• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    2017-05-10 17:42:42郭瑞張嘉霖趙宋燾余小江鐘舒孫碩李震宇陳偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:酞菁新加坡國立大學(xué)全氟

    郭瑞 張嘉霖, 趙宋燾 余小江 鐘舒 孫碩 李震宇 陳偉,,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    郭瑞1張嘉霖1,2趙宋燾3余小江4鐘舒1孫碩2李震宇3陳偉1,2,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    由于其獨(dú)特的分子構(gòu)型和電子結(jié)構(gòu),碗烯被認(rèn)為是組成有機(jī)分子電子器件的一種重要的結(jié)構(gòu)單元。在不同金屬表面上單一組分的碗烯或其衍生物進(jìn)行自組裝的行為,及其所形成自組裝薄膜的電子結(jié)構(gòu)已經(jīng)被廣泛研究。這里我們利用低溫掃描隧道顯微鏡(LT-STM),對全氟酞菁銅和碗烯兩種組分在高定向熱解石墨和銀(111)兩種不同襯底上的自組裝結(jié)構(gòu)進(jìn)行了報(bào)道。在石墨襯底上,全氟酞菁銅和碗烯分子間形成的氫鍵成為雙分子網(wǎng)絡(luò)結(jié)構(gòu)能夠形成的關(guān)鍵;同時(shí),由于這種分子間氫鍵的存在,碗烯分子大多采取“開口朝下”的空間構(gòu)型,以保證分子間氫鍵最大限度的形成。但在銀襯底上觀察到的碗烯分子則隨機(jī)采取“開口向上”或“開口向下”兩種構(gòu)型,并沒有一種優(yōu)勢構(gòu)型的存在。我們認(rèn)為此時(shí)銀(111)襯底和有機(jī)分子間強(qiáng)烈的相互作用限制了碗烯兩種構(gòu)型之間的翻轉(zhuǎn),使得碗烯分子一旦被吸附就只能保持其原本的構(gòu)型,從而導(dǎo)致了在結(jié)果上兩種構(gòu)型的隨機(jī)分布。

    分子自組裝;雙分子網(wǎng)絡(luò)結(jié)構(gòu);碗烯;低溫掃描隧道顯微鏡;分子間氫鍵

    1 Introduc tion

    Corannulene(COR)is a bow l-shaped molecule and can be regarded asa fragmentof fullerene,asshown in Fig.1a.Since its first successful synthesis in 19661,COR has attracted intensive attention due to several intriguing properties.W ith fivefold symmetry,COR provides a unique opportunity to study the symmetrymismatching betweenadsorbateand substrate,given the incom patibility betw een the fivefold rotational symmetry of moleculeand translationalorder of theunderneath crystal lattice2. The combination of non-planar shapeand aromaticitymakes COR an interesting system w ith unique geometry and electronic properties2c.Specificπ-πinteractionsbetween curved and planar structures give rise tofascinating photoelectric properties3. Buckybow ls also serve as ideal hosts toform the host-guest complexes in supramolecular chem istry4.COR has alw ays been regarded as a fragment of C60molecule for its symmetry and conformation.Butconsidering itshigh solubility inmost common solvents2c,COR can be a better choice than fullerenes as a prom ising candidate for acceptormaterials in organic optoelectronic devices2c.Itshould bementioned thatKuvychko etal.5have recently reported a COR derivative(w ith electron w ithdraw ing groups)that has a higher electron affinity and thus can be a strongerelectron acceptor than thewell-studied C60.

    Two-dimensional(2D)self-assembly of functional organic molecules into ordered arrays represents one of themost promising strategies tofabricate functionalmolecular nanostructures overmacroscopicareas6.Modification ofmetalsurfaceswith COR and its derivativeshasbeen studied for symmetrym ismatch between substrate and adsorbate2a,7,multi-component packing4,8, templated assembly8a,9,interface dipole formation10,aswell as2D phase transitions6c,11.The assembly behaviors of the single-componentmoleculeswith fivefold symmetry on surfaceareof fundamental interest12.The structureof self-assembled CORmonolayer on Cu(111)and Cu(110)has been reported.On Cu(111), each CORmolecule adsorbson either fcc orhcp threefold hollow sitewith itsbow lopening pointing up11b.Oneof the fivehexagonal ringsorients parallel to the surface planeand thereforea tiltbetween molecular bow l w ith respect to the surface exists.A temperature-controlled reversible phase transitionwasalso observed in this system.It isexplained that low tem perature constrains the vibration of COR molecules,thus leads to amore effective intermolecular attraction,and finally results in the transition to the phasewith higher packing density11b.On Cu(110),asimilarquasihexagonal lattice with slightly tilted COR moleculeswas observed2a.In addition tomonolayer,a bilayer bow l-in-bow l stacking structure of COR wasalso reported on Cu(111)at low temperature13.Each second-layermolecule locatesdirectly aboveone firstlayermolecule,leading to the formation ofabow l-in-bow ldimer.

    In contrast to the intensive studies on single component selfassembly of COR and its derivatives,investigation on multicomponentmolecular assembled system consisting of COR is rarely reported.Multicomponent 2D assemblies providemore functionality and tunability for themolecular nanostructures14. Calmettes etal.8areported binarymolecular networks comprising 2,3,9,10,16,17,23,24-octachlorozinc phthalocyanine(ZnPcCl8)and the COR derivative of 1,3,5,7,9-penta-tertbutylcorannulene (PTBC).In this case,themetastable phaseof ZnPcCl8can beused asa flexible template to realize the controllable insertion of PTBC molecule.By selecting different phases formed by ZnPcCl8,the final bimolecular 2D structure,w hich resembles the original packing of template,canbe regulated.Xiao etal.4reported aCORC60buckybow l-buckyballhost-guestcomplexesby depositing C60onto the ordered monolayer of COR on Cu(110).The concave structure of COR is optimal to realize a“face-to-face”contact w ith the convex surface of C60and their com plementary electron environmentsare favorable for binding.Via thermalactivation,a strongly bound COR-C60host-guest system is formed.Delicate balance betw een various intermolecular and interfacial interactions plays essential role in tailoring these supramolecular structures6b,8a,14a,15.

    Herein we report the formation of self-assembled binarymolecular networks of COR and copper hexadecafluorophthalocyanine(F16CuPc)on the highly oriented pyrolytic graphite(HOPG) and Ag(111).Thegeometrical arrangementsof the binary system on differentsubstrateswere systematically investigated by lowtemperature scanning tunneling m icroscopy/spectroscopy(LT-STM/STS).

    2 Experim en talm ethods

    TheAg(111)and HOPG single crystalsubstratesare purchased from MaTeck Material-Technologie&Kristalle GmbH.The F16CuPc molecules are tw ice sublimed and purchased from CREAPHYS.Both sample preparation and investigation were performed in an ultrahigh vacuum system at a base pressure around 10-10mbar(1mbar=101Pa).TheAg(111)surfacewas prepared via repeated cycles of sputtering by Ar+and then annealing to 750K.Freshly cleaved HOPGwas thoroughly degassed in UHV at800 K overnight.COR and F16CuPc were thermally evaporated from separate Knudsen cells at 380 and 670 K,respectively,onto the substrate(keptatroom temperature).

    In-situ STM investigation was carried out in a custom-designed Om icron LT-STM w ith an electrochem ically etched tungsten tip scanning at77K.All STM imageswere obtained under constant currentmodewith biasvoltagesapplied to the tip.To collect the differential conductance d I/d V(local density of states),a lock-in techniquewasadopted togetherwith amodulation voltageof 50 m V and a frequency of 625 Hz.When ram ping the voltage,the feedback loopwasopened16.

    3 Resu lts and discussion

    F16CuPc,asshown in Fig.1bwas firstdeposited onto HOPG toform a self-assembledmonolayer.STM image(Fig.1c)clearly revealsa typical close packing structurewhere F16CuPcmolecules lie flat on substrate with theirmolecular planes parallel to the substrate,arising from the interfacialπ-πinteraction17.A unitcell w ith a=1.66 nm,b=3.5 nm,θ1=108°isoutlined in Fig.1c and schematic packingmodelof oneunitcell is shown in Fig.1d.Two differentmolecular orientations exist in F16CuPcmonolayer on HOPG,which hasbeen concretely analyzed in previous report17. In oneunit cell,theorientation of four F16CuPcmoleculeson the corner is deviated from thatof two F16CuPcmolecules centered at the b edge.Then COR molecules were evaporated onto the F16CuPc covered HOPG.Co-assembly of F16CuPc and COR,as shown in Fig.1eand 1f,formsa long range-ordered structurewith an intermixing ratio of 1:2.A unitcellwith c=2.87 nm,d=2.17 nm,θ2=114°is highlighted in Fig.1f and the schematic packing modelof one unit cell is shown in Fig.1g.It isnoteworthy that in the supramolecular structure,only one orientation of F16CuPc molecule isobserved and each F16CuPcmolecule issurrounded by 6CORmolecules.

    Fig.1 M olecu lar structures for(a)COR and(b)F16CuPc;(c)STM imageof F16CuPcmonolayer deposited on HOPG;(d)schematic packing structure for F16CuPcm oleculeon HOPG;(e,f)STM images of long range-ordered binarym olecular networks form ed by F16CuPc and CORw ith amolecular ratio of 1:2 on HOPG;(g)schematic packingmodel for the F16CuPc-COR binary structureon HOPGIn figure c:Theunitcell ishighlightedwith a=1.66 nm,b=3.5 nm,θ1=108°.Vtip=1.654V,20 nm×20 nm.In figurese,f:TheCORmoleculesadopting thebow lup and bow ldown configurationsare indicated by thearrows.Theunitcellishighlighted in the imagewith c=2.87 nm,d=2.17 nm,θ2=114°.Vtip=1.496V,20nm×20 nm;Vtip=1.496V,10 nm×10 nm

    Herewe observe two kinds of dotsaround F16CuPc,including the dots thatarebrighterand the dots thatare slightly darker.We propose both kinds of dots are CORmoleculesbutw ith different configurations:bow lopening pointing up and pointing down.STS measurements(Fig.2b)confirm this assumption and reveals the highest occupied molecular orbital(HOMO)-the lowest unoccupiedmolecular orbital(LUMO)gap of around 3.10 eV,which agreesw ith the theoretically calculated HOMO-LUMO gap of CORmolecule18.The simulated topographic STM imagesof COR,based on semiempiricalextended H?ckel calculation,have been used to determine the configuration of adsorbed COR by Parschau etal.2a.For bow lup configuration,both the HOMO and LUMO topographic simulated images show a density m inimum at the centerof themolecule togetherwith a distinct fivefold doughnut shape.On the contrary,for bow l down configuration,both the HOMO and LUMO topographic simulated imagesshow a density maximum at the centerof themolecule and theoutline of COR molecule is rather vague2a.Hence by com paring the simulated STM imagewith our high resolution STM results in Fig.2a,we assign these brighter dots to COR with bow lopening down and darkerdots to CORwith bow lopening up.

    Fig.2(a)High resolution STM image of the F16CuPc-COR binarymolecu lar networkson HOPG; (b)d I/d V spectra recorded on the bow l-up and bow l-down COR molecules

    It is noticed that in the F16CuPc-COR binary molecular networks on HOPG,COR molecules that adopt bow l-down configuration hold majority.We propose that this configuration preferencemay arise from the formation ofmultiple intermolecular hydrogen bonding.As F16CuPcmolecules lie flat on the plane, peripheral hydrogen atoms of CORmolecule w ith bow l-down configuration can stand closer to the neighboring F16CuPc,which facilitates the formation of multiple intermolecular hydrogen bonding between neighboring F16CuPc and COR.In thisway,the binary supramolecular structure iseffectively stabilized and bow ldown configuration of COR thus isenergetically favorable.

    Wealsogrew the same F16CuPc-COR binary system on Ag(111) to compare the co-assembly structureson differentsubstrates.Ag (111)has shownmuch strongermolecule-substrate interactions for variousorganic adsorbates19,compared w ith HOPG.Hencewe were able to grow amonolayer of COR onto Ag(111).A large scaleand thecorresponding closeup STM imagesof COR on Ag (111)are shown in Fig.3(a,b)with aunitcelloutlined(e=1.02 nm,f=1.17 nm,θ3=73°).Each CORmolecule isshared by four unit cells(Fig.3c).Likew ise,w e observe brighter and slightly darker dots in the STM image of COR monolayer.Careful inspection of high-resolution STM(Fig.3d)confirms the co-existenceof CORmoleculeswith differentconfigurations.Herein the brighter dot obviously has an intensity minimum in the center. Hence by using the aforementioned comparison of high-resolution STM imageswith simulated results,these brighter dots should be assigned to CORmoleculeswith bow ls opening up and the darker and vague dots should be COR moleculesw ith bow ls opening down.

    Fig.3(a)Large scale STM imageofCORmonolayer deposited on Ag(111);(b)closeup STM image of COR on Ag(111); (c)proposed schem atic packingm odel for COR on Ag(111);(d)high resolution STM im ageof COR on Ag(111)w ith the bow l-up and bow l-down configurations indicated by red arrowsIn figurea:Vtip=1.0V;60 nm×60 nm.In figureb:Theunitcellishighlighted by the red rhombusw ith e=1.02 nm,f=1.17 nm,θ3=73°; Vtip=1.0V,10 nm×10 nm.In figured:Vtip=-1.5V;6nm×6 nm

    Tofurther confirm our assignment,a comparison of the brighter dotson HOPG and Ag(111)underhigh-resolution STM is shown in Fig.4.It isobvious thatin Fig.4a,the CORmoleculewithbow lup configuration possesses a hollow center w ith a rough pentagonal doughnutshape,which is consistentwith features of thesimulated bow l-up COR.While in Fig.4b,the COR molecule accounted asbow l-dow n configuration ismore protruding in the center and themolecule shape is obscure,which also resembles simulated bow l-down topography.We noted that on Ag(111) substrate,the configuration preference of COR disappears:both bow l-up and bow l-down COR exist in almostequalamount.In otherwords,the adoption of bow l-up or bow l-down configuration is random.We suggest that the strong COR-Ag(111)interfacial interaction constrains themovementand bow l inversion of COR molecules.Onceadsorbed on Ag(111),CORmolecule could only retain its initial configuration and therefore both configurations have equal chance to appear.

    Fig.4 Com parison of the brighter dotsunder high-resolution STM(a)CORmoleculew ith bow l-up configurationon Ag(111); (b)CORmoleculewith bow l-down configuration on HOPG

    Fig.5(a)High resolution STM imageof F16CuPc-COR binary m olecular networks on Ag(111)w ith am olecular ratio of 1:4; (b)schem atic pack ingm odel for the F16CuPc-COR b inary structureon Ag(111)In figurea:Theunitcellishighlighted by the red rhombusw ith g=h=2.73 nm,θ4=100°.Vtip=1.26V,10 nm×10 nm

    Co-assemblymonolayerof F16CuPc and COR on Ag(111)was also prepared by furtherevaporating F16CuPcmolecules onto the COR covered substrate.STM image reveals the long range-ordered binarymolecularnetworksw ith amolecular ratio of 1:4. The unit cell isoutlined in Fig.5aw ith features including g=h= 2.73 nm andθ4=100°.Corresponding schematic packingmodel for the binary structure is shown in Fig.5b.All the F16CuPc molecules lie in the same orientation and each F16CuPcmolecule issurrounded by 8CORmolecules.

    4 Conc lusions

    In summary,we have investigated the binary supramolecular structureof F16CuPc-CORmonolayerassembled on HOPGand Ag (111)substrates.The formation of multiple intermolecular hydrogen bonding between F16CuPc and COR could result in a preferred bow l-dow n configuration for COR molecules on the weakly interacting HOPG.In contrast,this configuration preference disappears on Ag(111)substrate where the adoption of bow l-up orbow l-down configuration is random,resulting from the strongmolecule-substrate interactions.Ourwork would further reinforce themodification of surfacew ith binarymolecular networks consisting ofCOR and itsderivatives.

    (1)Barth,W.E.;Law ton,R.G.J.Am.Chem.Soc.1966,88(2), 380.doi:10.1021/ja00954a049

    (2)(a)Parschau,M.;Fasel,R.;Ernst,K.H.;Gr?ning,O.; B randenberger,L.;Schillinger,R.;Greber,T.;Seitsonen,A.P.; Wu,Y.T.;Siegel,J.S.Angew.Chem.-Int.Edit.2007,46(43), 8258.doi:10.1002/anie.200700610

    (b)Shechtman,D.;Blech,I.;Gratias,D.;Cahn,J.W.Phys.Rev. Lett.1984,53(20),1951.doi:10.1103/PhysRevLett.53.1951

    (c)Bauert,E.FundamentalAspectsof the Self-assembly Behaviorand Electronic Propertiesof Corannulenes.Ph.D. Dissertation,University of Zurich,Zurich,2011.

    (3)Li,J.;Liu,Y.;Qian,Y.;Li,L.;Xie,L.;Shang,J.;Yu,T.;Yi,M.; Huang,W.Phys.Chem.Chem.Phys.2013,15(30),12694. doi:10.1039/C3CP51095F

    (4)Xiao,W.;Passerone,D.;Ruffieux,P.;A?t-M ansour,K.; G r?ning,O.;Tosatti,E.;Siegel,J.S.;Fasel,R.J.Am.Chem. Soc.2008,130(14),4767.doi:10.1021/ja077816l

    (5)Kuvychko,I.V.;Dubceac,C.;Deng,S.H.;Wang,X.B.; G ranovsky,A.A.;Popov,A.A.;Petrukhina,M.A.;Strauss,S. H.;Boltalina,O.V.Angew.Chem.-Int.Edit.2013,52(29), 7505.doi:10.1002/anie.201300796

    (6)(a)Baris,B.;Jeannoutot,J.;Luzet,V.;Palmino,F.;Rochefort, A.;Cherioux,F.ACSNano 2012,6(8),6905.doi:10.1021/ nn301827e

    (b)Mali,K.S.;De Feyter,S.Phil.Trans.R.Soc.A 2013,371 (2000),20120304.doi:10.1098/rsta.2012.0304

    (c)Zoppi,L.;Bauert,T.;Siegel,J.S.;Baldridge,K.K.;Ernst, K.H.Phys.Chem.Chem.Phys.2012,14(38),13365. doi:10.1039/C2CP41732D

    (7)Guillermet,O.;Niem i,E.;Nagarajan,S.;Bouju,X.;Martrou, D.;Gourdon,A.;Gauthier,S.Angew.Chem.-Int.Edit.2009,48 (11),1970.doi:10.1002/anie.200805689

    (8)(a)Calmettes,B.;Nagarajan,S.;Gourdon,A.;Abel,M.;Porte, L.;Coratger,R.Angew.Chem.-Int.Edit.2008,47(37),6994. doi:10.1002/anie.200802628

    (b)Yokoi,H.;Hiraoka,Y.;Hiroto,S.;Sakamaki,D.;Seki,S.; Shinokubo,H.Nat.Commun.2015,6.doi:10.1038/

    ncomms9215

    (9)Balandina,T.;Tahara,K.;Sandig,N.;Blunt,M.O.;Adisoejoso, J.;Lei,S.;Zerbetto,F.;Tobe,Y.;De Feyter,S.ACSNano 2012, 6(9),8381.doi:10.1021/nn303144r

    (10)Bauert,T.;Zoppi,L.;Koller,G.;Garcia,A.;Baldridge,K.K.; Ernst,K.H.J.Phys.Chem.Lett.2011,2(21),2805. doi:10.1021/jz2012484

    (11)(a)M erz,L.;Bauert,T.;Parschau,M.;Koller,G.;Siegel,J.S.; Ernst,K.H.Chem.Commun.2009,(39),5871.doi:10.1039/ B911056A (b)M erz,L.;Parschau,M.;Zoppi,L.;Baldridge,K.K.;Siegel, J.S.;Ernst,K.H.Angew.Chem.-Int.Edit.2009,48(11),1966. doi:10.1002/anie.200804563

    (12)(a)Bauert,T.;Merz,L.;Bandera,D.;Parschau,M.;Siegel,J.S.; Ernst,K.H.J.Am.Chem.Soc.2009,131(10),3460. doi:10.1021/ja8101083. (b)Merz,L.;Parschau,M.;Siegel,J.S.;Ernst,K.H.Chimia 2009,63(4),214.doi:10.2533/chim ia.2009.214

    (13)Bauert,T.;Baldridge,K.K.;Siegel,J.S.;Ernst,K.H.Chem. Commun.2011,47(28),7995.doi:10.1039/C1CC12540K.

    (14)(a)De Oteyza,D.G.MulticomponentAssembly Strategies for Supramolecular Systems.In SupramolecularMaterialsforOpto-Electronics;Nobert Korch;Royal Society of Chem istry: Cambridge,2014;pp 53-97.doi:10.1039/9781782626947-00053 (b)Huang,Y.L.;Chen,W.;Li,H.;Ma,J.;Pflaum,J.;Wee,A.T. S.Small2010,6(1),70.doi:10.1002/sm ll.200901291

    (15)Zhong,J.Q.;Qin,X.;Zhang,J.L.;Kera,S.;Ueno,N.;Wee,A. T.S.;Yang,J.;Chen,W.ACSNano 2014,8(2),1699. doi:10.1021/nn406050e

    (16)Zhang,J.;Wang,Z.;Niu,T.;Li,Z.;Chen,W.Appl.Phys.Lett. 2014,104(11),113506.doi:10.1063/1.4869115

    (17)Huang,Y.L.;Chen,W.;Chen,S.;Wee,A.T.S.Appl.Phys.A 2009,95(1),107.doi:10.1007/s00339-008-5000-6

    (18)dos Santos,R.B.;Rivelino,R.;de M ota,F.B.;Gueorguiev,G. K.J.Phys.Chem.A 2012,116(36),9080.doi:10.1021/ jp3049636

    (19)(a)Lackinger,M.;Griessl,S.;Heckl,W.M.;Hietschold,M. J.Phys.Chem.B 2002,106(17),4482.doi:10.1021/jp014275s (b)Lackinger,M.;Hietschold,M.Surf.Sci.2002,520(1), L619.doi:10.1016/S0039-6028(02)02269-0

    LT-STM Investigation of the Self-Assem bled F16CuPc-Co rannu lene Binary System on Ag(111)and Graphite Surfaces

    GUO Rui1ZHANG Jialin1,2ZHAO Songtao3YU Xiaojiang4ZHONG Shu1SUN Shuo2LIZhenyu3CHENWei1,2,5,6,*
    (1DepartmentofChemistry,NationalUniversity ofSingapore,3Science Drive 3,117543,Singapore;2DepartmentofPhysics,NationalUniversity ofSingapore,2Science Drive 3,117542,Singapore;3HefeiNational Laboratory for PhysicalSciencesat the Microscale,CASCentre for Excellence and Synergetic Innovation Center of Quantum Information and Quantum Physics,University ofScience and Technology ofChina,Hefei230026,P.R.China;
    4Singapore Synchrotron LightSource,National University ofSingapore,5 Research Link,117603,Singapore;
    5Centerfor Advanced 2DMaterialsand Graphene Research Center,NationalUniversity ofSingapore,3 Science Drive 3,117546,
    Singapore;6NationalUniversity ofSingapore(Suzhou)Research Institute,Suzhou 215123,Jiangsu Province,P.R.China)

    Mo lecularassembly;Binarymolecularnetworks;Corannulene;Low-temperature scanning tunne lingm icroscopy;Intermo lecularhyd rogen bonding

    O647

    10.3866/PKU.WHXB201612051

    www.whxb.pku.edu.cn

    Received:September 29,2016;Revised:December 2,2016;Published online:December 5,2016.

    *Corresponding author.Email:phycw@nus.edu.sg;Tel:+65-65161879.

    Theprojectwas supported by theNational Key Basic Research Program of China(973)(2015CB856505),SingaporeMOE(R143-000-652-112),

    Singapore NRF-CRPgrantof“Doped Contacts and Heterostructures for Solution-Processable Plastic Electronics”(R143-001-608-281),Jiangsu

    Province GovernmentResearch Platform Grant,China,and NUSRISeed Fund.

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB856505),新加坡教育部(MOE,Tier II,R143-000-652-112),新加坡國家研發(fā)基金會(NRF,R143-001-608-281),江蘇省平臺建設(shè)項(xiàng)目和新加坡國立大學(xué)蘇州研究院資助?Editorialoffice of Acta Physico-Chim ica Sinica

    Abstract:Corannulene(COR)is considered a prom isingmolecularbuilding block fororganic electronics owing to its intriguing geome trical and e lec tronic p roperties.Intensive research e fforts have been devoted to understanding the assemb ly behavior and e lectronic structure of COR and its derivatives on variousmeta l surfaces via low-temperature scanning tunne lingm icroscopy(LT-STM).Here we report the formation ofbinary mo lecular networks of copperhexadeca fluorophtha locyanine(F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite(HOPG)and Ag(111)substrates.Intermo lecularhydrogen bonding between F16CuPc and COR facilitates the formation ofbina rymolecular networks on HOPG and further induces a pre ference for bow l-down configured CORmolecules.This observed configuration preference disappears on Ag(111)substrate, where CORmolecules lie on the substrate with theirbow lopenings pointing up and down random ly.We propose tha tstrong interfacia l interactions betw een them olecule and Ag(111)su rface constrain the bow l inve rsion of the CORmo lecule,which thus retains its initialconfiguration upon adsorption.

    猜你喜歡
    酞菁新加坡國立大學(xué)全氟
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    新加坡國立大學(xué)推出新型止血敷料
    新加坡國立大學(xué)助力重慶企業(yè)研發(fā)區(qū)塊鏈技術(shù)
    追光花園
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    新加坡國立大學(xué)卓越辦學(xué)經(jīng)驗(yàn)及啟示
    大學(xué)(2016年4期)2016-04-09 06:39:22
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    纖維素纖維負(fù)載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    午夜精品久久久久久毛片777| 久久精品国产清高在天天线| 日韩在线高清观看一区二区三区 | 久久久色成人| 亚洲av中文av极速乱 | 国产精品自产拍在线观看55亚洲| 亚洲精品在线观看二区| 老熟妇乱子伦视频在线观看| 99久国产av精品| av女优亚洲男人天堂| or卡值多少钱| 亚洲美女黄片视频| 小说图片视频综合网站| a级一级毛片免费在线观看| 麻豆av噜噜一区二区三区| 夜夜爽天天搞| 亚洲国产欧洲综合997久久,| 搡老岳熟女国产| 一级黄色大片毛片| 国产欧美日韩精品一区二区| 如何舔出高潮| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久噜噜老黄 | 日韩欧美在线乱码| 高清在线国产一区| 91精品国产九色| 欧美xxxx性猛交bbbb| 欧美成人a在线观看| 久久久精品欧美日韩精品| 美女高潮喷水抽搐中文字幕| 国产一区二区三区av在线 | 天天躁日日操中文字幕| 观看美女的网站| 国产一区二区激情短视频| 日韩中字成人| 我的老师免费观看完整版| 欧美人与善性xxx| 成人一区二区视频在线观看| 成人一区二区视频在线观看| 久久久精品大字幕| 中文字幕免费在线视频6| 一卡2卡三卡四卡精品乱码亚洲| 午夜激情欧美在线| 人妻少妇偷人精品九色| 99国产精品一区二区蜜桃av| 欧美成人性av电影在线观看| 偷拍熟女少妇极品色| 噜噜噜噜噜久久久久久91| 99热网站在线观看| 国产 一区精品| 亚洲av中文av极速乱 | av视频在线观看入口| 黄色视频,在线免费观看| 九色成人免费人妻av| 97超视频在线观看视频| 香蕉av资源在线| 最新中文字幕久久久久| 又粗又爽又猛毛片免费看| 三级男女做爰猛烈吃奶摸视频| 搡老熟女国产l中国老女人| 麻豆一二三区av精品| 国产伦精品一区二区三区四那| 久久精品国产亚洲网站| 夜夜夜夜夜久久久久| x7x7x7水蜜桃| 熟女人妻精品中文字幕| 亚洲国产色片| 精品无人区乱码1区二区| 亚洲美女搞黄在线观看 | 欧美色欧美亚洲另类二区| a在线观看视频网站| 一区二区三区四区激情视频 | 亚洲欧美日韩高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产69精品久久久久777片| 国产真实乱freesex| 精品一区二区三区视频在线| 欧美成人a在线观看| 校园人妻丝袜中文字幕| 嫩草影院精品99| 久久人人爽人人爽人人片va| 热99在线观看视频| 免费看a级黄色片| 一区二区三区高清视频在线| 欧美三级亚洲精品| 国语自产精品视频在线第100页| 久久久久免费精品人妻一区二区| 免费人成在线观看视频色| 久久久久久久久久久丰满 | 国产 一区 欧美 日韩| 欧美极品一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线| 久久国内精品自在自线图片| 一区二区三区免费毛片| 日本a在线网址| 久久久久久大精品| 国产男人的电影天堂91| 99久久中文字幕三级久久日本| 久久精品久久久久久噜噜老黄 | 久久精品91蜜桃| 黄色一级大片看看| 搡老熟女国产l中国老女人| 免费一级毛片在线播放高清视频| 国产大屁股一区二区在线视频| 老司机福利观看| 亚洲成a人片在线一区二区| 精品欧美国产一区二区三| www.www免费av| 色精品久久人妻99蜜桃| 一个人观看的视频www高清免费观看| 亚洲av一区综合| 最近视频中文字幕2019在线8| 女生性感内裤真人,穿戴方法视频| 国产av不卡久久| 国产黄a三级三级三级人| 亚洲精品粉嫩美女一区| 久久精品综合一区二区三区| 国产欧美日韩精品亚洲av| 国产成年人精品一区二区| 亚洲综合色惰| 深夜精品福利| 欧美精品国产亚洲| 精品久久国产蜜桃| 欧美激情在线99| 日韩高清综合在线| 免费搜索国产男女视频| 久久午夜福利片| 久久国内精品自在自线图片| 久99久视频精品免费| xxxwww97欧美| 欧美成人免费av一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区 欧美 日韩| 联通29元200g的流量卡| 在线播放无遮挡| 又紧又爽又黄一区二区| 欧美日韩黄片免| 久久欧美精品欧美久久欧美| 国产精品久久久久久亚洲av鲁大| 精品人妻视频免费看| av国产免费在线观看| 久久久成人免费电影| 国产精品人妻久久久影院| 欧美精品国产亚洲| 亚洲无线在线观看| 嫩草影院新地址| 毛片一级片免费看久久久久 | 高清毛片免费观看视频网站| 日韩 亚洲 欧美在线| 女人被狂操c到高潮| 精品99又大又爽又粗少妇毛片 | 日日啪夜夜撸| 他把我摸到了高潮在线观看| 国产免费av片在线观看野外av| 亚洲av.av天堂| 哪里可以看免费的av片| 成年女人永久免费观看视频| 亚洲七黄色美女视频| 美女cb高潮喷水在线观看| 夜夜夜夜夜久久久久| 国产高清三级在线| 中文资源天堂在线| 国产视频一区二区在线看| 日本与韩国留学比较| 国产精品av视频在线免费观看| 亚洲av成人av| 少妇裸体淫交视频免费看高清| 久久6这里有精品| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| 成人鲁丝片一二三区免费| 一本精品99久久精品77| 国产在线男女| 欧美高清成人免费视频www| 国产精品98久久久久久宅男小说| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| 国产国拍精品亚洲av在线观看| 女人十人毛片免费观看3o分钟| 国产真实乱freesex| 午夜福利成人在线免费观看| 国产色婷婷99| h日本视频在线播放| 久久精品人妻少妇| 他把我摸到了高潮在线观看| 国国产精品蜜臀av免费| 嫩草影院新地址| 桃红色精品国产亚洲av| 国产成人av教育| 欧美高清性xxxxhd video| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 色吧在线观看| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 麻豆国产av国片精品| 中文在线观看免费www的网站| 亚洲午夜理论影院| 国产白丝娇喘喷水9色精品| 又粗又爽又猛毛片免费看| 成人国产麻豆网| 国产一区二区激情短视频| 欧美zozozo另类| 国产真实乱freesex| 老司机福利观看| 波多野结衣巨乳人妻| 国产白丝娇喘喷水9色精品| 日韩欧美 国产精品| 欧美bdsm另类| 亚洲精品色激情综合| 免费大片18禁| 久久久久九九精品影院| 一级av片app| a级一级毛片免费在线观看| av福利片在线观看| 波多野结衣高清无吗| 久久精品国产清高在天天线| 亚洲性夜色夜夜综合| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 日日夜夜操网爽| 国产高清不卡午夜福利| 日日啪夜夜撸| 亚洲18禁久久av| 日韩av在线大香蕉| 日韩欧美在线二视频| 亚洲国产精品合色在线| 亚洲精品在线观看二区| 有码 亚洲区| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 在线播放无遮挡| 悠悠久久av| 国产欧美日韩精品亚洲av| 国产精品久久久久久av不卡| 九九爱精品视频在线观看| 亚洲在线观看片| 国产精品99久久久久久久久| 夜夜夜夜夜久久久久| 一本精品99久久精品77| 搞女人的毛片| 亚洲 国产 在线| 国产免费av片在线观看野外av| 日本爱情动作片www.在线观看 | 一进一出抽搐gif免费好疼| 黄片wwwwww| 最近中文字幕高清免费大全6 | 免费在线观看日本一区| 特级一级黄色大片| 99久久久亚洲精品蜜臀av| 婷婷色综合大香蕉| 亚洲自偷自拍三级| 99久久无色码亚洲精品果冻| 亚洲成人久久爱视频| 国产综合懂色| 亚洲欧美日韩东京热| 91久久精品电影网| 日韩欧美一区二区三区在线观看| 久久久久久国产a免费观看| 99久久无色码亚洲精品果冻| 久久亚洲真实| 毛片女人毛片| 亚洲欧美日韩无卡精品| 波多野结衣高清无吗| 99久久精品热视频| 在线观看美女被高潮喷水网站| 国产亚洲精品久久久com| 蜜桃亚洲精品一区二区三区| 精品国内亚洲2022精品成人| 亚洲经典国产精华液单| 日韩欧美国产一区二区入口| 丰满的人妻完整版| 日本a在线网址| bbb黄色大片| 别揉我奶头 嗯啊视频| netflix在线观看网站| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 国产av不卡久久| 国产精品久久久久久av不卡| 亚洲人成伊人成综合网2020| 99热这里只有是精品50| 天天一区二区日本电影三级| 久久热精品热| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av| 免费在线观看成人毛片| 日本在线视频免费播放| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 日本精品一区二区三区蜜桃| 男人的好看免费观看在线视频| 老司机福利观看| 国产精品99久久久久久久久| 免费看a级黄色片| 最近视频中文字幕2019在线8| 欧美xxxx性猛交bbbb| 日韩一区二区视频免费看| 悠悠久久av| 亚洲av美国av| videossex国产| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 国产精品久久久久久精品电影| 俺也久久电影网| 国产精品电影一区二区三区| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看| 最好的美女福利视频网| 国模一区二区三区四区视频| 亚洲人成伊人成综合网2020| 中文字幕精品亚洲无线码一区| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 午夜影院日韩av| 中文字幕熟女人妻在线| 免费观看的影片在线观看| 在线播放国产精品三级| 亚洲av二区三区四区| 成人国产麻豆网| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满 | 婷婷精品国产亚洲av| 久久中文看片网| 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| 又紧又爽又黄一区二区| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 亚洲第一区二区三区不卡| 亚洲av美国av| 在现免费观看毛片| 天堂av国产一区二区熟女人妻| 日本免费一区二区三区高清不卡| 狂野欧美激情性xxxx在线观看| 非洲黑人性xxxx精品又粗又长| 成人美女网站在线观看视频| 国内精品美女久久久久久| 亚洲精品色激情综合| 国内精品宾馆在线| 日韩在线高清观看一区二区三区 | 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 久久草成人影院| 欧美区成人在线视频| 黄色视频,在线免费观看| 老师上课跳d突然被开到最大视频| 国语自产精品视频在线第100页| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产 | 日本免费a在线| 免费看av在线观看网站| 中文字幕av在线有码专区| 国产女主播在线喷水免费视频网站 | 日本成人三级电影网站| 一a级毛片在线观看| 男女之事视频高清在线观看| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 18禁在线播放成人免费| 最新在线观看一区二区三区| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 最近视频中文字幕2019在线8| 最新在线观看一区二区三区| 伦精品一区二区三区| 久久这里只有精品中国| 亚洲欧美日韩高清专用| 赤兔流量卡办理| 国产爱豆传媒在线观看| 久久久久久大精品| 免费看av在线观看网站| 少妇高潮的动态图| 亚洲综合色惰| 好男人在线观看高清免费视频| 天堂av国产一区二区熟女人妻| 亚洲精品在线观看二区| 亚洲av一区综合| 人妻久久中文字幕网| 日本一二三区视频观看| 尤物成人国产欧美一区二区三区| 国产熟女欧美一区二区| 亚洲av成人av| 一级黄片播放器| 亚洲最大成人中文| 草草在线视频免费看| 最后的刺客免费高清国语| 亚洲在线观看片| 91午夜精品亚洲一区二区三区 | 在线播放国产精品三级| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 美女高潮喷水抽搐中文字幕| 人妻制服诱惑在线中文字幕| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 亚洲,欧美,日韩| 丰满的人妻完整版| 欧美色视频一区免费| netflix在线观看网站| 久久精品国产自在天天线| 久久天躁狠狠躁夜夜2o2o| 欧美潮喷喷水| 色在线成人网| 国模一区二区三区四区视频| 国产精品电影一区二区三区| 久久人人精品亚洲av| 夜夜爽天天搞| 成人综合一区亚洲| 亚洲精品一区av在线观看| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 精品人妻偷拍中文字幕| 国产伦人伦偷精品视频| 一本精品99久久精品77| 国产高潮美女av| 69av精品久久久久久| 少妇的逼水好多| 日日撸夜夜添| 91精品国产九色| 国产精品综合久久久久久久免费| 免费人成视频x8x8入口观看| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 成人特级黄色片久久久久久久| av在线天堂中文字幕| 男女那种视频在线观看| 成人三级黄色视频| 日本a在线网址| 联通29元200g的流量卡| 午夜福利欧美成人| 乱系列少妇在线播放| 网址你懂的国产日韩在线| 国产亚洲91精品色在线| 亚洲精品456在线播放app | 精品久久久久久久久av| 成人鲁丝片一二三区免费| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 国产一级毛片七仙女欲春2| 一夜夜www| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 午夜福利18| 美女cb高潮喷水在线观看| 国产激情偷乱视频一区二区| 最新中文字幕久久久久| 国产亚洲精品久久久com| 日韩国内少妇激情av| 色吧在线观看| 久久久国产成人精品二区| 成年女人毛片免费观看观看9| 日本三级黄在线观看| 身体一侧抽搐| 日本 欧美在线| 熟妇人妻久久中文字幕3abv| 亚洲av美国av| 欧美成人免费av一区二区三区| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 日韩一区二区视频免费看| 久久精品国产亚洲av香蕉五月| 日韩 亚洲 欧美在线| 在线观看免费视频日本深夜| 免费大片18禁| 亚洲人成网站高清观看| 日韩精品有码人妻一区| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 美女黄网站色视频| 少妇猛男粗大的猛烈进出视频 | 成人国产一区最新在线观看| 九九热线精品视视频播放| 天美传媒精品一区二区| 草草在线视频免费看| 免费看光身美女| 欧美bdsm另类| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| 亚洲欧美日韩无卡精品| 最后的刺客免费高清国语| 人妻制服诱惑在线中文字幕| 少妇高潮的动态图| 自拍偷自拍亚洲精品老妇| 99在线人妻在线中文字幕| 麻豆av噜噜一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 欧美一级a爱片免费观看看| 国产不卡一卡二| 国产精品一区www在线观看 | 午夜a级毛片| 中文字幕精品亚洲无线码一区| 国产视频一区二区在线看| 免费电影在线观看免费观看| 俄罗斯特黄特色一大片| 午夜精品一区二区三区免费看| 草草在线视频免费看| 亚洲不卡免费看| 日本与韩国留学比较| 别揉我奶头~嗯~啊~动态视频| 九九在线视频观看精品| 亚洲精华国产精华精| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 久久国产乱子免费精品| 一本一本综合久久| 全区人妻精品视频| 69人妻影院| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 丰满乱子伦码专区| 亚洲人成伊人成综合网2020| 亚洲无线观看免费| 欧美成人性av电影在线观看| 中文在线观看免费www的网站| 欧美最新免费一区二区三区| 亚洲内射少妇av| 老司机福利观看| 国产爱豆传媒在线观看| 91久久精品国产一区二区成人| 色5月婷婷丁香| 少妇的逼好多水| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 国产精品野战在线观看| 久久婷婷人人爽人人干人人爱| 97热精品久久久久久| 国产精品不卡视频一区二区| 热99在线观看视频| 能在线免费观看的黄片| 欧美高清成人免费视频www| 自拍偷自拍亚洲精品老妇| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 露出奶头的视频| 亚洲在线自拍视频| 最新中文字幕久久久久| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 免费搜索国产男女视频| 亚洲精华国产精华液的使用体验 | 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app | 97超级碰碰碰精品色视频在线观看| 九九在线视频观看精品| 久久人人爽人人爽人人片va| 很黄的视频免费| 国产伦在线观看视频一区| 久久婷婷人人爽人人干人人爱| 欧美色欧美亚洲另类二区| 久久香蕉精品热| 亚洲aⅴ乱码一区二区在线播放| 亚洲性久久影院| 久久久久久久午夜电影| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 十八禁国产超污无遮挡网站| 此物有八面人人有两片| 桃红色精品国产亚洲av| 久久香蕉精品热| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 极品教师在线免费播放| 日日夜夜操网爽| 久久久久久伊人网av| 一本一本综合久久| 精品不卡国产一区二区三区| 欧美zozozo另类| 国产成人一区二区在线| 嫩草影院精品99| 日本在线视频免费播放| 色在线成人网| 亚洲精品456在线播放app | 国产精品爽爽va在线观看网站| 观看免费一级毛片| 3wmmmm亚洲av在线观看| x7x7x7水蜜桃| 国产高清视频在线播放一区| 高清在线国产一区| 最近视频中文字幕2019在线8| 亚洲美女搞黄在线观看 | 亚洲经典国产精华液单| 国产一区二区三区在线臀色熟女| 看黄色毛片网站| 国产伦精品一区二区三区视频9| 人妻久久中文字幕网| 深夜a级毛片| 一级黄片播放器| 1000部很黄的大片| 免费大片18禁| 色综合婷婷激情| 少妇的逼好多水| 天堂网av新在线| 亚洲av.av天堂| 国产精品久久电影中文字幕| eeuss影院久久|