向彬+申婷+肖純+李秀芳
[摘要] 小膠質(zhì)細胞作為腦內(nèi)常駐的免疫細胞,在缺血性腦卒中發(fā)生后快速活化,發(fā)揮了神經(jīng)損傷和修復的雙重作用,是近年來缺血性腦卒中研究的熱點。研究證據(jù)表明,腦缺血后小膠質(zhì)細胞的活化可呈現(xiàn)時間和空間的動態(tài)變化,在腦卒中的急性期、亞急性期,小膠質(zhì)細胞在缺血中心區(qū)和周邊區(qū)出現(xiàn)不同的表型,其表型的變化對缺血性腦卒中的預后產(chǎn)生了至關(guān)重要的影響。本文對小膠質(zhì)細胞的基本特征及其在缺血性腦卒中中的表型變化進行了梳理,以期為小膠質(zhì)細胞作為抗缺血性腦卒中藥物研究的新靶標提供理論支撐。
[關(guān)鍵詞] 小膠質(zhì)細胞;活化;缺血性腦卒中;神經(jīng)炎癥
[中圖分類號] R743.3 [文獻標識碼] A [文章編號] 1673-7210(2017)03(c)-0031-04
Research progress on activation of microglia in ischemic stroke
XIANG Bin SHEN Ting XIAO Chun LI Xiufang
Yun'nan University of Traditional Chinese Medicine, Yun'nan Province, Kunming 650500, China
[Abstract] Microglia, which is the resident immune cells in the brain, is rapidly activated after the occurrence of ischemic stroke. It plays dual roles of nerve injury and repair in the pathological process of ischemic stroke and is a research focus in ischemic stroke in recent years. After cerebral ischemia, microglia is activated rapidly, and the dynamic changes of time and space are presented in the activation process. In the acute and subacute stages of the stroke, microglia appears different phenotypes in ischemic core area and peripheral area. Research evidence shows that the phenotype changes of microglia has a significant impact on prognosis of ischemic stroke. In this paper, the basic characteristics of microglia and whose phenotype changes in ischemic stroke are sorted out, in order to provide theoretical support for the new target of the drug research about microglia in anti-ischemic stroke.
[Key words] Microglia; Activation; Ischemic stroke; Neuro-inflammation
缺血性腦卒中(ischemic stroke,IS)是臨床最常見的腦血管疾病之一[1-3],也是中老年人致死的第二大病因。IS的病理損傷機制極為復雜,涉及了腦細胞的能量代謝紊亂、自由基生成、細胞內(nèi)鈣超載、氧化應激損傷、興奮性氨基酸毒性、炎性反應、神經(jīng)細胞凋亡及壞死等多個環(huán)節(jié)。其中,IS后的神經(jīng)炎癥級聯(lián)反應使缺血后腦損傷程度遠超過缺血本身,減輕神經(jīng)炎癥損傷被認為是IS治療的有效策略[4]。IS后的神經(jīng)炎癥主要由小膠質(zhì)細胞、星形膠質(zhì)細胞及浸潤的外周巨噬細胞的激活所驅(qū)動。小膠質(zhì)細胞是腦內(nèi)常駐的免疫細胞,也是對IS損傷最早做出應答的細胞,在抵御腦損傷過程中發(fā)揮了重要作用。
1 小膠質(zhì)細胞的生理學特性
小膠質(zhì)細胞是中樞神經(jīng)系統(tǒng)中固有免疫反應的典型代表,其在中樞神經(jīng)系統(tǒng)分布較廣,生理情況下其數(shù)量占腦細胞總數(shù)的5%~10%,占中樞神經(jīng)系統(tǒng)膠質(zhì)細胞總數(shù)的5%~20%,分布于灰質(zhì)和白質(zhì)中[5],其胞體小,呈長形或三角形,具有細長的分枝。正常情況下,小膠質(zhì)細胞處于靜止狀態(tài),缺乏吞噬功能,但具有吞飲功能和一定的遷移能力,穿梭于腦實質(zhì)內(nèi)監(jiān)測微環(huán)境的變化,及時清除凋亡的神經(jīng)元,維持中樞神經(jīng)系統(tǒng)的動態(tài)平衡[6]。小膠質(zhì)細胞可分泌神經(jīng)生長因子和轉(zhuǎn)化生長因子等,在神經(jīng)元的整個生命過程中起著支持、保護、營養(yǎng)、修復等多種重要功能。當受到缺血損傷的刺激時,小膠質(zhì)細胞被激活成阿米巴狀,表現(xiàn)為高分支狀,胞體變大,突起及其分支增多,具有吞噬功能,甚至可做阿米巴運動[7]。小膠質(zhì)細胞首先通過分泌營養(yǎng)因子來挽救受損的神經(jīng)細胞,還能通過減少興奮性應激來營救受損較少的神經(jīng)細胞,而且活化小膠質(zhì)細胞的細胞毒性作用的本質(zhì)也被證明是殺死了那些已經(jīng)無法恢復功能的神經(jīng)細胞。
2 IS過程中小膠質(zhì)細胞的活化
2.1 小膠質(zhì)細胞活化的特點
IS發(fā)生后,小膠質(zhì)細胞被激活,其激活過程包括增殖、趨化、吞噬、分泌細胞因子等多個環(huán)節(jié)[8]。引發(fā)小膠質(zhì)細胞激活的因素十分廣泛,如脂多糖(lipopolysaccharide,LPS)、三磷酸腺苷(adenosine triphosphate,ATP)、前炎癥因子以及誘導性一氧化碳合成酶等[9]?;罨男∧z質(zhì)細胞一方面可通過產(chǎn)生自由基、一氧化氮,并分泌活性氧、細胞因子和基質(zhì)金屬蛋白酶-9等發(fā)揮神經(jīng)毒性作用,其誘導的炎性反應升高了血腦屏障的通透性,為循環(huán)中的白細胞滲透入腦提供了便利,被認為是腦內(nèi)炎性反應的主要發(fā)動和參與者[10]。另一方面,活化的小膠質(zhì)細胞可分泌腦源性神經(jīng)營養(yǎng)因子和胰島素樣生長因子等神經(jīng)營養(yǎng)因子,促進神經(jīng)細胞再生,在IS后的神經(jīng)修復中發(fā)揮有益的作用。由此可見,小膠質(zhì)細胞活化在IS的發(fā)生發(fā)展過程中具有非常復雜的作用。
2.2 活化小膠質(zhì)細胞的表型變化
活化小膠質(zhì)細胞在IS后神經(jīng)損傷及修復中到底發(fā)揮何種功能,取決于小膠質(zhì)細胞的表型變化。小膠質(zhì)細胞的表型具有M1型和M2型兩種狀態(tài)[11]。M1型即經(jīng)典活化型,由干擾素-γ(interferon-γ,γ-IFN)或LPS等誘導,分泌高氧化應激產(chǎn)物和促炎因子,主要引起組織炎性損傷;M2型即選擇性活化型,由白介素4(interleukin-4,IL-4)或白介素13(interleukin-13,IL-13)等誘導,分泌抗炎因子,具有抑制免疫炎癥反應和促進組織修復的作用[12]。用于區(qū)分M1型和M2型小膠質(zhì)細胞的標志物非常多,M1型小膠質(zhì)細胞的標志物主要有CD86、CD16/32、主要組織相容性復合體Ⅱ等,M2型小膠質(zhì)細胞的標志物主要有CD68、CD206、精氨酸酶-1(Arginase-1,Arg-1)等。許多實驗研究均認為,抑制小膠質(zhì)細胞向促炎的M1型活化和誘導促炎的M1型小膠質(zhì)細胞向抗炎的M2轉(zhuǎn)化均有助于減輕IS后神經(jīng)炎癥對神經(jīng)元的損傷[13-14]。
3 IS后小膠質(zhì)細胞活化的機制
研究表明,多條信號通路參與了IS后小膠質(zhì)細胞活化的過程,主要包括Toll樣受體(Toll-like receptors,TLRs)、髓樣分化因子88(Myeloid differentiation factor 88,MyD88)和核轉(zhuǎn)錄因子кB(Nuclear factor кB NF,NF-кB)等。
TLRs是細胞表面的一類模式識別受體,廣泛表達于免疫細胞表面,在炎癥、免疫、病原體識別中發(fā)揮重要作用[15-17],參與多種疾病的發(fā)病過程。TLRs在中樞神經(jīng)系統(tǒng)的表達是其介導腦缺血后神經(jīng)炎癥的基礎(chǔ)[18-19]。Toll樣受體4(Toll-like receptor 4,TLR4)是TLRs家族中最重要的成員之一,其通過識別抗原的相關(guān)分子模式(pathogen-associated molecular Patterns,PAMPs)引起有效的免疫反應而參與多種炎癥、免疫等疾病的發(fā)生[20-22]。TLR4主要表達在小膠質(zhì)細胞上[23-24],能夠識別LPS、結(jié)核分枝桿菌、內(nèi)源性熱休克蛋60以及其他內(nèi)生蛋白等。LPS的脂質(zhì)A是革蘭陰性細菌表面表達的具有免疫刺激效應的一類PAMPs,通過識別TLR4[25],激活TLR4信號途徑,促進炎性因子的釋放,在IS中發(fā)揮早期免疫應答效應。磷脂酰肌醇-3激酶(phosphoinositide3-kinase,PI3K)是細胞內(nèi)一種磷脂酰肌醇激酶,由一個催化亞基(p110)和一個調(diào)節(jié)亞基(p85)組成,能特異性酸化肌醇環(huán)第三位的羥基磷。絲蘇氨酸蛋白激酶(serine-threonine kinase,Akt)是一種絲氨酸激酶。PI3K能被G2蛋白偶聯(lián)受體或酪氨酸激酶受體激活,進一步激活Akt,引起下游信號的級聯(lián)反應,參與細胞多種功能的調(diào)節(jié)[26]。
來源于損傷細胞或組織的細胞分子與小膠質(zhì)細胞膜表面受體TLR1-9結(jié)合,可啟動IL-1受體相關(guān)激酶(IL-1 receptor-associated kinase,IRAK)和TNF-受體相關(guān)因子6(TNF receptor-associated factor 6,TRAF-6)磷酸化,活化下游信號通路,其中TLR4介導細胞內(nèi)信號傳導最主要的是激活NF-κB或有絲分裂原活化蛋白激酶(mitogen-actvated protein kinase,MAPK)。TLR4信號途徑分為MyD88依賴和不依賴兩種。在依賴MyD88信號轉(zhuǎn)導途徑中,活化的TLR4與MyD88結(jié)合,MyD88又與IRAK結(jié)合,引起IRAK磷酸化而激活,繼而激活TRAF6,TRAF-6與泛素結(jié)合酶13(ubiquitin-conjugating enzyme 13,UBC13)及泛素結(jié)合酶E2變異1亞型A(ubiquitin-conjugating enzyme E2 varian 1 isoform A,UEV1A)形成一個復合物,激活轉(zhuǎn)化生長因子β活性激酶1(transforming growth factor-β-activated kinase 1,TAK1)[27-28]。TAK1又激活其下游的IкB(inhibitor of к light chain gene enhancer in B cells,IкB)激酶(IкBkinase,IKK)和MAPK途徑導致炎癥因子的產(chǎn)生[29]。IKKα、IKKβ和IKKγ形成一個復合體并導致IкB蛋白的磷酸化,IкB蛋白的磷酸化導致IкB的降解,游離的NF-κB轉(zhuǎn)移到胞核,從而參與促炎因子的表達。TLR4介導的信號通路同樣能快速活化磷脂酰肌醇3-激酶/絲蘇氨酸蛋白激酶(phosphoinositide3-kinase/serine-threonine kinase,PI3K/Akt)信號通路,從而激活NF-κB信號通路導致各種細胞因子的釋放[26]。抑制TLR4介導的NF-κB、MAPK和PI3K/Akt異常活化將有助于減輕神經(jīng)炎癥損傷。
4 IS后小膠質(zhì)細胞活化的時間-空間動態(tài)變化
研究表明,IS發(fā)生后小膠質(zhì)細胞的活化具有時間及空間的動態(tài)變化特點。在缺血早期(缺血24 h),小膠質(zhì)細胞以M2型占優(yōu)勢,其標志物CD206在缺血中心區(qū)高表達,在損傷后5 d達到最高,并持續(xù)到14 d[14],提示缺血早期,小膠質(zhì)細胞的活化更傾向于向抗炎表型的轉(zhuǎn)化,在缺血中心區(qū)參與缺血損傷組織的修復,發(fā)揮保護神經(jīng)元的作用;腦缺血損傷后第7天,M2表型標志物[CD206、Arg-1、白介素10(interleukin-10,IL-10)和轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)]mRNA的表達下降。但M1型小膠質(zhì)細胞的標志物CD16/32在缺血中心區(qū)的表達在損傷后第3天開始增加,14 d達到高峰,并一直居高不下[15],提示在缺血的亞急性期,小膠質(zhì)細胞在缺血中心區(qū)開始執(zhí)行神經(jīng)損傷功能。與缺血中心區(qū)相比,在半暗帶小膠質(zhì)細胞似乎具有很高的活性[30-32]。由此可見,IS后小膠質(zhì)細胞表型一直存在時間和空間動態(tài)變化,以小膠質(zhì)細胞為靶向的藥物治療應充分考慮IS后不同腦區(qū)小膠質(zhì)的動態(tài)變化,進行有針對性的調(diào)控,而不是一味地抑制小膠質(zhì)細胞的活化。
5 展望
IS是嚴重危害人類健康的疾病,目前被國際廣泛認可的治療藥物較少,調(diào)整治療策略、尋求安全有效的藥物迫在眉睫[33]。IS發(fā)生后,小膠質(zhì)細胞既可加重神經(jīng)損傷也可促進神經(jīng)的修復,其周圍微環(huán)境的變化決定了小膠質(zhì)細胞將要扮演的角色,深入研究小膠質(zhì)細胞在IS發(fā)生發(fā)展過程中的空間及時間動態(tài)變化規(guī)律,積極尋找對其活化進行調(diào)控的有效措施,加強其神經(jīng)保護作用,抑制或減輕其介導的炎性反應所造成的神經(jīng)損傷,將有望成為缺血性腦血管病治療的有效策略。
[參考文獻]
[1] Liu L,Wang D,Wong KS,et al. Stroke and stroke care in China:huge burden,significant workload,and a national priority [J]. Stroke,2011,42(12):3651-3654.
[2] Macrez R,Ali C,Toutirais O,et al. Stroke and the immune system:from pathophysiology to new therapeutic strategies [J]. The Lancet Neurology,2011,10(5):471-480.
[3] Go AS,Mozaffarian D,Roger VL,et al. Executive summary:heart disease and stroke statistics——2014 update:a report from the American Heart Association [J]. Circulation,2014,129(3):399-410.
[4] Lakhan SE,Kirchgessner A,Hofer M. Inflammatory mechanisms in ischemic stroke:therapeutic approaches [J]. J Transl Med,2009,7(1):97.
[5] Kacimi R,Giffard RG,Yenari MA. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB,JAK-STAT and JNK stress kinase pathways [J]. J Inflamm(Lond),2011,8(1):7.
[6] Dénes AFS,Kovács KJ. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation,blood- brain barrier damage and brain oedema independently of infarct size [J]. J Neuroinflammation,2011,24(8):164.
[7] Shin WH,Lee DY,Park KW,et al. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo [J]. Glia,2004,46(2):142-152.
[8] Weinstein JR,Koerner IP,Moller T. Microglia in ischemic brain injury [J]. Future Neurol,2010,5(2):227-246.
[9] Uehara Y,Yamada T,Baba Y,et al. ATP-binding cassette transporter G4 is highly expressed in microglia in Alzheimer's brain [J]. Brain Res,2008,1217:239-246.
[10] Streit WJ. Microglia as neuroprotective,immunocompetent cells of the CNS [J]. Glia,2002,40(2):133-139.
[11] Murray PJ,Wynn TA. Protective and pathogenic functions of macrophage subsets [J]. Nat Rev Immunol,2011,11(11):723-737.
[12] Bell-Temin H,Culver-Cochran AE,Chaput D,et al. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture(SILAC)-based Proteomics [J]. Mol Cell Proteomics,2015,14(12):3173-3184.
[13] Pan J,Jin JL,Ge HM,et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARgamma-dependent manner [J]. J Neuroinflammation,2015,12(1):51.
[14] Hu X,Li P,Guo Y,et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia [J]. Stroke,2012,43(11):3063-3070.
[15] Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses [J]. Clin Microbiol Rev,2009,22(2):240-273.
[16] Vadillo E,Pelayo R. Toll-like receptors in development and function of the hematopoietic system [J]. Rev Invest Clin,2012,64(5):461-476.
[17] Okun E,Griffioen KJ,Lathia JD,et al. Toll-like receptors in neurodegeneration [J]. Brain Res Rev,2009,59(2):278-292.
[18] Laflamme N,Echchannaoui H,Landmann R,et al. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria [J]. Eur J Immunol,2003,33(4):1127-1138.
[19] Bsibsi M,Ravid R,Gveric D,et al. Broad expression of Toll-like receptors in the human central nervous system [J]. J Neuropathol Exp Neurol,2002,61(11):1013-1021.
[20] Miller SI,Ernst RK,Bader MW. LPS,TLR4 and infectious disease diversity [J]. Nat Rev Microbiol,2005,3(1):36-46.
[21] Akira S,Uematsu S,Takeuchi O. Pathogen recognition and innate immunity [J]. Cell,2006,124(4):783-801.
[22] Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors [J]. Semin Immunol,2007,19(1):3-10.
[23] Tiesi G,Reino D,Mason L,et al. Early trauma-hemorrhage-induced splenic and thymic apoptosis is gut-mediated and toll-like receptor 4-dependent [J]. Shock,2013,39(6):507-513.
[24] Pivneva TA. Microglia in normal condition and pathology [J]. Fiziol Zh,2008,54(5):81-89.
[25] Ohto U,F(xiàn)ukase K,Miyake K,et al. Crystal structures of human MD-2 and its complex with antiendotoxic lipid Ⅳa [J]. Science,2007,316(5831):1632-1634.
[26] Kitagawa HWH,Sasaki C. Immunoreactive Akt,PI3-K and ERK protein kinase expression in ischemic rat brain [J]. Neurosci Lett,1999,274(1):45-48.
[27] Lomaga MA,Yeh WC,Sarosi I,et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1,CD40,and LPS signaling [J]. Genes Dev,1999,13(8):1015-1024.
[28] Gohda J,Matsumura T. Inoue J Cutting edge:TNFR-associated factor(TRAF)6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta(TRIF)-dependent pathway in TLR signaling [J]. J Immunol,2004,173(5):2913-2917.
[29] Chang L,Karin M. Mammalian MAP kinase signalling cascades [J]. Nature,2001,410(6824):37-40.
[30] Lourbopoulos A,Erturk A,Hellal F. Microglia in action:how aging and injury can change the brain's guardians [J]. Front Cell Neurosci,2015,9:54.
[31] Perego C,F(xiàn)umagalli S,De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice [J]. J Neuroinflammation,2011,8(1):174.
[32] Morrison HW,F(xiàn)ilosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion [J]. J Neuroinflammation,2013,10(1):4.
[33] Lyerly MJ,Albright KC,Boehme AK,et al. Safety of protocol violations in acute stroke tPA administration [J]. J Stroke Cerebrovasc Dis,2014,23(5):855-860.
(收稿日期:2016-12-01 本文編輯:程 銘)