對應單斜相VO2的(020)面衍射峰.沉積氧壓在0.3 Pa與1.2 Pa之間時,除了襯底的衍射峰外,只出現了一個單斜相VO2的衍射峰,表明得到單相的VO2薄膜.沉積氧壓為1.5 Pa時,在21.73°處出現微弱的V2O5(101)面衍射峰.氧壓繼續(xù)升高到1.8 Pa,VO2的(020)面衍射峰基本消失,V2O5(101)面衍射峰強度增強,說明氧壓過高使得生成+5價釩的氧化物,不能得到純相VO2薄膜.從窄譜圖中可以看出,隨著氧壓從0.3 Pa升高到1.5 Pa,VO2(020)面衍射峰從40.01°逐漸向低角度移動到39.85°,峰位移動是由于隨著氧壓升高VO2薄膜在沉積過程中氧空位減少造成的[6].由布拉格方程2dsinθ=nλ(d為晶面間距,θ為入射X線與晶面的夾角,λ為X線波長,n為衍射級數)可以計算出,VO2(020)面衍射峰從40.01°移動到39.85°,薄膜b軸晶格常數從0.450 7 nm增加到0.452 4 nm,如表1所示.這小于VO2體材料b軸晶格常數0.452 6 nm,說明薄膜面外是壓縮的,受到壓應力.
圖1 不同生長氧壓下制備VO2薄膜的XRD θ-2θ圖(a) 全譜圖,(b) 窄譜圖
圖2 1.2 Pa氧壓下生長VO2薄膜(020)晶面搖擺曲線
圖3 1.2 Pa氧壓下生長VO2薄膜phi掃描圖
2.2 沉積氧壓對薄膜表面形貌的影響 圖4展示氧壓為0.8 Pa、1.5 Pa條件下生長的VO2薄膜表面形貌二維和三維AFM圖.從圖4(a)(c)中可以看出,0.8 Pa氧壓下生長的薄膜表面十分致密,晶粒細小,大小分布均勻,薄膜表面均方根粗糙度(RMS)只有0.257 nm,說明所制備的薄膜表面非常光滑、平整.當氧壓升高到1.5 Pa時,如圖4(b)(d)所示,薄膜表面比較致密,晶粒變大,出現不均勻的突起,表面變得粗糙,RMS為3.09 nm.結合XRD測試結果可以發(fā)現1.5 Pa氧壓下生長的薄膜中同時存在VO2和少量V2O5.這是造成薄膜表面粗糙度增大的主要原因之一.另一方面氧壓會影響VO2靶材濺射出來的羽輝大小.低氧壓條件下濺射的羽輝比較大,在較大的空間下分布比較均勻,且等離子體動能較大,原子易在襯底表面遷移,因而薄膜表面比較平整.在高氧壓條件下,羽輝受到大量氧氣分子的碰撞,使得分布不均勻,且等離子體動能受到損失較大,附著原子難以在襯底表面遷移,造成形成的VO2薄膜表面比較粗糙.
2.3 沉積氧壓對薄膜MIT相變的影響 利用四探針法測量不同氧壓下生長的VO2薄膜電阻率隨溫度變化的關系.對升溫和降溫過程中電阻率變化進行測量結果如圖5所示.0.3 Pa至1.5 Pa氧壓下生長的VO2薄膜都表現出MIT相變特征.1.8 Pa氧壓下生長的薄膜主要成分為V2O5,沒有表現出MIT相變特性.0.3 Pa 氧壓下生長的薄膜在變溫測試中電阻率大約有2個數量級的變化,1.2 Pa和1.5 Pa生長的薄膜在變溫測試中電阻率大約有4個數量級的變化,說明生長氧壓能顯著改變薄膜MIT相變前后電阻率變化量級.
圖6 不同氧壓下制備的VO2薄膜的變溫電阻率微分曲線
表1 不同氧壓下生長VO2薄膜的金屬-絕緣體相變特性及b軸晶格參數
沉積氧壓/PaTc,heating/℃Tc,cooling/℃Tc/℃b軸晶格參數/nm0.353.251.052.10.45070.860.758.259.50.45091.269.264.466.80.45171.569.566.067.80.4524
為了獲得VO2薄膜MIT相變溫度,對變溫電阻率曲線進行微分處理,如圖6所示.0.3、0.8 Pa氧壓下生長的VO2薄膜微分曲線比較平緩,1.2 Pa氧壓的樣品微分曲線非常陡峭,說明1.2 Pa氧壓下生長的VO2薄膜表現出明顯的MIT特性.Tc,heating、Tc,cooling分別是升溫、降溫過程微分曲線的中心點,相變溫度Tc=(Tc,heating+Tc,cooling)/2,結果如表1所示.隨著氧壓從0.3 Pa升高到1.5 Pa,相變溫度從52.1 ℃升高到67.8 ℃,逐漸接近VO2體材的相變溫度.不同沉積氧壓使得薄膜中存在不同的氧空位,氧空位可以有效調節(jié)薄膜的相變溫度.
[1] Morin F J.Oxides which show a metal to insulator transition at Neel temperature[J]. Physical Review Letters,1959,3:34-36.[2] Yang T H, Mal S, Jin C, et al. Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications[J]. Applied Physics Letters, 2011, 98(2): 022105.
[3] Zhang H, Wu Z, Yang W, et al. Large phase-transition hysteresis for nanostructured VOxfilm prepared on ITO conductive glass by DC reactive magnetron sputtering[J]. Vacuum, 2013, 98: 84-86.
[4] 盧勇, 林理彬.真空還原制備的VO2熱致相變薄膜Raman光譜和紅外光譜研究[J].功能材料, 2001, 32(6): 657-659.
[5] Zhong X, LeClair P, Sarker S K, et al. Metal-insulator transition in epitaxial VO2thin films on TiO2(100)[J]. Physical Review B, 2012, 86: 094114.
[6] Soltani M, Chaker M, Haddad E, et al. Micro-optical switch device based on semiconductor-to-metallic phase transition characteristics of W-doped VO2smart coatings[J]. Journal of Vacuum Science & Technology A, 2007(4), 25: 971-975.
[7] Fan L L, Chen S, Luo Z L, et al. Strain dynamics of ultrathin VO2film grown on TiO2(001) and the associated phase transition modulation[J]. Nano Letters, 2014, 14(7): 4036-4043.
[8] Lee S, Meyer T L, Park S, et al. Growth control of the oxidation state in vanadium oxide thin films[J]. Applied Physics Letters, 2014, 105(22): 223515.
[9] Kim H, Charipar N, Osofaky M, et al. Optimization of the semiconductor-metal transition in VO2epitaxial thin films as a function of oxygen growth pressure[J]. Applied Physics Letters, 2014, 104(8): 081913.
[10] Ji Y D, Pan T S, Bi Z, et al. Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases[J]. Applied Physics Letters, 2012, 101(7): 071902.
[11] Dillon R O, Le K, Ianno N. Thermochromic VO2sputtered by control of a vanadium-oxygen emission ratio[J]. Thin Solid Films, 2001, 398: 10-16.
[12] Guinneton F, Sauques L, Valmalette J C, et al. Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microsmacutre[J]. Thin Solid Films, 2003, 446(2): 287-295.
[13] Mlyuka N R, Kivaisi R T. Correlation between optical, electrical and structural properties of vanadium dioxide thin films[J]. Journal of Materials Science, 2006, 41(17): 5619-5624.
[14] Guiton B S, Gu Q, Prieto A L, et al. Single-crystalline vanadium dioxide nanowires with rectangular cross sections[J], Journal of the American Chemical Society, 2005, 127(2): 498-499.
[15] Cao J, Ertekin E, Srinivasan V, et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams[J]. Nature Nanotechnology, 2009, 4(12): 732-737.
[16] Cheng C, Liu K, Xiang B, et al. Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation[J]. Applied Physics Letters, 2012, 100(10): 103111.
[17] Borek M, Qian F, Nagabushnman V, et al. Pulsed-laser deposition of oriented VO2thin films on R-cut sapphire substrates[J]. Applied Physics Letters, 1993, 63(24): 3288-3290.
[18] Wu Z P, Yamamoto S, Miyashita A, et al. Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on(0001) sapphire[J], Journal of Physics-Condensed Matter, 1998, 10(48): L765-L771.
[19] Nag J, Payzant E A, More K L, et al. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide[J]. Applied Physics Letters, 2011, 98(25): 251916.
[20] Fan L L, Wu Y F, Si C, et al. Synchrotron radiation study of VO2crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains[J]. Applied Physics Letters, 2013, 102(1): 011604.
(責任編輯 胡小洋)
Preparation and metal-insulator transition properties of high quality epitaxial VO2films
TANG Zhiwu, XU Maji, TAO Xin, LI Mingkai, HE Yunbin
(Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials (Hubei University),Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, China)
The VO2films were deposited onc-plane sapphire substrates by pulsed laser deposition. A VO2ceramic disk was used as the ablation target and the reactive gas was high-purity O2. The VO2films were grown under various O2pressures and the substrate temperature was fixed at 600 ℃. Effects of O2pressure on the crystal structure, surface morphology, and metal-insulator transition(MIT) properties of the deposited films had been systematically studied by X-ray diffraction(XRD), atomic force microscopy(AFM) and four-probe method. When the O2pressure was 1.2 Pa, the film showed a full width at half maximum(FWHM) of(020)rocking curve of 0.061°, indicating high crystallinity of the film. MIT occurred in the film at about 68 ℃, and the resistance depending on temperature changed up to four orders of magnitude during the MIT.
VO2; metal-insulator transition(MIT); pulsed laser deposition(PLD); epitaxial film
2016-10-26
國家自然科學基金(51572073,61274010,11574074)和湖北省自然科學基金(2015CFA038, 2015CFB265, 2016AAA031)資助
唐志武(1992-),男,碩士生;黎明鍇,通信作者,副教授,E-mail: mkli@hubu.edu.cn;何云斌,通信作者,教授, E-mail: ybhe@hubu.edu.cn
1000-2375(2017)03-0217-05
O484.1/ TQ135
A
10.3969/j.issn.1000-2375.2017.03.001