• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銳鈦礦型TiO2擔(dān)載的Pd催化劑用于乙炔選擇加氫的催化性能及其表征

    2017-05-10 17:42:42高曉平郭章龍周亞男敬方梨儲(chǔ)偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:分散度銳鈦礦四川大學(xué)

    高曉平 郭章龍 周亞男 敬方梨 儲(chǔ)偉,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)新能源與低碳技術(shù)研究院,成都610207)

    銳鈦礦型TiO2擔(dān)載的Pd催化劑用于乙炔選擇加氫的催化性能及其表征

    高曉平1,2郭章龍1,2周亞男1,2敬方梨1儲(chǔ)偉1,2,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)新能源與低碳技術(shù)研究院,成都610207)

    采用水熱法合成了含有89%{101}晶面的TiO2納米錠(TiO2-101)和77%{001}晶面的TiO2納米片(TiO2-001),將其用作載體來制備擔(dān)載鈀催化劑;研究了上述制備的TiO2納米材料對(duì)Pd/TiO2-101和Pd/TiO2-001催化劑用于乙炔選擇加氫制聚合級(jí)乙烯催化性能的影響。結(jié)果表明,Pd/TiO2-101催化劑表現(xiàn)出更好的乙炔轉(zhuǎn)化率和乙烯收率。通過氫氣程序升溫脫附(H2-TPD)、氫氣程序升溫還原(H2-TPR)、透射電子顯微鏡(TEM)、CO化學(xué)吸附、X射線光電子能譜(XPS)和熱重分析儀(TGA)等對(duì)催化劑進(jìn)行了結(jié)構(gòu)表征和分析。TEM和CO化學(xué)吸附結(jié)果表明,Pd納米顆粒(NPs)在TiO2-101載體上有較小的顆粒尺寸(1.53 nm)和較高的分散度(15.95%);而Pd納米顆粒在TiO2-001載體上的顆粒尺寸是4.36 nm和9.06%的分散度。Pd/TiO2-101催化劑上較小的Pd顆粒尺寸及其較高的分散度使催化劑具有更多的反應(yīng)活性位點(diǎn),這促進(jìn)了其反應(yīng)的催化活性。

    Pd/TiO2催化劑;乙炔選擇加氫;銳鈦礦型TiO2;{101}晶面;結(jié)構(gòu)表征

    1 Introduc tion

    Pd-based catalyst is industrially used for the acetylene selective hydrogenation to remove traceamountof acetylene from ethylene feed stream in the commercial production of polymer-grade polyethylene1,2.However,mostof the supported Pd catalystsshow poor selectivity and stability due to strong adsorption of reactant and producton contiguous Pd sites3,4.Severalattemptshave been considered to improve itsselectivity and stability such as(i)inducing the strong metal-support interaction(SMSI)effect to weaken the adsorption strength of ethylene on Pd surface5,6,(ii) adding a secondmetal(e.g.Ag7-11,Zn12,Ga13,14,In15,16)toform alloywith Pd or to suppress themulti-coordination sitesof the Pd surface,(iii)inducting inertmaterial(e.g.carbonaceous deposits formed by pretreatment with feed gases17),(iv)pretreating by plasma18-20.Previousstudieshave showed that Ti3+specieson the support surface could have contact w ith the Pd nanoparticle surfaces,hereby leading to the SMSIeffect21,22.Mobility of the Ti3+from the lattice of TiO2to the surface of Pd particles is usually facilitated by reduction athigh temperature.According to reports in the literature,the specifically exposed planesof support play a crucial role in determining themetal-support interaction and catalytic behavior due to rather differentatomic species,electron density and coordination environment of various facets23.Some publicationshave clarified that the exposed facets of the support nanocrystals could exert a profound influence on the catalytic performances24,25.

    Recent progress in the synthesis of anatase TiO2nanomaterials enables to select theexposureof desirable crystalplanes,and thus benefitsmore detailed studies on the catalytic behavior of supportedmetalnanoparticleson TiO2.Forexample,Ru nanoparticles loaded on{101}facets of TiO2nanoparticles exhibited almost double higher turnover frequency in CO2methanation than those over{001}facets of TiO2nanosheets26.The{101}planes displayed amuch stronger interaction w ith Ru nanoparticles than the {001}planes,which enhanced the adsorption and activation of CO2and H2molecules.TiO2nanosheets and nanospindleswere applied to disperse vanadia speciesaswell.The{001}facets of TiO2nanosheets benefited the deposition of octahedral vanadia species,whereas the{101}facetsof TiO2nanospindles resulted in the generation of tetrahedral vanadia species.Octahedrally coordinated vanadia specieson TiO2nanosheets show ed amuch higher activity in selective reduction of NO with NH3mainly becauseof theexistenceofmoreV=O sitesand V―O―V links27. The{100}facets of TiO2promoted activation of O2and the formation of Auδ+and improved the catalytic activity for CO oxidation28.A theoretical study based on density functional theory calculationsw ith a Hubbard U correction(DFT+U)reveals that the catalytic activity of selective hydrogenation of acetylene on oxygen defectsurface ismuchhigher than on the perfectonewhen Pd4cluster supported on theanatase TiO2(101)surfaces29.However,the influence of the exposed crystalplanes of TiO2on the catalytic behavior of Pd nanoparticles for acetylene selective hydrogenation to ethylene,which iskey to enhance the catalytic efficiency of noble mental from the viewpoint of electronic structure,havebeen not reported.

    The objective of this reportw as composed in three aspects: firstly to synthesize TiO2nanosheetsmainlywith the{001}facets or nanospindlesmainlyw ith the{101}facets in the presence ofasmorphology-directing agents,respectively;secondly to load Pd NPs on the different shapes of TiO2carriers and characterization of theas-prepared supportsand catalysts;thirdly to investigate theeffectson acetylene selectivehydrogenation to ethylene on these catalysts,and supporting characterization evidences forexplanation of the better performanceof Pd/TiO2-101 sample.In detail,the sampleswere characterized by X-ray diffraction(XRD),Raman spectra,electron spin resonance(ESR), high-resolution transm ission electronm icroscope(HRTEM),X-ray photoelectron spectroscopy(XPS),N2adsorption-desorption, and hydrogen temperature-programmed desorption(H2-TPD), hydrogen temperature-programmed reduction(H2-TPR).In addition,the connection between surface properties of catalystsand catalytic behaviorwasalso investigated.

    2 Experim en tal

    2.1 Catalysts p reparation

    The chemicals(Chengdu Kelong ChemicalReagentCo.,Ltd.) are analyticalgrade and are utilized w ithout further purification. The dom inated{001}facets of anatase TiO2nanosheets were fabricated by hydrothermalmethod as reported in literature30. Typically,25m Lof Ti(OBu)4and 4mL of HFsolution(40%(w, mass fraction))werem ixed in a dried Teflon-lined autoclavew ith a volumeof 100mLand then keptat180°C for24 h.Afterbeing cooled down to ambient temperature,thehydrothermal product waswashedwith 0.1mol·L-1NaOH aqueoussolution to remove fluorine.Then,the white powder was filtrated,washed w ith ethanolaswellasdeionizedwater several times,and dried at80°C for6 h.Finally,theobtained samplewasdenoted asTiO2-001.

    Anatase TiO2nanoparticleswith exposed{101}facetswere prepared by amethod reported by Liu etal.28.TiCl4(6.6m L)was added dropw ise into a0.43mol·L-1aqueoussolution of HCl in an ice bath withmagnetic stirring.The resulting clear TiCl4solution was then added into NH3·H2O solution(5.5%(w))to generate thew hite precipitate Ti(OH)4.This system was kept pH around 6-7 by theaddition of 10mLaqueousNH3·H2O(4%(w)). This precipitatewas recovered by filtration and washing,after aging for 2 h at ambient tem perature.The resulting Ti(OH)4precursor and 0.4 g NH4Cldissolved in am ixture containing 30 mL ofwaterand 30m L of isopropyl alcohol.A suspension was gained after treating with stirring and ultrasonic.Then,the suspension w as transferred to a 100m L Teflon-lined autoclave and kept for 24 h at180°C.Finally,the powerswere filtrated and washed by w ater asw ellasethanoluntil therew asno Clin the mother solution determined by aqueousAgNO3(0.05mol·L-1). Theobtained samplewasnamed asTiO2-101.

    Pd nanoparticleswere loaded onto TiO2nanocrystals(TiO2-101 and TiO2-001)through impregnation.The loading of Pd is1%(w).TiO2nanocrystals(1 g)were put into an aqueousof PdCl2(0.0229 mol·L-1,4.15m L)atambient temperature for4 hw ith stirring. After drying at60°C for12 h,the derived powerswere treated at 400°C for 3 h under N2atmosphere.The gained catalystswere labeled to asPd/TiO2-001 and Pd/TiO2-101,respectively.Elemental analysis by inductively coupled plasma-atom ic em ission spectroscopy(ICP-AES)reveals that thecontentof Pd is0.56%(w)for Pd/TiO2-001 sam ple and 0.57%(w)for Pd/TiO2-101 sam ple, which are lower than theoriginal theoretical content.

    2.2 Characterization of catalysts

    The power X-ray diffraction patternsw ere recorded on DX-2700 diffractometer(Haoyuan,China)using Cu Kαradiation at40 kV and 30mA.The 2θscanning rangewas from 10°to 80°with a scan step of 0.03(°)·s-1in a continuousmode.

    Morphologieswere analyzed on a TecnaiG2F20 transmission electronm icroscope(TEM).The lattice fringes of the catalysts were characterized through ahigh-resolution transmission electron microscope(HRTEM).The sampleswere crushed and dispersed in ethanol,and the resulting suspensionsw ere allow ed to dry on carbon film supported on coppergrids.

    The N2adsorption-desorption isotherms were measured at-196°C using an automated surface area&pore size analyzer (Quantachrome NOVA 1000eapparatus).The specific surfacearea was calculated by the Brunauer-Emmett-Teller(BET)equation.

    The TiO2sampleswerealso investigated by Raman spectroscopy.Radiation of 532 nm from an argon-ion laserwasused for excitation.The instrumentversion is LabRAM HR800.

    Electron spin resonance spectroscopy was conducted under vacuum at-150°C using a JES-FA200 electron spin resonance spectrometer.Itwas performed to qualitativelymonitor the Ti3+specieson the surfaceof the TiO2.

    The hydrogen temperature-programmed reductionmeasurement wasperformed in a fixed-bed reactor atatmospheric pressure.50 mg samplewas loaded in them iddleof reactor tube,and the reductivegasof 5%H2/N2with a totalgas flow rateof 30mL·min-1was introduced.The system was keptat30°C for1 h until the baselinewas stable,and then itwas heated linearly from 30 to 600°C ata heating rate of 10°C·m in-1.The H2uptake amount during the reductionwas recorded by gas chromatograph(SC-200) equipped w ith a thermal conductivity detector(TCD).Prior to hydrogen temperature-programmed desorption(H2-TPD),100mg of catalystswere heated at120°C for 2 h in nitrogen and then placed in H2with a flow rateof 23mL·m in-1for0.5 h at30°C. TPD was carried out in a stream of nitrogenwith a flow rateof 40 m L·m in-1and a temperature ramp of 10°C·m in-1.

    Pulse CO chemisorption was employed to determ ine Pd dispersion on ChemStar TPx chemisorption analyzer.Prior to CO adsorptionmeasurements,the Pd/TiO2sampleswere purged in helium at room temperature for30min.The system wasswitched to H2(30m L·m in-1)and heated to 400°C w ith a heating rate of 5°C·min-1.CO pulseswere injected(50μL of 10%of CO in helium)from a calibrated loop over the Pd/TiO2catalystsat30°C and repeated until the desorption peakswere constant.Thenumber of exposed Pd atoms on the Pd/TiO2catalyst surface was calculated by the totalamountof CO adsorption.In this paper,the CO/ Pd stoichiometry of1 isused for calculation.

    The X-ray photoelectron spectroscopy datawere collected on XSAM 800 spectrometerw ith an A l Kα(hν=1486.6 eV)X-ray source.Thechargingeffectswerecorrected byadjusting thebinding energy ofC 1s peak from carbon contam ination to 284.6 eV.

    The amountof carbonaceous deposited on used catalystswas determ ined by running thermo-gravimetric analysis(on TGA Q500)in airatmosphere(40m L·m in-1).The temperaturewas first keptat30°C for30min,and then increased to 700°Cwitha ramp of 10°C·m in-1.Results of derivative thermogravimetry(DTG) wereobtained from the thermo-gravimetric analysis(TGA)curves by differentiating the latterwith respect to temperature.

    2.3 Se lec tive hyd rogenation of acetylene

    Acetylene selective hydrogenation reactionwas performed in a fixed-bed reactor in the tem perature range from 40 to 80°C at theatmospheric pressurewith agashourly spacevelocity(GHSV) of 30000mL·g-1·h-1.Thegaseous feedw ith a total flow of 50 m L·m in-1contained 1%C2H2,2%H2and the balance N2.0.1 g catalystwasdiluted by 0.4 g quartz sand for the sakeof avoiding temperatureand concentration gradients.Prior to the reaction,the catalystswere pretreated inhydrogen(20mL·min-1)at400°C for 2 h.Before sampling,the reaction temperaturewas keptconstant for 0.5 h before being raised to the next one.The reactants and productswere detected by gas chromatography(GC)equipped with a flame ionization detector(FID).For the sake of reproducible data,five testswere carried out.Conversion of acetylene, selectivity to ethylene,selectivity to ethane,yield towards ethylene,and carbon balance(Bc)are calculated as follow s31:

    3 Resu lts and discussion

    3.1 Crystalline s tructu re of TiO2nanopartic les

    To demonstrate the crystal structure of the TiO2materialsand the Pd/TiO2catalysts,XRD analysis was carried out and the corresponding resultsareexhibited in Fig.1.Allsamplesdisplayed several typical characteristic peaks attributed to theanatase TiO2phase(JCPDS#21-1272,space group:I41/amd(141))32,33.Obviously,the sample TiO2-001(curve C)exhibits relatively stronger diffraction peak at(200)than thatat(004)reflection,indicating a predominantexposureof the{001}facets30,34.Whereas the TiO2-101(curveA)displays a decrease in the(200)reflection and anim provement on intensity of diffraction peak at(004),imp lying theoccupancy of the{101}planes27.Moreover,noobvious change in reflections of Pd/TiO2-101(curve B)and Pd/TiO2-001 catalysts (curve D)is observed w hen com pared w ith the corresponded pristine supports,implying the TiO2nanoparticles remained in the originalstructure andmorphology26.Itshould benoted that there is no X-ray diffractions of Pd species,which is because of the comparatively low loading amount(1%(w),below the detection lim itof XRD)of Pd.The TiO2materialsare further analyzed by Raman spectra(Fig.S1(in Supporting Information))and the resultswere consistentwith the results from XRD analysis.

    Fig.1 XRD patternsof TiO2-101(A),Pd/TiO2-101(B), TiO2-001(C)and Pd/TiO2-001(D)

    Themorphology of the TiO2nanoparticles isstudied by TEM. As shown in Fig.2,TiO2-001 sample exhibits uniform sheet-like shape while the samp le TiO2-101 shows spindle-like shape.The average thickness and side length for the sample TiO2-001 are approximately 5 and 40 nm(Fig.2(a)),respectively.Fig.2(b) shows thatawell-defined sheetstructurewasobserved,which had an interplane spacing of 0.235 nm.A ll of these features implied that the exposed p lanes of anatase TiO2is the{001}facets.In contrast,TiO2-101 samplehasa spindle-likeshapewithan average size of 15.7 nm long and 10 nm w ide(Fig.2(c));from the side view,the interplanar spacing of 0.35 nm is corresponded with the {101}planes of anatase TiO2(Fig.2(d)).On the basis ofWulff construction(Fig.S2(a)and Fig.S2(b)(in Supporting Information)),the percentage of each crystalline facet in the applied samples is calculated.In signal-crystalline TiO2nanospindles,the {101}facetsare the dominant facetswith the ratio of 89%and the other 11%is the{001}facets,while the proportion of{001} planesasw ell as{101}planes in TiO2nanosheets are 77%and 23%,respectively.Hence,in our case,the percentage of each crystalline facet is beyond 75%,demonstrating that the applied TiO2nanomaterials can serveasmodelsupports28.

    Fig.2 TEM,HRTEM im ages of TiO2-001(a,b)and TiO2-101(c,d)

    3.2 Catalytic performances in selec tive hyd rogena tion of acety lene

    Fig.3 Acetylene conversion asa function of tem perature(a)and ethylene yield versus reaction tem perature(b)over Pd/TiO2-001 and Pd/TiO2-101 catalystsata total flow rate of 50m L·m in-1w ith varying reaction tem peratures from 40 to 80°C

    The catalytic behavior of the Pd/TiO2-101 and Pd/TiO2-001 catalystswasevaluated by using partialhydrogenation of acetylene to ethylene as probe reaction under the employed reaction conditions.The catalytic performances of both samples are represented in Fig.3,show ing globally an increase of acetylene conversion with the increasing reaction temperature from 40 to 80°C(Fig.3(a)).The Pd/TiO2-101 catalystexhibits higher acetylene conversion until the reaction temperature reached at70°C (100%for Pd/TiO2-101 vs94%for Pd/TiO2-001)afterwhich full conversion was obtained over the two samples.It isworth noting that the conversion of acetylene isashigh as92%over Pd/TiO2-101 while only 50%is gotten over Pd/TiO2-001.Ow ing to its preferred catalytic performance,Pd/TiO2-101 catalyst surely displays theexcellentyield in ethyleneof 57%at60°C,which is 1.9 timeshigher than thoseover Pd/TiO2-001 catalyst(Fig.3(b)). The preferable catalytic activity of the Pd/TiO2-101 catalystm ight be assigned to its large specific surface area35,high Pd dispersion36,37leading to the formation of more active centers.The selectivity toward ethylene on both catalysts decreased with the increasing conversion(Fig.S3(in Supporting Information)),which is due to the fact that the ethylene is produced asan intermediate in acetylene semi-hydrogenation reaction.Furthermore,Pd/TiO2-101 catalyst shows higher selectivity in ethylenewhen compared with that of the Pd/TiO2-001 catalyst on the basis of equal conversion.The selectivity to ethane(Fig.S4(a)(in Supporting Information))increasesw ith the increasing temperature,especially after60°C.As shown in Fig.S4(b)(in Supporting Information), the carbon balance in both cases is close to 100%.

    3.3 Tex ture p roperties of the cata lys ts

    In order to explain the difference in the catalytic activity of the two Pd/TiO2catalysts,the structure and size of the Pd nanoparticleswere characterized by TEM and HRTEM,and the resultsare shown in Fig.4.The HRTEM image of Pd/TiO2-101(Fig.4(d)) shows that Pd NPs distribute homogeneously w ithout apparent accumulation,while some Pd NPs on the Pd/TiO2-001 catalyst accumulate after reduction(Fig.4(a)).More than 100 Pd nanoparticlesare obtained from different regions,random ly selected for the sakeof getting theaverage sizeof Pd and the results aredisplayed in thehistograms(Fig.4(c,f)).Aswe can see,thePd/ TiO2-101 catalysthas anarrow size distribution in the range from 1.00 to 2.20 nm and the average size of Pd particles is 1.53 nm which is rather small than thatof Pd/TiO2-001 catalyst(4.36 nm). It is obviously observed that the dispersion of the Pd/TiO2-101 catalystishigher than thatof thePd/TiO2-001 catalyst.This result isw ellagreementw ith theCO chem isorption(Table 1).Remarkably,thenarrower size distribution,smalleraverage particle size and higher dispersion of the Pd/TiO2-101 catalyst can be ascribed to twofactors.The specific surface areas of TiO2-101 were significantly larger than thatof TiO2-001.The BET specific surface areas,nitrogen adsorption-desorption isothermsand BJH pore-size distributionsof the samp lesare given in Fig.S5 and Table S1(in Supporting Information).Generally,thehigher surface areaof the TiO2-101 could contribute to higher dispersion of Pd NPs,w hich facilitates theenhancementof the catalytic activity38,39.This result was accordancew ith the tendency of catalytic behavior in Fig.3. Besides,as reported in the literature,high dispersion of Pd NPs can also be attributed to the strongmetal-support interaction effect40,41.The follow ing section will demonstrate this effectof the Pd/TiO2-101 catalyst.

    Based on the reported results in literature42,we can conjecture that Ti3+species combined w ith Pd surface in the interfacem ight play the part of a new reaction sitewhich can greatly improve hydrogen activation aswellas itsdissociation.Although H2-TPD isunable to give direct information about the hydrogen activation/ dissociation ability of the catalysts,itcan supply evidenceon the recombination of atom ic hydrogen,quantity and which kind of hydrogen desorption.Therefore,H2-TPD tests over the two cat-

    Fig.4 TEM imagesand the corresponding Pd particlessizedistributionsof Pd/TiO2catalysts(a,b,c)Pd/TiO2-001 and(d,e,f)Pd/TiO2-101

    Tab le 1 Proper ties of the Pd/TiO2-001 and Pd/TiO2-101 catalysts

    Sample Pd/TiO2-001 Pd/TiO2-101 Pd loadinga/%

    0.56

    0.57 Pd/Ti 0.025 0.018adeterm ined by ICP-AES;bBET surface area;cdeterm ined by HRTEM;ddeterm ined by CO pu lse;ebased on XPS resu lts Surface areab/(m2·g-1)

    51

    89 Particlesizec/nm

    4.36

    1.53 Pd dispersiond/%

    9.06

    15.95 Surfaceatomic compositione/% Pd

    0.72

    0.48

    Ti 28.64 26.91 alystswere performed and the resultsare delivered in Fig.5.Both catalystsshow twomain peaks(α,β)of desorbed H2,indicating that at least two types of active centers exist on the catalysts surface.Theβ-peak athigher temperature isassociatedw ith the desorption of hydrogen adsorbed strongly,while theα-peak at low tem perature that ismore w eakly bounded to catalysts surface arises from the desorption of physically adsorbed hydrogen43-45. With regard to Pd/TiO2-101 catalyst,the intensity ofβ-peak remarkably increases comparing w ith Pd/TiO2-001 sample,suggesting thatH2dissociation/activation occursmoreeasily on the Pd/TiO2-101 catalyst.

    As reported in the literature46,the Ti3+species in TiO2materials are produced by trapping of electronsatdefectivesitesof TiO2and the quantity of gathered electronsm ight reflect the amount of defectsites.Nakaoka and Nosaka47reported six signals of ESR technology occurring on the surfaceof TiO2:(i)Ti4+OTi4+OH-

    ,(ii) surface Ti3+,(iii)adsorbed oxygen(O2-),(iv)Ti4+O2-Ti4+O2-,(v) inner Ti3+,and(vi)adsorbedwater.Therefore,ESR experiments were carried out over TiO2-001 and TiO2-101 catalysts for qualitatively studying the Ti3+defects,asshown in Fig.6.In our study, it isobviously seen thatboth TiO2-001 and TiO2-101 supportsshow only one strong signalat g valuesof 1.997(less than 2),which can beascribed to Ti3+(3d1)on the surface48.Moreover,the relatively higher intensity of the Ti3+signalover the TiO2-101 support than thatof the TiO2-001 implied significantamountof surface Ti3+defects on TiO2-101 support.In view of the catalytic results,the Pd NPs loaded on TiO2-101 withmore Ti3+defective sites presentedmuch higheractivity than thoseon the TiO2-001 support which indicated that the presence of Ti3+defectsmay contribute to the catalytic performance.

    H2-TPR experimentswere performed to investigate the influence of the supportmaterialson the reducibility of Pd speciesand the results are depicted in Fig.7.A negative peak is observed at about 80°C on both catalysts,which was attributed to the decomposition of the palladium hydride formed by exposure to hydrogen atambient temperature49.Noticeably,on Pd/TiO2-101 catalyst,this negative peak w ith slightly lower peak area occurs at slightly lower temperature and a small H2consumption peaks located at105°Cwasobserved.This resultsuggests that there is higher dispersion of Pd nanoparticles on the TiO2-101 supportand implied that the interaction between Pd nanoparticles and TiO2-101 supportm ightbe stronger than thatbetween Pd nanoparticles and TiO2-001 support50,51.Aswell-known,palladium hydride is related to the particle sizeof Pd,and palladium hydride decreases w ith increasing in dispersion of Pd(decreasing Pd crystallite size)52-54.The previous study indicated that the improvement in dispersion of Pdmay be correlatedwith the presence of abundant Ti3+specieson TiO2-101 support55.Considering the reduction peak of TiO2at high temperature,the broad peak between 300 and 450°C isbecause of the reduction of Ti4+(nearby or interactingwith the Pd nanoparticles)to Ti3+.Asdiscussed in the references56, the dissociative hydrogen chem isorbed on palladium may transfer from Pd nanoparticle surface to TiO2supportand thus reduce Ti4+to Ti3+.

    Fig.5 H2-TPD profilesof the Pd/TiO2-001 and Pd/TiO2-101 catalysts

    Fig.6 ESR spectra of TiO2-001 and TiO2-101 catalysts

    Fig.7 H2-TPR profilesof catalysts(a)Pd/TiO2-001 and (b)Pd/TiO2-101

    The surface atom ic compositionsof Pd/TiO2-001 and Pd/TiO2-101 catalystswere analyzed by XPSmeasurements.The results of Pd/TiO2-001 and Pd/TiO2-101 sampleswere given in Table1. Itcan be seen thatPd/TiO2-101 catalystgivesa lower atomic ratio of Pd/Ti(0.018)than thatof Pd/TiO2-001(0.025),which could be due to decoration of Pd0metal surface by themobile reducible TiO2.Reducible TiO2can be reduced at high temperature and consequentlymigrate onto the Pd surface,which enhanced the Pd electron density and thenweakened theethyleneadsorption,thus the selectivity of ethylene is improved19,50,57,58.

    The catalystswere characterized using CO pulse chem isorption to determ ine the palladium dispersion(Table 1).The dispersion of Pd/TiO2-101 is15.95%,which is higher than thatof Pd/TiO2-001(9.06%).Thisbetter dispersion of Pd/TiO2-101 catalyst implied a largernumberof active sites than thaton the Pd/TiO2-001 samp le,w hich is considered as one of the key reasons for the catalytic performanceenhancement.

    3.4 Catalytic stabilitym easu rem en t

    The catalyststabilitywas tested on both Pd/TiO2-001 and Pd/ TiO2-101 samplesat70°C.From the results in Fig.8,theacetylene conversion decreased from 100%to 97.1%for Pd/TiO2-101 catalystsw ith reaction time on stream of 900min.While thatwas from 95.5%to 92.4%for the Pd/TiO2-001 sample after reaction for900m in.

    The deactivation of Pd-based catalysts for selective hydrogenation of acetylene was mainly caused by accumulation of hydrocarbon specieswhich hindered notonly the pathway of H2and C2H2to the active sitesbutalso the release of C2H459.Thus TGA wasperformed to study the carbon deposition on the spentcatalystsafter the stability experiment,asshown in Fig.9.For the Pd/ TiO2-001 sam ple,the weight loss below 165°C can be assigned to the loss of water,while theweight loss after 165°C can be attributed to the oxidation or decomposition of carbonaceous deposits formed on the catalysts.The quantitative calculation is done based on the weight loss between 165 and 440°C.The amountof deposited carbonaceousspecies for theused Pd/TiO2-001 was13.6 g·g-1(gram carbonaceous per gram catalyst),and thatwas11.55 g·g-1(gram carbonaceouspergram catalyst)for the Pd/TiO2-101 catalysts.

    Fig.8 Durability test for Pd/TiO2-001 and Pd/TiO2-101 catalystsat70°C

    Fig.9 TGA/DTG resultsof(a)Pd/TiO2-001 and(b)Pd/TiO2-101 after the durability tests at 70°C for 900m in

    Moreover,the corresponding DTG results of Pd/TiO2-001 catalyst comprises two peaksat299 and 355°C,which imply two types of carbonaceousspecies.However,the DTG profiles of the spent Pd/TiO2-101 catalyst is sim ilar but less resolved after reaction of 900min.According to the literature60-62,the peak at 281°C is associated w ith the combustion of trapped hydrocarbons absorbed in catalyst pores or on the catalyst surface.The peak centered at343°C can be assigned to the combustion of amorphous carbon located on or in the vicinity of Pd NPs,a precursor of graphitic carbon thathasa structure of oligomeric hydrocarbon, CxHy,which decreases theutilizability of H2and/or C2H2.What′s more,thepeak areaof the Pd/TiO2-101 catalystathigh temperature issignificantly smaller than thatof Pd/TiO2-001,implying higher resistance against carbonaceous compound deposition and hence possessing better stability.

    4 Conc lusions

    We have synthesized two types of Pd/TiO2catalysts w ith differentcrystal-planeof TiO2supports({101}and{001}facets)and investigated the effects on catalytic properties in the selective hydrogenation of acetylene to ethylene reaction.The characterization resultsshowed thata smaller particles and higher Pd NPs dispersion on Pd/TiO2-101 catalyst than thaton the Pd/TiO2-001 catalyst.Pd/TiO2-101 catalystpresentsignificantly higher catalyticactivity than thatof Pd/TiO2-001 catalyst.The catalytic behavior is dependenton the exposed facetsof TiO2supports.These results notonlymanifested that the structureand catalytic properties of Pd/TiO2catalysts can be tuned by controlling the crystal-planeof the TiO2support,butalso greatly deepened the understanding of the selective hydrogenation of acetylene reaction by Pd/TiO2catalysts.

    Acknow ledgment:We would like to thank LIU Ming(Sichuan University),LIU Yue-Feng(Institute of Metal Research, CAS),and ZHENG Jian(Southwest University of Science and Technology)for their assistanceson TEM and Ramanmeasurement;meanwhile,wealso thank CHENMin(Sichuan University), LIAO Xue-Mei(Xihua University),DENG Jie(Chengdu University),and ZHENG Jian foruseful discussion and helps.GAO Xiao-Ping thanks the China ChengDa Engineering Co.,Ltd for scholarship.

    Suppo rting In form a tion:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Kuhn,M.;Lucas,M.;Claus,P.Ind.Eng.Chem.Res.2015,54, 6683.doi:10.1021/acs.iecr.5b01682

    (2)Studt,F.;Abild-Pedersen,F.;Bligaard,T.;S?rensen,R.Z.; Christensen,C.H.;N?rskov,J.K.Science 2008,320,1320. doi:10.1126/science.1156660

    (3)Kim,S.K.;Kim,C.;Lee,J.H.;Kim,J.;Lee,H.;Moon,S.H. J.Catal.2013,306,146.doi:0.1016/j.jcat.2013.06.018

    (4)Crespo-Quesada,M.;Yarulin,A.;Jin,M.;Xia,Y.;Kiw i-M insker,L.J.Am.Chem.Soc.2011,133,12787.doi:10.1021/ ja204557m

    (5)Hong,J.;Chu,W.;Chen,M.;Wang,X.;Zhang,T.Catal. Commun.2007,8,593.doi:10.1016/j.catcom.2006.08.010

    (7)Pei,G.X.,Liu,X.Y.;Wang,A.;Lee,A.F.;Isaacs,M.A.;Li,L.; Pan,X.;Yang,X.;Wang,X.;Tai,Z.;Wilson,K.;Zhang,T.ACS Catal.2015,5,3717.doi:10.1021/acscatal.5b00700

    (8)Lee,J.H.;Kim,S.K.;Ahn,I.Y.;Kim,W.J.;Moon,S.H. Catal.Commun.2011,12,1251.doi:10.1016/j. catcom.2011.04.015

    (9)Wang,Z.Q.;Zhou,Z.M.;Zhang,R.;Li,L.;Cheng,Z.M.Acta Phys.-Chim.Sin.2014,30,2315.[王沾祺,周志明,張銳,李莉,程振民.物理化學(xué)學(xué)報(bào),2014,30,2315.]doi:10.3866/PKU. WHXB201410152

    (10)Gu,H.;Xu,B.L.;Zhou,J.;Li,Y.Z.;Fan,Y.N.Acta Phys.-Chim.Sin.2006,22,712.[顧虹,許波連,周靜,李遠(yuǎn)志,范以寧.物理化學(xué)學(xué)報(bào),2006,22,712.]doi:10.3866/ PKU.WHXB20060613

    (11)Guo,Z.L.;Huang,L.Q.;Chu,W.;Luo,S.Z.Acta Phys.-Chim. Sin.2014,30,723.[郭章龍,黃麗瓊,儲(chǔ)偉,羅仕忠.物理化學(xué)學(xué)報(bào),2014,30,723.]doi:10.3866/PKU.WHXB201402242

    (12)Kontapakdee,K.;Panpranot,J.;Praserthdam,P.Catal. Commun.2007,8,2166.doi:10.1016/j.catcom.2007.03.003

    (13)He,Y.;Liang,L.;Liu,Y.;Feng,J.;Ma,C.;Li,D.J.Catal. 2014,309,166.doi:10.1016/j.jcat.2013.09.017

    (14)Osswald,J.;Giedigkeit,R.;Jentoft,R.;Armbruster,M.; Girgsdies,F.;Kovnir,K.;Ressler,T.;Grin,Y.;Schlogl,R. J.Catal.2008,258,210.doi:10.1016/j.jcat.2008.06.013

    (15)Neumann,M.;Teschner,D.;Knop-Gericke,A.;Reschetilowski, W.;A rmbrüster,M.J.Catal.2016,340,49.doi:10.1016/j. jcat.2016.05.006

    (16)Gao,Z.;Zhang,Y.;Li,D.;Werth,C.J.;Zhang,Y.;Zhou,X. J.Hazard.Mater.2015,286,425.doi:10.1016/j. jhazmat.2015.01.005

    (17)Teschner,D.;Borsodi,J.;Wootsch,A.;Révay,Z.;H?vecker,M.; Knop-Gericke,A.;Jackson,S.D.;Schl?gl,R.Science2008, 320,86.doi:10.1126/science.1155200

    (18)Chen,M.H.;Chu,W.;Dai,X.Y.;Zhang,X.W.Catal.Today 2004,89,201.doi:10.1016/j.cattod.2003.11.027

    (19)Li,Y.;Jang,B.W.L.Appl.Catal.A 2011,392,173.doi:10.1016/ j.apcata.2010.11.008

    (20)Chu,W.;Xu,J.;Hong,J.;Lin,T.;Khodakov,A.Catal.Today 2015,256,41.doi:10.1016/j.cattod.2015.05.024

    (21)Panpranot,J.;Nakkararuang,L.;Ngamsom,B.;Praserthdam,P. Catal.Lett.2005,103,53.doi:10.1007/s10562-005-6502-x

    (22)Panpranot,J.;Kontapakdee,K.;Praserthdam,P.Appl.Catal.A 2006,314,128.doi:10.1016/j.apcata.2006.08.024

    (23)Wang,N.;Qian,W.;Chu,W.;Wei,F.Catal.Sci.Technol.2016, 6,3594.doi:10.1039/c5cy01790d

    (24)Si,R.;Flytzani-Stephanopoulos,M.Angew.Chem.Int.Ed. 2008,47,2884.doi:10.1002/anie.200705828

    (25)Liu,L.;Yao,Z.;Deng,Y.;Gao,F.;Liu,B.;Dong,L. ChemCatChem 2011,3,978.doi:10.1002/cctc.201000320

    (26)Wang,F.;Zhang,S.;Li,C.;Liu,J.;He,S.;Zhao,Y.;Yan,H.; Wei,M.;Evans,D.G.;Duan,X.RSCAdv.2014,4,10834. doi:10.1039/c3ra47076h

    (27)Shi,Q.;Li,Y.;Zhou,Y.;M iao,S.;Ta,N.;Zhan,E.;Liu,J.; Shen,W.J.Mater.Chem.A 2015,3,14409.doi:10.1039/ c5ta02897c

    (28)Liu,L.;Gu,X.;Cao,Y.;Yao,X.;Zhang,L.;Tang,C.;Gao,F.; Dong,L.ACSCatal.2013,3,2768.doi:10.1021/cs400492w

    (29)Yang,J.;Cao,L.X.;Wang,G.C.J.Mol.Model.2012,18, 3329.doi:10.1007/s00894-011-1337-4

    (30)Han,X.;Kuang,Q.;Jin,M.;Xie,Z.;Zheng,L.J.Am.Chem. Soc.2009,131,3152.doi:10.1021/ja8092373

    (31)He,Y.;Fan,J.;Feng,J.;Luo,C.;Yang,P.;Li,D.J.Catal.2015, 331,118.doi:10.1016/j.jcat.2015.08.012

    (32)Tan,Z.;Sato,K.;Takami,S.;Numako,C.;Umetsu,M.;Soga, K.;Nakayama,M.;Sasaki,R.;Tanaka,T.;Ogino,C.;Kondo, A.;Yamamoto,K.;Hashishin,T.;Ohara,S.RSCAdv.2013,3,19268.doi:10.1039/c3ra43383h

    (33)Zheng,J.;Liu,Z.;Liu,X.;Yan,X.;Li,D.;Chu,W.J.Alloy. Compd.2011,509,3771.doi:10.1016/j.jallcom.2010.12.152

    (34)Tian,F.;Zhang,Y.;Zhang,J.;Pan,C.J.Phys.Chem.C 2012, 116,7515.doi:10.1021/jp301256h

    (35)Komhom,S.;Mekasuwandum rong,O.;Praserthdam,P.; Panpranot,J.Catal.Commun.2008,10,86.doi:10.1016/j. catcom.2008.07.039

    (36)Sárkány,A.;Schay,Z.;Frey,K.;Széles,é.;Sajó,I.Appl.Catal. A 2010,380,133.doi:10.1016/j.apcata.2010.03.042

    (37)M enezes,W.G.;A ltmann,L.;Zielasek,V.;Thiel,K.;B?umer, M.J.Catal.2013,300,125.doi:10.1016/j.jcat.2012.12.023

    (38)Vincent,M.J.;Gonzalez,R.D.Appl.Catal.A 2001,217,143. doi:10.1016/S0926-860X(01)00586-5

    (39)Wang,N.;Xu,Z.;Deng,J.;Shen,K.;Yu,X.;Qian,W.;Chu,W.; Wei,F.ChemCatChem 2014,6,1470.doi:10.1002/ cctc.201300720

    (40)Douidah,A.;Marécot,P.;Szabo,S.;Barbier,J.Appl.Catal.A 2002,225,21.doi:10.1016/S0926-860X(01)00627-5

    (41)Dole,H.A.E.;Safady,L.F.;Ntais,S.;Couillard,M.;Baranova, E.A.J.Catal.2014,318,85.doi:10.1016/j.jcat.2014.07.003

    (42)Panagiotopoulou,P.;Kondarides,D.I.J.Catal.2009,267,57. doi:10.1016/j.jcat.2009.07.014

    (43)Yu,W.Y.;Mullen,G.M.;Mullins,C.B.J.Phys.Chem.C 2013, 117,19535.doi:10.1021/jp406736b

    (44)Huang,L.;Chu,W.;Zhang,T.;Yin,Y.;Tao,X.J.Nat.Gas Chem.2009,18,35.doi:10.1016/S1003-9953(08)60082-1

    (45)Han,X.;Chu,W.;Ni,P.;Luo,S.Z.;Zhang,T.J.Fuel Chem. Technol.2007,35,691.doi:10.1016/S1872-5813(08)60004-3

    (46)Ikeda,S.;Sugiyama,N.;Murakami,S.Y.;Kominami,H.;Kera, Y.;Noguchi,H.;Uosaki,K.;Torimoto,T.;Ohtani,B.Phys. Chem.Chem.Phys.2003,5,778.doi:10.1039/b206594k

    (47)Nakaoka,Y.;Nosaka,Y.J.Photochem.Photobiol.A 1997,110, 299.doi:10.1016/S1010-6030(97)00208-6

    (48)Salama,T.M.;Hattori,H.;Kita,H.;Ebitani,K.;Tanaka,T. J.Chem.Soc.Faraday Trans.1993,89,2067.doi:10.1039/ FT9938902067

    (49)M cCue,A.J.;M cKenna,F.M.;Anderson,J.A.Catal.Sci. Technol.2015,5,2449.doi:10.1039/c5cy00065c

    (50)Riyapan,S.;Boonyongmaneerat,Y.;Mekasuwandum rong,O.; Praserthdam,P.;Panpranot,J.Catal.Today 2015,245,134. doi:10.1016/j.cattod.2014.07.017

    (51)Neyertz,C.;Volpe,M.Co lloids Surf.A 1998,136,63. doi:10.1016/S0927-7757(97)00249-5

    (52)Ziemecki,S.B.;M ichel,J.B.;Jones,G.A.Reac.Solids1986, 2,187.doi:10.1016/0168-7336(86)80082-1

    (53)Gómez-Quero,S.;Cárdenas-Lizana,F.;Keane,M.A.Ind.Eng. Chem.Res.2008,47,6841.doi:10.1021/ie0716565

    (54)Aytam,H.P.;Akula,V.;Janmanchi,K.;Kamaraju,S.R.R.; Panja,K.R.;Gurram,K.;Niemantsverdriet,J.W.J.Phys. Chem.B 2002,106,1024.doi:10.1021/jp012357a

    (55)Panpranot,J.;Kontapakdee,K.;Praserthdam,P.J.Phys.Chem. B 2006,110,8019.doi:10.1021/jp057395z

    (56)Xu,J.;Sun,K.;Zhang,L.;Ren,Y.;Xu,X.Catal.Commun. 2005,6,462.doi:10.1016/j.catcom.2005.04.006

    (57)Liu,Y.N.;Feng,J.T.;He,Y.F.;Sun,J.H.;Li,D.Q.Catal.Sci. Techno l.2015,5,1231.doi:10.1039/c4cy01160k

    (58)Kim,E.;Shin,E.W.;Bark,C.W.;Chang,I.;Yoon,W.J.;Kim, W.J.Appl.Catal.A 2014,471,80.doi:10.1016/j. apcata.2013.11.036

    (59)Zhang,S.;Chen,C.Y.;Jang,B.W.L.;Zhu,A.M.Catal.Today 2015,256,161.doi:10.1016/j.cattod.2015.04.002

    (60)Pachulski,A.;Sch?del,R.;Claus,P.Appl.Catal.A 2011,400, 14.doi:10.1016/j.apcata.2011.03.019

    (61)Lopez,E.;Ordonez,S.;Diez,F.V.Appl.Catal.B 2006,62,57. doi:10.1016/j.apcatb.2005.06.014

    (62)Azizi,Y.;Petit,C.;Pitchon,V.J.Catal.2008,256,338. doi:10.1016/j.jcat.2008.04.003

    Cata lytic Perform ance and Charac terization of Anatase TiO2Suppo rted Pd Catalysts for the Selec tive Hyd rogenation of Acety lene

    GAO Xiao-Ping1,2GUO Zhang-Long1,2ZHOU Ya-Nan1,2JING Fang-Li1CHUWei1,2,*
    (1Schoo l ofChem ical Engineering,Sichuan University,Chengdu 610065,P.R.China;
    2Institute ofNew Energy and Low-Carbon Technology,Sichuan University,Chengdu 610207,P.R.China)

    Anatase TiO2nanospindles containing 89%exposed{101}facets(TiO2-101)and nanosheets with 77%exposed{001}facets(TiO2-001)were hydrotherma lly synthesized and used as supports for Pd catalysts. The effec ts of the TiO2m aterials on the cata lytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts we re investigated in the selective hyd rogenation ofacetylene to po lymer-grade ethylene.The Pd/TiO2-101 catalyst exhibited enhanced performance in terms ofacetylene conversion and ethylene yield.To understand these effects,the cata lystswere characterized by H2temperature-programmed desorption(H2-TPD),H2temperatureprogrammed reduction(H2-TPR),transm ission electronm icroscopy(TEM),pulse CO chem isorption,X-ray photoelectron spectroscopy(XPS),and thermog ravim etric analysis(TGA).The TEM and CO chem isorption results confirmed thatPd nanoparticles(NPs)on the TiO2-101 supporthad a smalleraverage particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO2-001 support(average particle size of4.36 nm and dispersion of9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalystprovided more reaction active sites,which contributed to the im proved catalytic activity of this supported catalyst.

    Pd/TiO2catalyst;Acetylene selective hydrogenation;Anatase TiO2;{101}p lane;Structure characterization

    .Email:chuwei1965@scu.edu.cn;Tel:+86-28-85403836.

    Theprojectwas supported by theNationalNatural Science Foundation of China(21476145).

    國家自然科學(xué)基金(21476145)資助項(xiàng)目?Editorialoffice of Acta Physico-Chim ica Sinica

    O643

    im,W.J.;Moon,S.H.Catal.Today2012,185,2.

    10.1016/j.cattod.2011.09.037

    doi:10.3866/PKU.WHXB201611251

    www.whxb.pku.edu.cn

    Received:August26,2016;Revised:November25,2016;Published online:November25,2016.*

    猜你喜歡
    分散度銳鈦礦四川大學(xué)
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    貴州水城龍場銳鈦礦礦床地質(zhì)特征及成因
    燃?xì)廨啓C(jī)燃燒室部件故障研究
    熱力透平(2020年2期)2020-06-22 06:27:12
    基于第一性原理研究Y摻雜銳鈦礦TiO2的磁光性質(zhì)
    9FA燃機(jī)燃燒監(jiān)測系統(tǒng)介紹及案例分析
    一種銳鈦礦二氧化鈦/碳復(fù)合材料的制備方法
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    百年精誠 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    開煉機(jī)混煉膠炭黑分散度數(shù)學(xué)模型研究
    久久精品夜夜夜夜夜久久蜜豆| 免费av观看视频| 欧美区成人在线视频| 一级a爱片免费观看的视频| or卡值多少钱| 一进一出抽搐动态| 免费在线观看日本一区| 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 久久午夜福利片| 精品99又大又爽又粗少妇毛片 | 亚洲欧美日韩卡通动漫| 国产v大片淫在线免费观看| 小蜜桃在线观看免费完整版高清| 国内精品美女久久久久久| 高清日韩中文字幕在线| 成年人黄色毛片网站| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 国产精品伦人一区二区| 婷婷亚洲欧美| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 性欧美人与动物交配| 欧美日本视频| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片 | 精品日产1卡2卡| 色综合婷婷激情| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 国产成人a区在线观看| 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 欧美zozozo另类| 老司机福利观看| 内射极品少妇av片p| 国产男靠女视频免费网站| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 亚洲在线观看片| 免费观看在线日韩| 床上黄色一级片| 在现免费观看毛片| 国产成人a区在线观看| 永久网站在线| 琪琪午夜伦伦电影理论片6080| 国产淫片久久久久久久久| 联通29元200g的流量卡| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 一级av片app| 久久久久久久久久成人| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 99热6这里只有精品| 人人妻人人看人人澡| 久久精品人妻少妇| 男女之事视频高清在线观看| 99热这里只有精品一区| 亚洲专区国产一区二区| 亚洲18禁久久av| 好男人在线观看高清免费视频| 亚洲在线自拍视频| 国产一级毛片七仙女欲春2| 深夜精品福利| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 国产 一区精品| 搡老妇女老女人老熟妇| 蜜桃亚洲精品一区二区三区| 国产精品98久久久久久宅男小说| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品av在线| 午夜免费成人在线视频| 日韩av在线大香蕉| 99热这里只有是精品50| 97碰自拍视频| 69人妻影院| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| 国产高清视频在线观看网站| 一级黄片播放器| netflix在线观看网站| 精品人妻1区二区| 免费大片18禁| 特大巨黑吊av在线直播| 欧美区成人在线视频| 亚洲av美国av| 亚洲欧美激情综合另类| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 午夜精品在线福利| 国产在线男女| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 美女大奶头视频| 亚洲国产精品成人综合色| 高清在线国产一区| 全区人妻精品视频| 亚洲18禁久久av| 国产精品一区www在线观看 | 久久九九热精品免费| 联通29元200g的流量卡| 亚洲自拍偷在线| 岛国在线免费视频观看| 又黄又爽又刺激的免费视频.| 身体一侧抽搐| 亚洲无线在线观看| 亚洲人成网站在线播| 欧美最新免费一区二区三区| 九九热线精品视视频播放| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 亚洲内射少妇av| 一级黄片播放器| 久久精品国产亚洲av涩爱 | 亚洲成人精品中文字幕电影| 97热精品久久久久久| 亚洲三级黄色毛片| 人人妻,人人澡人人爽秒播| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 精品一区二区三区人妻视频| 国产黄色小视频在线观看| 女的被弄到高潮叫床怎么办 | 国产精品一区www在线观看 | 久99久视频精品免费| 在线免费观看不下载黄p国产 | 亚洲av一区综合| 亚洲久久久久久中文字幕| 一级黄色大片毛片| 乱人视频在线观看| 老女人水多毛片| 国产爱豆传媒在线观看| 久久6这里有精品| 又爽又黄a免费视频| 一区二区三区高清视频在线| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 老熟妇乱子伦视频在线观看| 亚洲精品国产成人久久av| 亚洲精品456在线播放app | 18禁黄网站禁片午夜丰满| 国产午夜精品论理片| 99久久精品热视频| 午夜激情欧美在线| 黄色一级大片看看| 久久精品综合一区二区三区| 精品无人区乱码1区二区| 国产乱人视频| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 亚洲性久久影院| 亚洲国产精品sss在线观看| 俄罗斯特黄特色一大片| 女的被弄到高潮叫床怎么办 | 一个人观看的视频www高清免费观看| 国产中年淑女户外野战色| 久久久久免费精品人妻一区二区| 日本 av在线| 夜夜爽天天搞| 国产欧美日韩精品一区二区| www日本黄色视频网| 亚洲五月天丁香| 久久久精品大字幕| 日本黄色视频三级网站网址| 又紧又爽又黄一区二区| 国产精品久久电影中文字幕| 99在线人妻在线中文字幕| 草草在线视频免费看| 久久人人爽人人爽人人片va| 日本免费a在线| 成年人黄色毛片网站| 在线看三级毛片| 国产成人a区在线观看| 日韩精品中文字幕看吧| 亚洲精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 日本 欧美在线| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 久9热在线精品视频| 韩国av一区二区三区四区| 午夜a级毛片| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 国产一区二区亚洲精品在线观看| 欧美日韩亚洲国产一区二区在线观看| 22中文网久久字幕| 欧美黑人巨大hd| 联通29元200g的流量卡| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 色综合色国产| a级毛片免费高清观看在线播放| 如何舔出高潮| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 99热精品在线国产| 国产主播在线观看一区二区| 在线看三级毛片| 久久香蕉精品热| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 亚洲精品在线观看二区| 给我免费播放毛片高清在线观看| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产成人a区在线观看| 精品人妻视频免费看| 高清毛片免费观看视频网站| 伊人久久精品亚洲午夜| 久久精品综合一区二区三区| 国产aⅴ精品一区二区三区波| 日本五十路高清| 中国美女看黄片| 中文字幕高清在线视频| 十八禁网站免费在线| 国产精品伦人一区二区| 国产乱人视频| 国产精品嫩草影院av在线观看 | 亚洲精品日韩av片在线观看| 能在线免费观看的黄片| 99视频精品全部免费 在线| 亚洲国产欧洲综合997久久,| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 中文字幕精品亚洲无线码一区| 亚洲av二区三区四区| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 日本五十路高清| 最后的刺客免费高清国语| 亚洲成av人片在线播放无| 日日撸夜夜添| 亚洲av不卡在线观看| 12—13女人毛片做爰片一| 成人午夜高清在线视频| 国产精品不卡视频一区二区| 哪里可以看免费的av片| 天堂影院成人在线观看| 欧美bdsm另类| 成年免费大片在线观看| 此物有八面人人有两片| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 国产男人的电影天堂91| 99久久成人亚洲精品观看| 国产av在哪里看| 春色校园在线视频观看| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 精品一区二区三区av网在线观看| 日韩中字成人| 两人在一起打扑克的视频| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 一a级毛片在线观看| or卡值多少钱| 亚洲欧美日韩卡通动漫| 成年女人永久免费观看视频| 一级黄片播放器| 伦理电影大哥的女人| 国产精品久久久久久精品电影| 免费观看的影片在线观看| 欧美潮喷喷水| 美女大奶头视频| 亚洲黑人精品在线| 久久草成人影院| 欧美日韩瑟瑟在线播放| 日日撸夜夜添| 亚洲欧美激情综合另类| 一个人看的www免费观看视频| 欧美黑人欧美精品刺激| 国产69精品久久久久777片| av天堂中文字幕网| 国国产精品蜜臀av免费| 极品教师在线视频| 人妻制服诱惑在线中文字幕| 在线免费观看的www视频| 国产成人av教育| 欧美+日韩+精品| 国产精品久久久久久精品电影| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 五月玫瑰六月丁香| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区| 日韩精品中文字幕看吧| 亚洲综合色惰| 美女cb高潮喷水在线观看| 精品久久久噜噜| 老熟妇仑乱视频hdxx| 97超视频在线观看视频| 国产精品久久久久久av不卡| 男女那种视频在线观看| 国产爱豆传媒在线观看| 久久久久久大精品| 麻豆精品久久久久久蜜桃| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 日本一二三区视频观看| 国产色婷婷99| 中文字幕av成人在线电影| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 成人国产综合亚洲| 国产精品一及| 在现免费观看毛片| 九九爱精品视频在线观看| 一区二区三区免费毛片| 中出人妻视频一区二区| 精品国内亚洲2022精品成人| 精品人妻偷拍中文字幕| 乱人视频在线观看| 91精品国产九色| 国语自产精品视频在线第100页| 色吧在线观看| 麻豆成人午夜福利视频| netflix在线观看网站| 亚洲国产精品sss在线观看| 亚洲精品久久国产高清桃花| 亚洲在线自拍视频| 成人国产一区最新在线观看| 亚洲七黄色美女视频| 日本一本二区三区精品| 亚洲自偷自拍三级| 99热这里只有是精品50| 免费高清视频大片| 免费观看精品视频网站| 国产国拍精品亚洲av在线观看| 国产大屁股一区二区在线视频| 热99在线观看视频| 午夜久久久久精精品| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 一级a爱片免费观看的视频| 国产亚洲欧美98| 最好的美女福利视频网| 亚洲精品456在线播放app | 一本一本综合久久| 日本黄大片高清| 男插女下体视频免费在线播放| .国产精品久久| 亚洲精华国产精华精| 黄色配什么色好看| 色播亚洲综合网| 看免费成人av毛片| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 久久久久九九精品影院| 久久精品91蜜桃| 国产亚洲av嫩草精品影院| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 在线观看免费视频日本深夜| 亚洲av免费高清在线观看| 亚洲中文字幕日韩| 国内精品宾馆在线| 22中文网久久字幕| xxxwww97欧美| 国产 一区精品| 久久久国产成人精品二区| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 国产精品av视频在线免费观看| 国产精品久久电影中文字幕| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 黄色女人牲交| 最近最新中文字幕大全电影3| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 免费av毛片视频| 又爽又黄a免费视频| 亚洲综合色惰| 亚洲三级黄色毛片| 欧美日韩中文字幕国产精品一区二区三区| 亚洲中文日韩欧美视频| 日本免费a在线| 国产毛片a区久久久久| 日韩av在线大香蕉| 一级黄色大片毛片| 亚洲四区av| 精品一区二区三区人妻视频| 国产美女午夜福利| 亚洲真实伦在线观看| 成年免费大片在线观看| 最新中文字幕久久久久| 精品久久久久久久久久久久久| 亚洲av.av天堂| 亚洲第一电影网av| 免费高清视频大片| 亚洲国产日韩欧美精品在线观看| 搡老妇女老女人老熟妇| 看十八女毛片水多多多| 亚洲最大成人手机在线| 22中文网久久字幕| 又爽又黄无遮挡网站| 午夜a级毛片| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 免费一级毛片在线播放高清视频| 久久久精品欧美日韩精品| 色5月婷婷丁香| 国产黄色小视频在线观看| 人妻制服诱惑在线中文字幕| a在线观看视频网站| 1000部很黄的大片| 桃色一区二区三区在线观看| 日韩中字成人| 久久人妻av系列| 国产精品一区二区三区四区久久| 亚洲精华国产精华液的使用体验 | 欧美精品国产亚洲| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 少妇高潮的动态图| 亚洲欧美清纯卡通| 97碰自拍视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av.av天堂| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 国产精品精品国产色婷婷| 一个人看视频在线观看www免费| 亚洲精华国产精华精| 欧美日韩黄片免| 国产美女午夜福利| eeuss影院久久| av在线观看视频网站免费| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 久久人人爽人人爽人人片va| 亚洲,欧美,日韩| 亚洲精华国产精华精| 麻豆久久精品国产亚洲av| 欧美色欧美亚洲另类二区| 国产一区二区在线观看日韩| 精品久久久久久久久久免费视频| 91久久精品国产一区二区三区| 亚洲最大成人中文| 毛片女人毛片| 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| 午夜a级毛片| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 国产v大片淫在线免费观看| 国产一级毛片七仙女欲春2| 亚洲自拍偷在线| 亚洲无线在线观看| 在线国产一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 老女人水多毛片| 91麻豆精品激情在线观看国产| 亚洲图色成人| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 免费看av在线观看网站| 日韩人妻高清精品专区| 中国美女看黄片| 亚洲av五月六月丁香网| av在线天堂中文字幕| 免费一级毛片在线播放高清视频| 美女高潮喷水抽搐中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 美女免费视频网站| 蜜桃亚洲精品一区二区三区| 精品人妻视频免费看| 男人狂女人下面高潮的视频| 亚洲精品一区av在线观看| 国产成人aa在线观看| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| av在线天堂中文字幕| 99精品在免费线老司机午夜| 久久久久久久久大av| 老司机午夜福利在线观看视频| 国产三级中文精品| 欧美xxxx性猛交bbbb| 欧美一区二区精品小视频在线| 禁无遮挡网站| 欧美日韩综合久久久久久 | 国产美女午夜福利| 一区二区三区高清视频在线| 成年人黄色毛片网站| 日本-黄色视频高清免费观看| 一边摸一边抽搐一进一小说| 在线观看66精品国产| 少妇猛男粗大的猛烈进出视频 | 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| av专区在线播放| 最近中文字幕高清免费大全6 | 最近最新免费中文字幕在线| 欧美一区二区精品小视频在线| 午夜福利成人在线免费观看| 亚洲国产欧洲综合997久久,| 在线国产一区二区在线| 日韩欧美免费精品| 国产毛片a区久久久久| 久久久国产成人免费| 欧美日本亚洲视频在线播放| 成人二区视频| 日韩精品有码人妻一区| 国产在线精品亚洲第一网站| 国产黄色小视频在线观看| 国产一级毛片七仙女欲春2| 国产单亲对白刺激| 免费不卡的大黄色大毛片视频在线观看 | 1024手机看黄色片| 亚洲乱码一区二区免费版| 国产大屁股一区二区在线视频| 噜噜噜噜噜久久久久久91| 三级男女做爰猛烈吃奶摸视频| 午夜激情福利司机影院| 久久99热这里只有精品18| 日韩一区二区视频免费看| 色播亚洲综合网| 亚洲专区中文字幕在线| 欧美极品一区二区三区四区| 十八禁网站免费在线| 成人高潮视频无遮挡免费网站| 最近在线观看免费完整版| 国产 一区精品| 国产色婷婷99| 国产高清有码在线观看视频| 亚洲一区二区三区色噜噜| 蜜桃亚洲精品一区二区三区| АⅤ资源中文在线天堂| 日韩,欧美,国产一区二区三区 | 精华霜和精华液先用哪个| 日韩大尺度精品在线看网址| 一夜夜www| 国产一区二区三区视频了| 亚洲欧美精品综合久久99| 在线免费观看的www视频| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看 | 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 国产伦一二天堂av在线观看| 嫁个100分男人电影在线观看| 亚洲真实伦在线观看| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 日本免费一区二区三区高清不卡| 久久久久精品国产欧美久久久| 一级毛片久久久久久久久女| 12—13女人毛片做爰片一| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 女同久久另类99精品国产91| 最新在线观看一区二区三区| 亚洲自偷自拍三级| 欧美不卡视频在线免费观看| 欧美xxxx性猛交bbbb| 我的女老师完整版在线观看| 熟妇人妻久久中文字幕3abv| 能在线免费观看的黄片| 亚洲av.av天堂| 日本熟妇午夜| 人妻少妇偷人精品九色| 亚洲av.av天堂| 亚洲最大成人中文| 午夜激情欧美在线| 久久久久久久久久黄片| 国产精品99久久久久久久久| 亚洲成人久久爱视频| 色吧在线观看| 黄色一级大片看看| 三级毛片av免费| 88av欧美| 国产毛片a区久久久久| 久久久久性生活片| 久久人人爽人人爽人人片va| av福利片在线观看| 亚洲精品456在线播放app | 看免费成人av毛片| x7x7x7水蜜桃| 亚洲精品色激情综合|