胡徐哲,黃蘭萍,張望,謝盛輝,鄧佳,李松
(1. 中南大學(xué) 粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410083;2. 深圳大學(xué) 材料學(xué)院,深圳 518060)
超聲振動(dòng)對(duì)Zr基大塊非晶合金結(jié)構(gòu)與顯微力學(xué)行為的影響
胡徐哲1,黃蘭萍1,張望1,謝盛輝2,鄧佳1,李松1
(1. 中南大學(xué) 粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410083;2. 深圳大學(xué) 材料學(xué)院,深圳 518060)
在室溫條件下對(duì)鑄態(tài)Zr52Cu23Al14.5Ni10.5大塊非晶合金進(jìn)行5 h超聲振動(dòng)處理,通過(guò)X射線(xiàn)衍射(XRD)、高分辨透射電鏡(HRTEM)、差示掃描量熱分析(DSC)以及納米壓痕測(cè)試,研究長(zhǎng)時(shí)間超聲處理對(duì)大塊Zr基非晶合金結(jié)構(gòu)與顯微力學(xué)行為的影響。結(jié)果表明,經(jīng)過(guò)5 h超聲振動(dòng)處理后,Zr基非晶合金仍保留非晶態(tài)結(jié)構(gòu),沒(méi)有發(fā)生晶化;超聲振動(dòng)對(duì)大塊非晶合金的熱力學(xué)特征溫度如玻璃化轉(zhuǎn)變溫度(Tg)、晶化開(kāi)始溫度(Tx)以及晶化峰值溫度(Tp)的影響都不大,但可誘導(dǎo)結(jié)構(gòu)弛豫,使其自由體積明顯減少;相比鑄態(tài)合金,超聲處理后的合金,其納米壓痕實(shí)驗(yàn)的載荷—位移曲線(xiàn)上的鋸齒流變現(xiàn)象明顯減少,顯微硬度和彈性模量均明顯提高,分別從鑄態(tài)的 5.7 GPa和102 GPa提高到6.5 GPa和122 GPa。表明超聲振動(dòng)處理是一種室溫調(diào)控大塊非晶合金力學(xué)性能的有效手段。
大塊非晶合金;超聲振動(dòng);納米壓痕;顯微硬度;彈性模量
大塊非晶合金由于具有短程有序、長(zhǎng)程無(wú)序的原子排列特點(diǎn)而呈現(xiàn)出高彈性極限[1-2]、高強(qiáng)度和硬度[3]、高斷裂韌性[4]以及優(yōu)異的成形能力[5],在國(guó)民經(jīng)濟(jì)和國(guó)防工業(yè)中具有重要的應(yīng)用前景。自從 INOUE等[6]報(bào)道了存在大過(guò)冷液相區(qū)的Zr-Cu-Al非晶合金之后,全球范圍內(nèi)興起了對(duì)Zr基大塊非晶合金的研究熱潮。相較于其它成分的非晶合金而言,Zr基非晶合金成本較低且非晶形成能力較強(qiáng),在科研和商業(yè)領(lǐng)域已開(kāi)始使用;然而,室溫脆性限制了大塊非晶合金的工程應(yīng)用范圍。為了獲得大塑性的大塊非晶合金,科研人員做了大量的研究。GARGARELLA等[7]在大塊非晶合金中誘導(dǎo)形成一定量的納米晶粒,可以明顯提高合金的塑性;外場(chǎng)作用如等靜壓處理能顯著提高 Zr基大塊非晶合金的單軸壓縮塑性,如在4.5 GPa壓力下等靜壓處理后,材料的壓縮塑性應(yīng)變高達(dá) 12%[8];WANG等[9]在低于彈性極限下施壓時(shí),Zr基非晶合金表現(xiàn)出弛豫焓下降,臨界剪切應(yīng)力以及屈服強(qiáng)度增加的現(xiàn)象。一般而言,對(duì)于晶態(tài)材料,退火處理作為傳統(tǒng)的處理方法可使材料處于穩(wěn)定狀態(tài)(即低能態(tài)),導(dǎo)致材料的硬度下降,塑性增加。但相反地,非晶合金在玻璃轉(zhuǎn)化溫度(Tg)以下退火后硬度增加,塑性降低[10]。HUANG等[11]研究發(fā)現(xiàn),隨退火時(shí)間延長(zhǎng),非晶合金的硬度提高到最大值后下降。簡(jiǎn)而言之,在外場(chǎng)作用下非晶合金力學(xué)性能可分為2種:應(yīng)力誘導(dǎo)軟化效應(yīng)[12]和退火誘導(dǎo)硬化效應(yīng)[13]。大塊非晶合金在熱力學(xué)上處于亞穩(wěn)態(tài),在外場(chǎng)(溫度場(chǎng)、應(yīng)力場(chǎng)或電磁場(chǎng)等)作用下發(fā)生結(jié)構(gòu)弛豫或晶化,從而影響其性能。目前超聲振動(dòng)作為一種外場(chǎng)處理方式用于非晶合金的研究還不多[14-15],一般用于對(duì) Al合金[16]和Mg合金[17]的晶粒細(xì)化。本文在室溫下對(duì)Zr52Cu23Al14.5Ni10.5大塊非晶合金進(jìn)行長(zhǎng)時(shí)間超聲振動(dòng)處理,探究超聲對(duì)大塊非晶合金結(jié)構(gòu)與顯微力學(xué)行為的影響,研究結(jié)果有助于更好地理解大塊非晶合金的微觀(guān)結(jié)構(gòu)與性能之間的關(guān)系。
實(shí)驗(yàn)用大塊非晶合金的成分為Zr52Cu23Al14.5Ni10.5(元素含量為摩爾分?jǐn)?shù)),其母錠是以高純度的金屬Zr,Cu,Al和純度不小于99.9%的金屬Ni棒材,在Ti錠吸氧的高純 Ar氣氛中通過(guò)電弧熔煉制備而成。母錠反復(fù)熔煉5次以上并施加磁力攪拌,使各組元充分混合均勻。通過(guò)銅模吸鑄法制備直徑5 mm,長(zhǎng)度60 mm的合金棒材。采用水冷低速金剛石切割機(jī)將合金棒材切割成厚度1 mm左右的圓片,置于乙醇溶液中,在(30±2) ℃溫度下超聲處理5 h,超聲波頻率為40 kHz。
利用X 射線(xiàn)衍射儀(Rigaku D max 2500 VB,Cu Kα靶)確認(rèn) Zr52Cu23Al14.5Ni10.5合金的非晶結(jié)構(gòu)。用JEOL-2100F場(chǎng)發(fā)射透射電鏡觀(guān)察超聲合金的顯微結(jié)構(gòu)。用型號(hào)為PE8000的差示掃描量熱儀(DSC)測(cè)定合金的玻璃轉(zhuǎn)變和晶化行為,升溫速率為20 K/min。用瑞士 CSM納米壓痕儀對(duì)合金進(jìn)行納米壓痕測(cè)試,測(cè)試前將樣品研磨和拋光至鏡面狀態(tài),用金剛石Berkovich壓頭首先以設(shè)定的加載速率(1 mN/s)壓入合金樣品,直至最大載荷30 mN,保壓15 s,然后以同樣速率卸載。實(shí)驗(yàn)重復(fù)進(jìn)行5次,取平均值。
圖1所示為厚度1mm的圓片狀Zr52Cu23Al14.5Ni10.5合金樣品鑄態(tài)和超聲處理后的縱剖面高分辨透射電鏡(HRTEM)照片以及選區(qū)電子衍射(SAED)圖。從圖1(a)和(b)可看出,鑄態(tài)和超聲處理后的合金中均未發(fā)現(xiàn)晶格點(diǎn)陣,呈現(xiàn)出晶格無(wú)序排列的結(jié)構(gòu)特征。圖 1(c)中僅有一個(gè)寬化且清晰的暈環(huán),未發(fā)現(xiàn)任何衍射斑點(diǎn)存在。圖2所示為鑄態(tài)Zr52Cu23Al14.5Ni10.5合金及其超聲處理后的 XRD譜。由圖可知,超聲處理前和處理后的合金,在2θ約為31°~42°之間都有一個(gè)寬化的非晶峰。這些實(shí)驗(yàn)結(jié)果表明鑄態(tài)和超聲處理后的Zr52Cu23-Al14.5Ni10.5合金都具有非晶態(tài)結(jié)構(gòu)。
圖3所示為鑄態(tài)及超聲處理后Zr52Cu23Al14.5Ni10.5非晶合金的DSC曲線(xiàn),對(duì)應(yīng)的熱力學(xué)參數(shù)列于表1。從表1可看出,超聲處理對(duì)非晶合金的玻璃轉(zhuǎn)變溫度(Tg)、晶化開(kāi)始溫度(Tx)和晶化峰值溫度(Tp)的影響都不大。從圖3可見(jiàn)鑄態(tài)和超聲處理后的合金均表現(xiàn)出典型的非晶合金吸放熱特征,在晶化之前具有明顯的玻璃化轉(zhuǎn)變以及寬的過(guò)冷液相區(qū)(大約100K)。利用公式(式中:ΔH 為放熱焓;β為升溫速率,K/min;q為熱焓;T為溫度,K),可計(jì)算出鑄態(tài)合金及其超聲處理后的放熱焓分別為 67.2和17.7 J/g??梢?jiàn)超聲處理后合金的放熱焓比鑄態(tài)合金的放熱焓小很多。通常在非晶合金的連續(xù)升溫過(guò)程中,由于結(jié)構(gòu)弛豫,在到達(dá)Tg之前會(huì)出現(xiàn)放熱現(xiàn)象,放熱量與結(jié)構(gòu)弛豫過(guò)程中自由體積的變化成正比[18],即自由體積含量越多,放熱焓越高,反之亦然。超聲處理后合金的放熱焓顯著減小,可斷定Zr基大塊非晶合金發(fā)生結(jié)構(gòu)弛豫,自由體積含量減少,并處于更低的能量狀態(tài)。圖4所示為超聲對(duì)非晶合金的作用示意圖,圖中紅色空心球?qū)?yīng)原子排列松散區(qū),藍(lán)色球?qū)?yīng)原子排列緊密區(qū),原子排列松散意味著自由體積較多。超聲作用使非晶合金中自由體積減少,原子排列更緊密,從而使結(jié)構(gòu)更加致密。
納米壓痕可以有效測(cè)量如非晶合金之類(lèi)的準(zhǔn)脆性材料的微觀(guān)力學(xué)行為[19]。圖5所示為鑄態(tài)和超聲處理后 Zr基非晶合金的顯微硬度和彈性模量平均值以及在加載階段的載荷-位移曲線(xiàn)。
圖2 Zr基大塊非晶合金的XRD譜Fig.2 XRD patterns of Zr-based bulk metallic glasses
圖3 Zr基大塊非晶合金的DSC曲線(xiàn)Fig.3 DSC curves of Zr-based bulk metallic glasses
表1 超聲處理對(duì)Zr52Cu23Al14.5Ni10.5大塊非晶合金熱力學(xué)參數(shù)的影響Table 1 Effect of ultrasonic vibration on the thermodynamic parameters of Zr52Cu23Al14.5Ni10.5bulk metallic glass K
圖4 超聲作用于Zr基非晶合金的示意圖Fig.4 Schematic illustration of structural relaxation of Zr-based metallic glasses by ultrasonic vibration
圖5 Zr基非晶合金的平均顯微硬度與楊氏模量以及納米壓痕測(cè)試加載階段的載荷-位移曲線(xiàn)Fig.5 Microhardness and elastic modulus (a) and load-displacement curves (b) of Zr-based metallic glasses
由圖5(a)可知,鑄態(tài)合金的顯微硬度為5.7 GPa,而超聲處理后硬度提高到6.5 GPa,彈性模量則從102 GPa顯著上升到122 GPa,這說(shuō)明超聲處理能顯著提高Zr基非晶合金的顯微硬度和彈性模量。通常非晶合金的硬度和彈性模量都與自由體積的數(shù)量密切相關(guān)。TURNBULL等[20]指出,在非晶合金中自由體積的存在可以增加原子間的間距,從而減弱金屬鍵的結(jié)合能。超聲振動(dòng)使非晶合金的自由體積明顯減少,原子排列更加緊密,原子間作用力更強(qiáng),因此顯微硬度和彈性模量都顯著提高。從圖5(b)可知,與許多大塊非晶合金類(lèi)似,超聲處理前后的Zr52Cu23Al14.5Ni10.5大塊非晶合金在納米壓痕實(shí)驗(yàn)過(guò)程中呈現(xiàn)出臺(tái)階狀的鋸齒流變現(xiàn)象,而鋸齒流變反映到載荷—位移曲線(xiàn)中表現(xiàn)為位移的突進(jìn)(pop-in)現(xiàn)象(如圖 5(b)中箭頭所指),研究表明pop-in現(xiàn)象跟非晶合金的成分、狀態(tài)以及壓痕實(shí)驗(yàn)的加載速率有關(guān)[21-22]。從圖5(b)發(fā)現(xiàn)鑄態(tài)合金的popin數(shù)量明顯多于超聲處理后的合金,這說(shuō)明超聲處理對(duì)非晶合金在載荷壓入過(guò)程中的塑性變形行為有重要影響。pop-in數(shù)量的差異可從不同角度解釋。根據(jù)自由體積理論[23-24],當(dāng)由于原子擴(kuò)散導(dǎo)致的自由體積湮滅數(shù)量小于因原子重排導(dǎo)致的自由體積產(chǎn)生數(shù)量時(shí),自由體積過(guò)剩導(dǎo)致應(yīng)力易于出現(xiàn)松弛,從而使載荷-位移曲線(xiàn)上出現(xiàn)較多臺(tái)階狀的pop-in現(xiàn)象[20]。相反,當(dāng)由于原子擴(kuò)散導(dǎo)致的自由體積湮滅數(shù)量大于因原子重排導(dǎo)致的自由體積產(chǎn)生數(shù)量時(shí),合金內(nèi)自由體積數(shù)量減少,使得載荷-位移曲線(xiàn)趨于平滑。因此,自由體積更多的鑄態(tài) Zr基非晶合金比超聲處理態(tài)合金在應(yīng)力作用下呈現(xiàn)出更明顯的鋸齒流變現(xiàn)象。同時(shí),SLIPENYUK等[18]認(rèn)為非晶合金的密度隨自由體積含量減少而增加。自由體積含量減少時(shí),原子堆積越緊密,原子擴(kuò)散越困難,因而超聲處理后自由體積湮滅速率越快。此外,剪切帶理論[21]也能用來(lái)解釋F-h曲線(xiàn)中的pop-in現(xiàn)象。如ARGON[24]認(rèn)為過(guò)剩的自由體積誘導(dǎo)剪切帶的形核。SUN等[25]認(rèn)為自組織臨界狀態(tài)(self-organized critical state)下的剪切崩塌是由多重剪切帶相互作用造成的??梢哉f(shuō),pop-in現(xiàn)象的出現(xiàn)與非晶合金在塑性變形過(guò)程中剪切帶的形成和擴(kuò)展密切相關(guān)。而非晶合金所凍結(jié)的自由體積在變形過(guò)程中的產(chǎn)生、湮滅或重新分布則為剪切帶的產(chǎn)生和擴(kuò)展提供了條件。當(dāng)鋸齒流變形成于被過(guò)剩自由體積包圍的運(yùn)動(dòng)的多重剪切帶中時(shí),如果自由體積含量不足以形成剪切帶,則F-h曲線(xiàn)中不會(huì)產(chǎn)生明顯的pop-in現(xiàn)象,曲線(xiàn)是平滑的。如果自由體積含量足以形成剪切帶,而剪切帶相互作用引發(fā)剪切崩塌,從而出現(xiàn)鋸齒流變現(xiàn)象,F(xiàn)-h曲線(xiàn)就出現(xiàn)多組pop-in現(xiàn)象。
1) 室溫下對(duì)鑄態(tài) Zr52Cu23Al14.5Ni10.5大塊非晶合金超聲處理5 h后,合金仍保留非晶態(tài)結(jié)構(gòu),與鑄態(tài)結(jié)構(gòu)無(wú)明顯差別。
2) 超聲處理對(duì) Zr52Cu23Al14.5Ni10.5大塊非晶合金的Tg,Tx和Tp影響不大,但使其發(fā)生明顯的結(jié)構(gòu)弛豫,導(dǎo)致非晶合金內(nèi)部的自由體積明顯減少。
3) 經(jīng)超聲處理后,Zr52Cu23Al14.5Ni10.5非晶合金的顯微硬度和彈性模量顯著提高,同時(shí)在加載階段的pop-in現(xiàn)象明顯減少,這與超聲處理導(dǎo)致非晶合金內(nèi)部自由體積數(shù)量減少密切相關(guān)。
REFERENCES
[1]SCHROERS J, JOHNSON W L. Ductile bulk metallic glass[J].Physical Review Letters, 2004, 93(25): 255506-1-4.
[2]JANG Dongchan, GREER J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nature Materials, 2010, 9(3): 215-219
[3]DEMETRIOU M D, LAUNEY M E, GARRETT G, et al. A damage-tolerant glass[J]. Nature Materials, 2011, 10(2): 123-128
[4]DAS J, TANG Meibo, KIM K B, et al. ‘Work-hardenable’ductile bulk metallic glass[J]. Physical Review Letters, 2005, 94(20): 205501-1-4
[5]JOHNSON W L, KALTENBOECK G, DEMETRIOU M D, et al. Beating crystallization in glass-forming metals by millisecond heating and processing[J]. Science, 2011, 332(6031): 828-833.
[6]INOUE A, ZHANG Tao, MASUMOTO T. New amorphous alloys with significant super-cooled liquid region and large reduced glass transition temperature[J]. Materials Science and Engineering A, 1991, 134(1): 1125-1128.
[7]GARGARELLA P, PAULY S, KHOSHKHOO M S. Phase formation and mechanical properties of Ti-Cu-Ni-Zr bulk metallic glass composites[J]. Acta Materialia, 2014, 65(1): 259-269
[8]YU P, BAI H Y, ZHAO J G, et al. Pressure effects on mechanical properties of bulk metallic glass[J]. Applied Physics Letters, 2007, 90(5): 51906-1-3.
[9]WANG Y M, ZHANG M, LIU L. Mechanical annealing in the homogeneous deformation of bulk metallic glass under elastostatic compression[J]. Scripta Materialia, 2015, 102(1): 67-70
[10]CHEN C S, YIU P, LI CL, et al. Effects of annealing on mechanical behavior of Zr-Ti-Ni thin film metallic glasses[J]. Materials Science and Engineering A, 2014, 608(1): 258-264.
[11]HUANG Yongjiang, ZHENG Wei, FAN Hongbo, et al. The effects of annealing on the microstructure and the dynamic mechanical strength of a ZrCuNiAl bulk metallic glass[J]. Intermetallics 2013, 42(1):192-197.
[12]BEI H, XIE S, GEORGE E P. Softening caused by profuse shear banding in a bulk Metallic glass[J]. Physical Review Letters, 2006, 96(10): 105503-1-4.
[13]XIE S, GEORGE EP. Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing[J]. Acta Materialia, 2008, 56(18): 5202-5213
[14]ICHITSUBO T, MATSUBARA E, YAMAMOTO T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Physical Review Letters, 2005, 95(24): 245501-1-4.
[15]WANG Yongyong, ZHAO Wei, LI G, et al. Effects of ultrasonic treatment on the structure and properties of Zr-based bulk metallic glasses [J]. Journal of Alloys and Compounds, 2012, 544(1): 46-49.
[16]WANG G, DARGUSCH M S, QIAN M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. Journal of Crystal Growth, 2014, 408(1): 119-124.
[17]RAMIREZ A, MA Qian, DAVIS B. et al. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys[J]. Scripta Materialia, 2008, 59(1): 19-22.
[18]SLIPENYUK A, ECKERT J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5metallic glass[J]. Acta Materialia, 2011, 59(11): 4404-4415.
[19]HUANG Yongjiang, FAN Hongbo, ZHOU Xinyu, et al. Structure and mechanical property modification of a Ti-based metallic glass by ion irradiation[J]. Scripta Materialia, 2015, 103(1): 41-44.
[20]TURNBULL D, COHEN M H. On the free-volume model of the liquid-glass transition[J]. Journal of Chemical Physics, 1970, 52(6): 3038-3041.
[21]SCHUH C A, NIEH T G. A nanoindentation study of serrated flow in bulk metallic glasses[J]. Acta Materialia, 2003, 51(1): 87-99
[22]NIEH T G, SCHUH C A, WADSWORTH J, et al. Strain rate-dependent deformation in bulk metallic glasses[J]. Intermetallics, 2002, 10(11/12): 1177-1182
[23]SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Matellurgica, 1977, 25(4): 407-415
[24]ARGON A S. Plastic deformation in metallic glasses[J]. Acta Matellurgica, 1978, 27(1): 47-58
[25]SUN Baoan, YU Haibin, JIAO W, et al. Plasticity of ductile metallic glasses: A self-organized critical state[J]. Physical Review Letters, 2010, 105(3): 035501-1-4.
(編輯 湯金芝)
Effect of ultrasonic vibration on structure and micromechanical properties of a Zr-based bulk metallic glass
HU Xuzhe1, HUANG Lanping1, ZHANG Wang1, XIE Shenghui2, DENG Jia1, LI Song1
(1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China)
The as-cast Zr52Cu23Al14.5Ni10.5bulk metallic glass (BMG) was ultrasonic treated for 5 h at room temperature. The effect of ultrasonic treatment on the structure and micromechanical behaviors of the Zr52Cu23Al14.5Ni10.5BMG was investigated by XRD, TEM, DSC and nanoindentation method. The results show that the amorphous structure are retained and typical thermodynamic parameters, such as glass transition temperature(Tg), onset crystallization temperature (Tx) and crystallization peak temperature (Tp), do not change for the Zr-based BMG after ultrasonic treatment for 5 h. However, ultrasonic vibration can result in the structural relaxation and the decrease of the free volume in the Zr-based BMG. This makes the microhardness and elastic modulus of the sample after ultrasonic treatment (HIT=6.5 GPa, EIT=122 GPa) be higher than those of the as-cast one (HIT=5.7 GPa, EIT=102 GPa), and the pop-in events in the F-h curve after ultrasonic treatment become fewer. This also means that ultrasonic treatment can be regarded as an effective method to control the micromechanical properties of BMGs.
bulk metallic glass; ultrasonic vibration; nanoindentation; microhardness; elastic modulus
TG139+.8
A
1673-0224(2017)01-15-05
中南大學(xué)升華獵英人才計(jì)劃資助項(xiàng)目;粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目
2016-01-06;
2016-09-30
李松,副教授,博士。電話(huà):18684980068;E-mail: ls2011sl@csu.edu.cn