• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    構(gòu)建AP-HTPB固體推進(jìn)劑松弛模量主曲線的不同方法

    2017-05-07 01:26:33WalidAdel梁國(guó)柱
    含能材料 2017年10期
    關(guān)鍵詞:梁國(guó)北京航空航天大學(xué)宇航

    Walid M Adel, 梁國(guó)柱

    (北京航空航天大學(xué)宇航學(xué)院, 北京100083 )

    1 Introduction

    The solid propellant exhibits very complicated viscoelastic behavior and its mechanical properties (the relationship between tension and stress) and failure mechanisms are really sensible at the time of application loads, and temperature change. Relaxation modulus is one of the most important mechanical properties of viscoelastic materials which can be used to simulate the viscoelastic material behavior[1]. The master curve of the relaxation modulus is defined as the relationship between the relaxation modulus and the reduced loading time and it is constructed based on a selected reference temperature of interest to which all data must be shifted using shift factors. The shift factor is defined as a unique parameter which takes into account both the temperature and strain rate effects of the temperature of interest relative to the reference temperature[2]. Depending on a master curve, the mechanical properties and the behavior of composite solid propellant can be predicted at different times and temperatures based on a limited set of experimental data. This anticipation is often performed through basic time-temperature superposition (TTS) principle.

    The related publications in the extant literature, primarily concentrate on the application of TTS principle of solid propellant under different loading conditions. Chyuan analyzed numerically the structural integrity of HTPB solid propellant grains subjected to temperature loading[3], ignition pressurization loading[4], and Poisson′s ratio varies under ignition pressure loading[5], using a constitutive model based on the relaxation testing that employed the TTS and reduced integration by using WLF method. B. K. Bihari et al.[6]used both method WLF and Arrhenius to determine the activation energy of composite solid propellant to predict the useful lifetime of solid propellant. Marimuthu et al.[7]simulated the structural integrity of the solid propellant grains under gravity loading and inner pressure using relaxation tests and the TTS to specify the effective Poisson′s ratio and Young′s modulus. Moreover, Xu[8]proposed a new method to get the relaxation modulus of HTPB propellants using the TTS in the temperature range of -50 ℃ to +35 ℃. John Kim et al.[1]estimated the master curve of the relaxation modulus for solid propellant according to the basic TTS method and WLF method, but without comparison between the two methods. Some studies have been focused on comparing different TTS methods and methods to generate the relaxation modulus master curve, but using different materials for example Allex E. Alvarez et al.[9]evaluated various methods and examples that can be satisfactorily applied to get the relaxation modulus master curves of hot-mix asphalt (HMA) by using three methods WLF, Arrhenius, and an optimization technique with the sum of square error (SSE) method. However, there is still limited information available about the difference between the methods that usually used to generate the relaxation modulus master curves of solid propellant, therefore, further researches should be performed to demonstrate the differences between these methods.

    In this work, the specimen preparation and the stress relaxation tests at different temperatures are conducted.The three methods of generating the relaxation modulus master curves are discussed. Then the best fit model for the experimental data are presented.

    2 Material and Experiment

    2.1 Material and Specimens Preparation

    The solid propellant used in this research is a heterogeneous propellant which consists of solid oxidizer particles ammonium perchlorate (AP) 67%, and metallic fuel particle aluminum powder (Al) 18%, dispersing in polymeric binder matrix (HTPB) forming the rest percentage. These gradients were mixed together, and then the propellant slurry was cast in special molds under vibration and vacuum with internal dimensions of 200 mm× 150 mm× 150 mm. Then the molds are placed in a large curing oven with temperature controlled at 60 ℃, for a total curing time of 240 h. After curing the molds are cut into sheets with a uniform thickness. And so the test specimens (shown in Fig.1) are produced using special cut press according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[10], and the dimensions of the test specimens are illustrated in Fig. 2. The actual thickness of the specimens is 11.04 mm less than the standard one due to some limitation of the sheet cutting machine. As a quality control step, the produced specimens are checked by a non-destructive method for voids like air bubbles or micro cracks by X-Ray to ensure the result of experimental data. After that, the accepted specimens were stored in desiccators at ambient temperature and relative humidity RH≤30%. The mechanical and physical prosperities of the selected solid propellant (measured at room temperature) are listed in Table 1.

    Fig.1 HTPB solid propellant test specimen

    Fig.2 Standard dimensions of the specimen(unit: mm)

    Table 1 The mechanical and physical prosperities of the HTPB solid propellant

    Young′smodulus/MPamax.stress/MPamax.strain/%density/kg·m-3glasstransitiontemperature/℃3.400.72434.51760-60

    2.2 Stress Relaxation Test

    To define the behavioral characteristics of a viscoelastic solid propellant accurately, its responses to an applied load or displacement must be determined as a function of strain rate, time, and temperature. These characteristics may be specified by means of creep or stress relaxation tests. The viscous nature of the mechanical behavior of a HTPB solid propellant is demonstrated by relaxation test which consists in subjecting a specimen to a constant elongation and measuring the evolution of the forceF(t) versus time, so the stress relaxation describes the time-dependent change in force due to applied displacement[11].The experiments were conducted using a computer controlled universal test machine (UTM) Zwick Z050 at different temperatures -40,+20 ℃ and +76 ℃ for 1380 s by maintaining constant strain level 10% during the whole time test and the initial tension rate was 10 mm.min-1. Normally the researchers test the solid propellant specimens from -40 ℃ to +50 ℃, but we select the high test temperature as +76 ℃ according to some engineering applications. Before the experimental tests the specimens are conditioned in an external environment chamber for three hours to ensure the thermal equilibrium, and also the relaxation tests were conducted in a digital control environmental temperature chamber with tolerance ±0.1 ℃ of the set temperature point. The stress relaxation test shall also be repeated to check the result of the deflection superposition during the stress relaxation phenomena[12]. In order to ensure the consistency of the measured data, every experimental test was carried out on three specimens in the same conditions and the mean values of these results were taken as the final result. From the measured data, the stress relaxation modulus is calculated as indicated in Eq. (1).

    (1)

    whereER(t) is the time-dependent stress relaxation modulus, MPa;F(t) is the measured time-dependent load, N;Ais the cross section area of the specimen (A=104.88 mm2) andεis the applied constant loading strain. The actual value of the applied strain is 0.098, a little less than 0.1, due to crosshead speed accuracy of the UTM.

    Fig. 3 shows that the trend of the relaxation modulus decreases as time increases under various temperatures. The major change of the stress relaxation occurs in the first 120 s of the relaxation time after that the stress relaxation is still decreasing but with very slow rate. Also, it can be observed that the high effect of the low temperature and time on the stress relaxation curves for the composite solid propellant especially at the initial values, but this effect decreases as the relaxation time increases. For example, att=0 s and at a constant strain level the difference percentage value between the relaxation modulus at -40℃ and +20 ℃ is 155.7%, while this value att=1380 s is approximately 9.5%. These results totally represent that the current HTPB propellant is a viscoelastic material and exhibits the dependence of time-temperature behavior.

    Fig.3 Relaxation modulus at different temperatures and constant strain levelε=10%

    3 Methods for Generating the Master Curve

    TTS principle has been used to get the master curves for several mechanical properties such as stress, strain, creep compliance and relaxation modulus against time or dynamic modulus against frequency[13]. The various methods and models for producing the relaxation modulus master curves are discussed and evaluated in this section. These methods include the basic TTS method, the WLF method, and the Arrhenius method. The major difference between these methods is basically in the computation of the temperature shift factors. It should be emphasized here that the shift factor is the main driving force in the generation of any master-curve[9].

    3.1 Basic Time-Temperature Superposition Method

    To generate themaster curve of the relaxation modulus using the basic TTS method, it is necessary to plot the log relaxation modulus versus log time at different temperatures to obtain the shift factors of each time-temperature as shown in Fig. 4. The relationship between time and temperature can be written as the following equations[1]:

    ER(t0,T0)=ER(t1,T1)=ER(t2,T2)

    (2)

    (3)

    (4)

    Fig.4 logERvs. logt

    Table 2 Shift factors at different temperatures

    T/℃logaT76-0.354200-400.477

    Fig.5 Shifting process using the basic TTS method

    A sole curve can be obtained from the above results called the master curve, which gives the values of the relaxation modulusERagainst the values of the reduced timeξ=t/aTfor various temperatures as shown in Fig. 6.

    Fig.6 Master curve using basic TTS method

    3.2 The Williams-Landel-Ferry (WLF) Method

    The WLF equation is an empirical equation that can be used to predict the behavior of the viscoelastic properties of the polymer at a wide range of temperatures. The WLF method is based on a free volume theory which is related to the macroscopic motion of the bulk material, and it is verified at temperatures above the glass transition temperature. The WLF TTS method for calculating the shift factor is shown in Eq.5[1, 2, 9]

    (5)

    whereC1andC2are the material constants which are non-universal values, although they vary with the nature of the polymer system[14]. In order to calculate the shift factor at other temperatures, the material constants must be calculated by the following method. The linearized WLF equation can be rewritten as shown in Eq.6[1, 15].

    (6)

    According to Eq.6, if we plot 1/logaTas a function of 1/(T-T0) we can extractC2/C1from the resulting slope of the straight line and 1/C1from the point of intersection withY-axis.

    Fig. 7 shows the linear relationship between 1/logaTand 1/(T-T0), from Fig. 7 we can find 1/C1=-0.185 and hence

    Fig.7 Linearized WLF equation

    C1=-5.4, and also we can findC2/C1=-142.5, soC2=770.27. Then the shift factor, according to WLF can be calculated at different temperatures according to the Eq. 4. Fig. 8 shows the TTS using WLF method, and Fig. 9 shows the master curve of the relaxation modulus using the same method.

    Fig.8 Shifting process using WLF method

    Fig.9 Masster curve using WLF method

    3.3 The Arrhenius Method

    The Arrhenius relationship is verified at temperatures under the glass transition temperature of the material, and the Arrhenius TTS method for shift factor calculation is shown in Eq.7[2, 9].

    (7)

    whereCais the material constant that is a function of the activation energy (Ea) and the universal gas constant (R),Ca=Ea/2.303R).Tis the test temperature in K, andT0is the reference temperature (293 K). To obtain the material constant we must plot logaTverses (1/T-1/T0) and then the slop of the resulting line will be represent the material constant as shown in Fig.10, soCa=572.4. Now, the shift factors at different temperatures can be obtained as shown in Fig.11, and by using Eq.6 the master curve of the relaxation modulus according to Arrhenius method can be plotted as shown in Fig.12.

    Fig.10 Linearized Arrhenius equation

    Fig.11 Shifting process using Arrhenius method

    Fig.12 Master curve using Arrhenius method

    4 Results and Analysis

    The master curves generated based on the basic TTS method, the WLF method, and the Arrhenius method using the same experimental relaxation test data presented in Fig. 3 are plotted in Fig.13. The plots are for relaxation modulus as a function of reduced time in the log-log scale. All the curves are very similar, and this is an indication of the suitability of these methods for generating the relaxation modulus master curves of solid propellant. However, it should be stressed here that generation of satisfactory master curves and its accuracy is mostly dependent on the following factors:

    Experimental test data consistency, which is a function of different variables, including both the parameters and the set-up of the relaxation test, machine vibrations or noises, specimen homogeneity and uniformity, specimen fabrication for example the dimensions and parallelism of end surfaces of the specimen, and the variation of humidity conditions.

    (2)The behavior of the shift factor variation with temperature.

    (3)The condition of the polymeric material state.

    (4)The heating rate applied to arrive to the desired temperature.

    However, the analysis of the results demonstrated that the basic method for TTS has the highest accuracy of the relaxation modulus curve fitting given determination coefficient (R2=0.9992), and this is not surprising because this method uses only the experimental data. Likewise, both the empirical methods can get acceptable results if appropriate material constants are used in these methods. Table 3 demonstrates the main statistical factors obtained during calculation of material constants, and then we can note the effect of these results on the accuracy of fitting curves. The sum of squared error (SSE), is a preliminary statistical calculation that leads to other data values. It is useful to be able to find how closely related those values are. The root mean squared error(RMSE) is the distance, on average, of a data point from the fitted line,measuring along a vertical line. It seems that the data meet WLF method givenR2coefficient (R2=0.9984), while the data meet the Arrhenius method givenR2coefficient (R2=0.9974), less than the WLF one. Compared to the other two methods, the major advantage of the basic method is that it revolves around the actual experimental data without introducing any external constant when generation the master curve, while the WLF and Arrhenius methods use already existing empirical formulas which are dependent on externally determined material constants. Table 4 is a summary of the analysis and the calculated shift factors at different temperatures when generating the master curves of solid propellant. In Fig. 14, another type of master curve can be obtained from the previous calculation shows the relation between the shift factors corresponding to each temperature. It can be observed that the data meet WLF method given higherR2coefficient, and also given lower error than the data meet the Arrhenius method. In order to simulate the nonlinear viscoelastic behavior of the composite solid propellant under different loads and conditions using various commercial finite element codes (Ansys, Abaqus, Mark, etc.), one of the time-temperature dependent shift functions must be used, and the material constants such asC1,C2, andCamust be entered as determined by the shift function specified and selected by the user in the code.

    Fig.13 Master curve of AP-HTPB solid propellant obtained using the three methods

    Table 3 Statistics of analysis and material constant calculation for HTPB solid propellant

    parameterWLFmethodC1=-5.4 C2=770.27ArrheniusmethodCa=572.4SSE0.00052470.002355R20.99890.9932RMSE0.001560.03431

    Table 4 List of analysis and calculated parameters of master curves for HTPB solid propellant

    parameterbasicmethodWLFmethodArrheniusmethodaT-40℃0.4419060.4312510.485892aT+20℃111aT+76℃3.0021472.8518463.184198R20.99920.99840.9974

    Fig.14 Shift factors corresponding to each temperature

    5 Conclusions

    In this paper,a series of conventional relaxation tests have been performed using a universal test machine at a broad range of temperatures (-40, +20, +76 ℃) to evaluate and get the master curves of the relaxation modulus for AP-HTPB composite solid propellant as a purpose of reduced time and at a reference temperature of 20 ℃. These master curves were generated according to three different methods (the basic, WLF, and Arrhenius) by using the TTS principle, and then comparative study was conducted to show the level of accuracy for each method. The following conclusions can be drawn:

    (1)The basic method is the best method for generating a fit function for the relaxation modulus master curve followed by the WLF method and lastly, the Arrhenius method.

    (2)The results presented here can be used as a reference for selecting the appropriate methods for generating the relaxation modulus master curve of AP-HTPB solid propellant.

    (3)Most of the finite element software′s need some material constants to define the time-temperature dependent material method, so the basic method cannot be used alone and some material constants must be calculated using empirical formulas like WLF or Arrhenius methods, and between these two methods, the WLF method would be recommended.

    [1]Bohwi S, Jaehoon K. Estimation of master curves of relaxation modulus and tensile properties for solid propellant [J].AdvancedMaterialsResearch, 2014, 871: 247-252.

    [2]Salvador N, Antonio M. New method for estimating shift factors in time-temperature superposition models [J].JournalofThermalAnalysisandCalorimetry, 2013, 113: 453-460.

    [3]Chyuan S. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading [J].FiniteElementsinAnalysisandDesign, 2002, 38(7): 613-630.

    [4]Chyuan S. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading [J].JournalofSoundandVibration, 2003, 268(3): 465-483.

    [5]Chyuan S. Studies of Poisson′s ratio variation for solid propellant grains under ignition pressure loading [J].InternationalJournalofPressureVesselsandPiping, 2003, 80(12): 871-877.

    [6]Bihari B K, Waniet V S, Rao N P N, et al. Determination of activation energy of relaxation events in composite solid propellants by dynamic mechanical analysis [J].DefenseScienceJournal, 2014, 64(2): 173-178.

    [7]Marimuthu R, Nageswara B. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains [J].InternationalJournalofPressureVesselsandPiping, 2013, 111: 131-145.

    [8]Xu J, Ju Y, Han B. et al. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP [J].MechanicsofTime-DependentMaterials, 2013, 17(4) : 543-556.

    [9]Lubinda F, Allex E, Geoffrey S. Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes [J].ConstructionandBuildingMaterials, 2011, 25(5) : 2619-2626.

    [10]Davenas A. Solid rocket propulsion Technology [M]. First English Edition, New York, Pergamon Press, 1993, Chapter 6.

    [11]Ferry J D. Viscoelastic properties of polymers [M]. 3rd Edition, John Willy and Sons, 1980.

    [12]Zheng Z, Zhang R. Implementation of viscoelastic material model to simulate relaxation in glass transition [C]∥Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston, 2014.

    [13]Carlrton J M. SRM propellant and polymer materials structural test program. NASA Technical Paper 2821, 1988.

    [14]KGNC A, Burgoyne C J. Time-temperature superposition to determine the stress-rupture of aramid fibres [J].AppliedCompositeMaterials, July 2006, 13(4) : 249-264.

    [15]ROBERT F L. Viscoelastic properties of rubberlike composite propellants and filled elastomers [J].ARSJournal, 2015, 31(5): 599-608.

    猜你喜歡
    梁國(guó)北京航空航天大學(xué)宇航
    Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    農(nóng)民工梁國(guó)勝:讓自己成為最堅(jiān)實(shí)的樁
    Rules in Library
    梁國(guó)華先生藝術(shù)作品選登
    今日華人(2019年9期)2019-10-16 17:03:38
    我的宇航夢(mèng)
    我的宇航夢(mèng)
    精华霜和精华液先用哪个| 国产爽快片一区二区三区| 国产精品久久久久久av不卡| 日韩三级伦理在线观看| 亚洲国产av新网站| 丰满人妻一区二区三区视频av| 菩萨蛮人人尽说江南好唐韦庄| 国产 一区精品| 国产黄色免费在线视频| 国产黄色免费在线视频| 制服丝袜香蕉在线| 久久久国产精品麻豆| 看免费成人av毛片| 久久亚洲国产成人精品v| 久久毛片免费看一区二区三区| 国产欧美日韩精品一区二区| 国产色爽女视频免费观看| 人妻 亚洲 视频| 国产成人一区二区在线| 久久久久久久久久人人人人人人| 成人毛片a级毛片在线播放| 边亲边吃奶的免费视频| 99久久精品一区二区三区| 久久久精品免费免费高清| 欧美+日韩+精品| 欧美日本中文国产一区发布| 麻豆成人av视频| 伦理电影大哥的女人| 色94色欧美一区二区| 亚洲成色77777| 如日韩欧美国产精品一区二区三区 | 99热这里只有是精品在线观看| 中文字幕免费在线视频6| 国产乱人偷精品视频| 国产在线一区二区三区精| av女优亚洲男人天堂| 能在线免费看毛片的网站| 校园人妻丝袜中文字幕| 中国国产av一级| 欧美少妇被猛烈插入视频| 在线观看三级黄色| 久久国产亚洲av麻豆专区| 五月天丁香电影| 女性被躁到高潮视频| 性色avwww在线观看| 日本爱情动作片www.在线观看| 日韩制服骚丝袜av| 亚洲精品视频女| 永久免费av网站大全| 欧美最新免费一区二区三区| 国产成人freesex在线| 中国美白少妇内射xxxbb| 又黄又爽又刺激的免费视频.| 亚洲不卡免费看| 亚洲精品中文字幕在线视频 | 亚洲精华国产精华液的使用体验| 性高湖久久久久久久久免费观看| 熟女电影av网| 91久久精品电影网| 亚洲精品日韩av片在线观看| 亚洲自偷自拍三级| 国产综合精华液| 国内精品宾馆在线| 色视频www国产| 十八禁高潮呻吟视频 | 亚洲av福利一区| 日韩成人av中文字幕在线观看| 午夜福利影视在线免费观看| 欧美丝袜亚洲另类| 久久精品国产a三级三级三级| 午夜视频国产福利| 久久久久国产网址| 在线观看av片永久免费下载| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| av在线播放精品| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类| 久久久久久久亚洲中文字幕| 日韩成人伦理影院| 熟女电影av网| 午夜av观看不卡| 国产欧美另类精品又又久久亚洲欧美| 午夜免费鲁丝| 中文乱码字字幕精品一区二区三区| 嘟嘟电影网在线观看| 99热这里只有是精品50| 简卡轻食公司| 蜜桃久久精品国产亚洲av| kizo精华| 成年美女黄网站色视频大全免费 | 一本—道久久a久久精品蜜桃钙片| 我要看日韩黄色一级片| 日韩 亚洲 欧美在线| 国产黄色视频一区二区在线观看| 最新的欧美精品一区二区| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 亚洲性久久影院| 久久99热6这里只有精品| 日韩成人av中文字幕在线观看| 啦啦啦在线观看免费高清www| 大片电影免费在线观看免费| 欧美国产精品一级二级三级 | 人人澡人人妻人| 国产精品三级大全| 国产精品一区二区性色av| 两个人的视频大全免费| 人妻夜夜爽99麻豆av| 制服丝袜香蕉在线| 精品人妻偷拍中文字幕| 大话2 男鬼变身卡| 亚洲欧美精品自产自拍| 亚洲国产精品一区二区三区在线| 高清黄色对白视频在线免费看 | 一级毛片久久久久久久久女| 高清不卡的av网站| 美女xxoo啪啪120秒动态图| 少妇丰满av| 成人黄色视频免费在线看| 午夜福利网站1000一区二区三区| 不卡视频在线观看欧美| 中文字幕久久专区| 久久精品国产亚洲av天美| 亚洲av综合色区一区| 99热6这里只有精品| 又爽又黄a免费视频| 免费人成在线观看视频色| 色网站视频免费| 黄色一级大片看看| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜| 高清黄色对白视频在线免费看 | 欧美性感艳星| 国产精品免费大片| 日韩三级伦理在线观看| 日韩中文字幕视频在线看片| 精品一区二区免费观看| 男女边摸边吃奶| 交换朋友夫妻互换小说| 天天躁夜夜躁狠狠久久av| 国产精品一区二区性色av| 国产真实伦视频高清在线观看| 极品人妻少妇av视频| 欧美精品国产亚洲| 国产精品女同一区二区软件| 91精品伊人久久大香线蕉| 91久久精品国产一区二区成人| 成人18禁高潮啪啪吃奶动态图 | 国产伦在线观看视频一区| 波野结衣二区三区在线| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区 | 国国产精品蜜臀av免费| 我要看日韩黄色一级片| 精品少妇内射三级| 国内精品宾馆在线| 亚洲欧美日韩另类电影网站| 国产一级毛片在线| 免费av中文字幕在线| av天堂久久9| 一区二区av电影网| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一二三区在线看| 日韩欧美精品免费久久| 成人漫画全彩无遮挡| 日韩免费高清中文字幕av| 国产精品女同一区二区软件| 国产精品国产三级国产av玫瑰| 亚洲天堂av无毛| 少妇丰满av| 黑人高潮一二区| 青春草亚洲视频在线观看| videossex国产| 精品一区二区三区视频在线| 丝袜在线中文字幕| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 久久鲁丝午夜福利片| 三级国产精品欧美在线观看| 久久99精品国语久久久| 一本色道久久久久久精品综合| 成人影院久久| 嫩草影院新地址| 免费观看无遮挡的男女| 亚洲国产精品专区欧美| 天天躁夜夜躁狠狠久久av| 少妇人妻 视频| 视频中文字幕在线观看| 大香蕉97超碰在线| 大香蕉97超碰在线| 国产 精品1| 女的被弄到高潮叫床怎么办| kizo精华| 久久人妻熟女aⅴ| 丰满人妻一区二区三区视频av| 久久精品久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 国产精品伦人一区二区| 中文字幕制服av| 国产av一区二区精品久久| 久久久国产精品麻豆| 亚洲精品亚洲一区二区| 国精品久久久久久国模美| 黄色怎么调成土黄色| 在线 av 中文字幕| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 人体艺术视频欧美日本| 精品熟女少妇av免费看| 日本av免费视频播放| 男女国产视频网站| videossex国产| 晚上一个人看的免费电影| 免费人成在线观看视频色| 赤兔流量卡办理| 十八禁网站网址无遮挡 | 久久国产亚洲av麻豆专区| 水蜜桃什么品种好| 亚洲人与动物交配视频| 如何舔出高潮| av在线app专区| 色5月婷婷丁香| 在线看a的网站| 少妇人妻 视频| 一级毛片电影观看| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美日韩在线播放 | 亚洲国产精品专区欧美| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 观看免费一级毛片| 国产精品不卡视频一区二区| 大陆偷拍与自拍| 汤姆久久久久久久影院中文字幕| 18禁裸乳无遮挡动漫免费视频| 激情五月婷婷亚洲| 2021少妇久久久久久久久久久| 香蕉精品网在线| 国产一区有黄有色的免费视频| 色5月婷婷丁香| 美女大奶头黄色视频| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 韩国高清视频一区二区三区| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 国产欧美日韩综合在线一区二区 | 亚洲四区av| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| 少妇被粗大猛烈的视频| 最黄视频免费看| 久久影院123| 综合色丁香网| 国产精品一区www在线观看| 国产精品久久久久久精品电影小说| 老熟女久久久| 91成人精品电影| 丝瓜视频免费看黄片| 乱码一卡2卡4卡精品| 乱人伦中国视频| 精品一品国产午夜福利视频| 久久女婷五月综合色啪小说| 欧美日韩精品成人综合77777| 国产高清国产精品国产三级| 麻豆成人午夜福利视频| av在线app专区| 久久女婷五月综合色啪小说| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 久久久精品免费免费高清| 在线观看av片永久免费下载| 日韩制服骚丝袜av| 91精品国产国语对白视频| 如何舔出高潮| 五月开心婷婷网| 国产精品偷伦视频观看了| 亚洲av福利一区| 美女内射精品一级片tv| 亚洲精品中文字幕在线视频 | 欧美97在线视频| 欧美激情极品国产一区二区三区 | 婷婷色综合www| 免费看日本二区| 国产欧美日韩精品一区二区| h日本视频在线播放| 2022亚洲国产成人精品| av又黄又爽大尺度在线免费看| 一级二级三级毛片免费看| 中文乱码字字幕精品一区二区三区| 黄色欧美视频在线观看| 免费观看在线日韩| 各种免费的搞黄视频| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 欧美日韩亚洲高清精品| 日韩电影二区| freevideosex欧美| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 秋霞伦理黄片| 亚洲精品视频女| 一级毛片电影观看| 国产日韩欧美视频二区| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| 精品午夜福利在线看| av不卡在线播放| 久久久久久久亚洲中文字幕| 肉色欧美久久久久久久蜜桃| 精品午夜福利在线看| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 国产av精品麻豆| 日韩大片免费观看网站| 2021少妇久久久久久久久久久| 日韩精品免费视频一区二区三区 | 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 久久久久久久久久久丰满| 国产女主播在线喷水免费视频网站| 91在线精品国自产拍蜜月| 午夜影院在线不卡| 亚洲精品乱码久久久久久按摩| 91aial.com中文字幕在线观看| 免费观看性生交大片5| 内地一区二区视频在线| 国产成人freesex在线| 国产av码专区亚洲av| 日本wwww免费看| 美女福利国产在线| 国产欧美日韩一区二区三区在线 | 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| 极品人妻少妇av视频| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 色哟哟·www| 麻豆乱淫一区二区| 欧美日本中文国产一区发布| 2022亚洲国产成人精品| 久久午夜综合久久蜜桃| 美女xxoo啪啪120秒动态图| 午夜福利影视在线免费观看| 中文字幕免费在线视频6| 久久av网站| av播播在线观看一区| 国产精品免费大片| 最近的中文字幕免费完整| 成人午夜精彩视频在线观看| 纵有疾风起免费观看全集完整版| 97在线视频观看| 国产乱来视频区| 成年女人在线观看亚洲视频| 一区二区三区精品91| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 中文字幕人妻丝袜制服| 夫妻午夜视频| 91精品国产九色| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 国产精品一区www在线观看| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| av在线老鸭窝| 黄色一级大片看看| 一区在线观看完整版| 91久久精品国产一区二区三区| av女优亚洲男人天堂| 新久久久久国产一级毛片| 国产成人freesex在线| 国产精品福利在线免费观看| 精品久久久久久久久av| 成人免费观看视频高清| 成人毛片60女人毛片免费| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 春色校园在线视频观看| 国产又色又爽无遮挡免| 精品久久久久久久久亚洲| 午夜91福利影院| 国产精品人妻久久久久久| 国产熟女午夜一区二区三区 | 久久97久久精品| 欧美精品高潮呻吟av久久| 日韩欧美 国产精品| 少妇的逼好多水| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 在线观看三级黄色| 乱系列少妇在线播放| 欧美人与善性xxx| 色婷婷av一区二区三区视频| 亚洲欧美清纯卡通| videos熟女内射| 夜夜看夜夜爽夜夜摸| 黑人高潮一二区| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 高清av免费在线| 亚洲精品成人av观看孕妇| 中文资源天堂在线| 少妇丰满av| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级专区第一集| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 国产精品久久久久久久电影| 一本—道久久a久久精品蜜桃钙片| 天堂8中文在线网| 国产亚洲一区二区精品| 久久久久久久久久久丰满| 成人亚洲精品一区在线观看| 黄片无遮挡物在线观看| 插阴视频在线观看视频| 成年女人在线观看亚洲视频| 3wmmmm亚洲av在线观看| 热re99久久国产66热| 女人久久www免费人成看片| av播播在线观看一区| 日本欧美国产在线视频| 国产精品99久久久久久久久| 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 久久热精品热| 色视频在线一区二区三区| 在线观看www视频免费| 久久女婷五月综合色啪小说| 我的女老师完整版在线观看| 亚洲综合精品二区| 午夜福利,免费看| 亚洲av.av天堂| 免费黄色在线免费观看| 久久国产精品男人的天堂亚洲 | 日日摸夜夜添夜夜爱| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 一个人看视频在线观看www免费| 日本黄色片子视频| 欧美xxⅹ黑人| 久久97久久精品| 蜜桃在线观看..| 99热网站在线观看| 乱系列少妇在线播放| 久久久国产精品麻豆| av天堂久久9| 国产亚洲av片在线观看秒播厂| av播播在线观看一区| 日本欧美国产在线视频| 伊人久久精品亚洲午夜| 一级a做视频免费观看| 成人二区视频| 亚洲av中文av极速乱| 久久久久网色| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 欧美变态另类bdsm刘玥| www.色视频.com| 热re99久久精品国产66热6| av.在线天堂| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 卡戴珊不雅视频在线播放| 成人美女网站在线观看视频| 只有这里有精品99| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 极品人妻少妇av视频| 久久人人爽人人片av| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| 日日撸夜夜添| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 精品国产乱码久久久久久小说| 性色av一级| 永久免费av网站大全| 久久6这里有精品| 国产在线男女| 桃花免费在线播放| 色视频www国产| 国产免费福利视频在线观看| 国产黄色视频一区二区在线观看| 熟女av电影| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 国产在线视频一区二区| 极品人妻少妇av视频| 在线观看www视频免费| 国产精品久久久久久久电影| av国产精品久久久久影院| 日本欧美视频一区| 九九久久精品国产亚洲av麻豆| 免费看av在线观看网站| 日韩欧美 国产精品| 性色avwww在线观看| 黄色配什么色好看| 伦理电影免费视频| 成人美女网站在线观看视频| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 国产精品.久久久| 国产高清国产精品国产三级| 99热这里只有是精品50| 一区二区av电影网| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 一本久久精品| 国产精品一区二区在线观看99| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 日日爽夜夜爽网站| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 亚洲图色成人| 亚洲欧美成人综合另类久久久| 国产美女午夜福利| 日本-黄色视频高清免费观看| 99九九在线精品视频 | 成人影院久久| 在线观看免费视频网站a站| 日韩av免费高清视频| 狠狠精品人妻久久久久久综合| 亚洲精品乱码久久久久久按摩| 国产乱来视频区| 寂寞人妻少妇视频99o| 国产成人a∨麻豆精品| av有码第一页| 成人18禁高潮啪啪吃奶动态图 | 黄色毛片三级朝国网站 | 美女xxoo啪啪120秒动态图| 亚洲,欧美,日韩| 中文字幕av电影在线播放| .国产精品久久| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 夫妻性生交免费视频一级片| 综合色丁香网| 两个人免费观看高清视频 | 国产爽快片一区二区三区| 国产黄色免费在线视频| 国产 精品1| 午夜福利网站1000一区二区三区| 欧美 亚洲 国产 日韩一| 成年美女黄网站色视频大全免费 | 免费观看无遮挡的男女| 久久久久国产网址| 色视频在线一区二区三区| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 在线精品无人区一区二区三| 午夜免费鲁丝| 亚洲国产日韩一区二区| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 国产成人a∨麻豆精品| 免费av不卡在线播放| 午夜老司机福利剧场| 欧美日韩一区二区视频在线观看视频在线| 精品国产国语对白av| 免费av不卡在线播放| 99久久综合免费| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 亚洲,欧美,日韩| 久久青草综合色| 人妻制服诱惑在线中文字幕| 免费观看无遮挡的男女| 女人久久www免费人成看片| 男男h啪啪无遮挡| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 国产免费视频播放在线视频| 欧美三级亚洲精品| 99热6这里只有精品| 蜜臀久久99精品久久宅男| 国产精品一二三区在线看| 黄片无遮挡物在线观看| 丝袜在线中文字幕| 最黄视频免费看| 蜜桃久久精品国产亚洲av| 一区二区av电影网| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| tube8黄色片| 国产精品人妻久久久影院| 日韩电影二区| 亚洲精品国产成人久久av|